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Abstract. Microcontroller units used in harsh environmental conditions
are manufactured using large semiconductor technology nodes in order to
provide reliable operation, even at high temperatures or increased radia-
tion exposition. These large technology nodes imply high gate propaga-
tion delays, drastically reducing the system’s performance. When reduc-
ing area costs and power consumption, the actual processor architecture
becomes a major design point. Depending on the application charac-
teristics (i.e., inherent data parallelisms, type of arithmetic, ...), sev-
eral parameters like data path width, instruction execution paradigm, or
other architectural design mechanisms have to be considered. This paper
presents a design space exploration of five different architectures imple-
mented for a 0.18 µm SOI CMOS technology for high temperature using
an exemplary case study from the fields of communication, i.e., Reed-
Solomon encoder. For this algorithm, an application-specific configura-
tion of a transport-triggered architecture has 37.70 x of the performance
of a standard 8-bit microcontroller while the silicon area is increased by
4.10 x.

Keywords: ASIC · Application Specific Processors · Design Tradeoff
Analysis · Harsh Environment · MIPS · Processor Architecture Organi-
zation · Transport-Triggered Architecture · VLIW

1 Introduction

Automotive and aerospace applications with on-site microcontroller-like systems,
which provide continuous maintainability and thus, flexibility, are an emerging
field of control engineering. Exemplary systems are motor control units for cars,
full authority digital engine controls for piston engines, or satellite arbitration
systems. The electronic components have to ensure reliable operation even in
harsh environmental situations, such as high temperature or increased radia-
tion. Hence, the integrated circuits are manufactured using very large technology
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nodes and silicon on insulator (SOI) stacks to reduce leakage current and latch-up
effect probability [1]. As a drawback, these large technology nodes only provide
a moderate operating frequency, reducing the overall system performance. Due
to the large silicon structure, the number of transistors and consequently the
circuit complexity on a die is limited. Furthermore, the power consumption is
restricted for embedded applications. Because of these limitations, the according
system’s processor architecture organization has a high impact on the overall ef-
ficiency. The design space of those architectures includes numerous parameters.
Some of the most significant parameters are data path width and microarchi-
tecture organization. The predominant microcontroller data path widths can be
classified into 8-, 16-, or 32-bit architectures. The most common instruction ex-
ecution paradigms are single-cycle, multi-cycle or pipelined execution, which are
also directly connected to the architectural design organization, i.e., RISC- or
CISC-like design concept. A completely different design concept is presented by
the transport-triggered architecture [3]. This architecture performs instructions
as side effects to move operations. All of these parameters highly influence the
processor’s performance as well as silicon area and energy requirements.

In this paper, five different processor architecture organizations were imple-
mented in VHDL and optimized for an exemplary 0.18 µm high-temperature
CMOS technology. The resulting implementations, including an application-
optimized transport-triggered architecture, were compared in terms of process-
ing performance, silicon area and power consumption using an exemplary case
study, i.e., Reed-Solomon encoder. This paper is organized as follows: In Section
2, exemplary commercial architectures for harsh environment are compared. Sec-
tion 3 describes the features of the implemented architectures. The evaluation
of these architectures using the aforementioned case study is given in Section 4.
Finally, a conclusion is drawn in Section 5.

2 Related Work

Table 1 shows exemplary commercial microcontrollers specialized for harsh en-
vironments. They differ regarding their maximum operating temperature, which
ranges from 150 ◦C up to 225 ◦C, and clock frequency due to their semicon-
ductor technology and the underlying processor architecture organization. For
many architectures, the execution is pipelined in 2 to 8 stages or done by a multi-
cycle structure. Deeper pipelined architectures have a higher operating frequency
which is not a direct increase in performance, due to data and control hazards
in the pipelined execution. Most cores follow the RISC-like design paradigm
and include a multiplication unit. The core in [20] also offers a floating-point
unit. However, the dynamic range and resolution of floating-point operations
is rarely required in embedded applications. The available space for programs
in the instruction memory ranges from 2 kB up to 4 MB when using external
Flash memory. This exemplary portfolio shows 8-, 16- and 32-bit architectures,
allowing a wide spectrum of applications being efficiently implemented.



Evaluation of Processor Architecture Organizations 3

Table 1: Commercial Architectures for Digital Signal Processing in High Temperature
Environment (T = Temperature, MUL = Multiplier, DIV = Divider, FPU = Floating-
Point Unit).

Company Model Features Tmax[◦C] fmax [MHz] Instruction Memory

TI [20]
32-bit, RISC,

125/210 ◦C 150/100 Flash 512 kB
8-stage pipeline, MAC, FPU

TI [19]
32-bit, RISC,

220 ◦C 150
128 kB

8-stage pipeline, MAC (ext. Flash 4 MB)

TI [21]
16-/32-bit, RISC,

220 ◦C 60
64 kB

3-stage pipeline, MUL (ext. Flash 1 MB)

Tekmos [17]
8-bit, RISC,

210 ◦C 16
2 kB

2 to 3-stage pipeline, DIV & MUL (ext. 64 kB)

Honeywell [8]
8-bit, RISC,

225 ◦C 16 64 kB
2 to 3-stage pipeline

VORAGO [22]
32-bit, RISC,

200 ◦C 50 128 kB
3-stage pipeline, MUL

Microchip [11]
16-bit, CISC,

150 ◦C 80 16 kB / 32 kB
2-stage pipeline, DIV & MUL

Freescale [4]
16-bit, RISC,

150 ◦C 25 16 kB
multi-cycle, DIV & MUL

Table 2: Distinctive Architectural Features of the Presented Cores (Regs/R = Regis-
ter(s), M = Memory, FU = Functional Unit).

CORE
Data Word Size,

Design
Regs. Type Instruction Execution

Multiplier/Divider
Unit (Latency)

AVR8 8-bit, RISC 32 R ⇔ R pipelined (2 stages) No (-)
NEO430 16-bit, CISC 16 R/M ⇔ R/M multi-cycle (4..11 cycles) Yes (16 cycles)
MIPS32 32-bit, RISC 32 R ⇔ R pipelined (5 stages) Yes (1..32 cycles)

VLIW-MIPS 32-bit, RISC 32 R ⇔ R pipelined (4 stages) Yes (1..32 cycles)
TTA 32-bit (variable) var. R/FU ⇔ R/FU transport-triggered Yes (1..32 cycles)

3 Processor Architecture Organizations

In this paper, five different processor architectures were implemented in VHDL
and evaluated for the purpose of representing a wide variety of different design
concepts. These are an AVR8-compatible processor, the NEO430, a MIPS32-
compatible processor, a VLIW-MIPS processor with two issue slots. Moreover,
different configurations of a transport-triggered architecture (TTA) [10] were
also evaluated. The main features of these five cores are summarized in Table
2. The architecture organizations vary in their data width (8/16/32-bit), in-
struction set architecture (ISA) principles (RISC/CISC), instruction execution
paradigm (pipeline/multi-cycle), number of registers and presence of a dedicated
hardware accelerator for integer division and multiplication. Each processor is
programmable in C language and comes with an according LLVM or GCC based
toolchain for compiling and assembling.

3.1 2-Stage Pipeline AVR8 (8-bit) Processor

The implemented AVR8 processor features a 8-bit architecture with an ISA
compatible to the AT90S8515 [12]. The small amount of different instructions
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Fig. 1: Simplified architecture overview: a) MIPS32, b) VLIW-MIPS, c) NEO430, and
d) AVR8.

defines a RISC architecture with 16-bit instruction words. These are executed in
a two-stage pipeline (see Fig. 1d). Each instruction allows up to two operands,
making the AVR a two operand machine. The first operand is always one of 32
registers and serves as data source and destination for the actual operation (e.g.,
R1 + R2 → R1: ADD R1, R2). The second operand may also be an immediate
(e.g., R1 + Imm → R1: ADIW R1, 0xF). Complex operations like division or
multiplication have to be emulated in software due to the lack of dedicated
hardware. The processor implements a Harvard architecture, so the memories
for storing data and instructions use separated buses, memories and address
spaces. Data and instruction memory can be up to 16 kB and 8 kB, respectively.

3.2 Multi-Cycle NEO430 (16-bit) Processor

The MSP430 [18] compatible NEO430 [14] implements a 16-bit data path. The 27
instructions of the processor can directly operate on data from the data memory
as well as data from the internal register file (16 entries). Just like the AVR8, the
NEO430 is a two operand machine (e.g., M[R1] + R2 → R2, R1 = R1 + 1: ADD
@R1+, R2). The instruction encoding is variable as one instruction is built of one
to three 16-bit words. Due to the multi-cycle architecture, instruction execution
is split into 4 to 11 cycles (see Fig. 1c). The complex operand addressing modes
and the variable instruction encoding and execution cycles make the processor a
CISC-like architecture. The processor includes a serial multiplier and divider unit
which takes 16 cycles per operation. Because of its Von-Neumann architecture
organization, the processor has a shared bus for data and instruction memory
using a unified address space. However, data is stored in separated memory
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instances, e.g, ROM for I-Mem and RAM for D-Mem. Data and instruction
memory can be up to 28 kB and 32 kB, respectively.

3.3 5-Stage Pipeline MIPS32 (32-bit) Processor

The implemented MIPS32, based on [13], is a 32-bit architecture and has 5
pipeline stages which support hazard resolution (see Fig. 1a). The 32-bit wide
instructions of the ISA form a RISC architecture and support register-to-register
operations using a register file with 32 entries. Each instruction can have up to
three operands, defining two sources and one destination, making the MIPS32 a
three operand machine (e.g., R1 + R2 → R3: ADD R3, R1, R2). A multiply and
accumulate unit as well as a divider unit are available in the execution stage.
Those hardware units are implemented using a configurable processing latency
of 1 to 32 cycles at design time (see Section 3.6). Data and instruction memory
use independent 32-bit address spaces with byte-wise alignment.

3.4 4-Stage Pipeline VLIW-MIPS (32-bit) Processor

The VLIW-MIPS processor is derived from the aforementioned MIPS32 [6].
In contrast to the MIPS32, the VLIW-MIPS uses two parallel issue-slots (see
Fig. 1b). Thus, the 64-bit instruction word contains two separate instructions
based on the ISA of the MIPS32. Instructions allocated in the first issue-slot
are capable of performing memory accesses, while the other one is designated
for arithmetic and logic operations. However, the first issue-slot is still able to
perform add or sub instructions by using the adder which was initially only im-
plemented for calculation of base-offset memory addresses. The Execute stage
and Memory-Access stage of the MIPS32 are combined in the first issue-slot,
while the Memory-Access stages is omitted in the second issue-slot. With this
reduction down to 4 pipeline stages, the complexity of forwarding is reduced.
The parallel execution of memory accesses along with arithmetic or logic in-
structions allows the use of instruction-level parallelism in applications due to
the high amount of load/store instructions in contrast to pure computational
instructions. A typical amount of parallelize-able memory instructions is about
35% (based on SPEC CPU2006 benchmark [7]). Because of data dependencies
within an application, the two issues cannot always be fully utilized.

3.5 Transport-Triggered Architecture (32-bit) Processor

The transport-triggered architecture (TTA) can be described as an exposed data
path processor. Functional units are connected through a programmable inter-
connect, which creates a programmable data path [3, 10]. In contrast to de-
scribing specific computational operations, the instruction words contain con-
figurations for the interconnections between the functional units. Operands are
transferred to a functional unit through programmable sockets, which are basi-
cally switches to connect a unit to a set of buses. A unit’s operation is triggered
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Fig. 2: Different configurations of the transport-triggered architecture (TTA).

as a side-effect of writing data to it. Due to the programmer-visible interconnec-
tion network, data can be directed from one unit to another without the need
to store intermediate data back to a register file. Thus, the register file is op-
tional but can be attached to the system to store data temporarily. The overall
program flow is controlled by the global control unit (GCU), which performs
jumps and function calls. A basic setup of the TTA is shown in Fig. 2. The
design allows to add functional units (FU) with custom function units, buses
and the selective configuration of sockets in order to have a trade-off between
flexibility and complexity, taking profit of the processing characteristics of the
target application.

3.6 Fully Configurable Divider Co-Processor

When processing divisions or multiplications purely in software, the actual op-
eration is performed by several compare, add/subtract and shift instructions.
Obviously, this increases the processing time. As a design parameter for applica-
tion specific microcontrollers, a dedicated co-processor for integer multiplication
or division can massively speed up the calculation of these operations. Since
both operations are based on iterative shift-and-add algorithms, a systolic array
is suitable for an efficient hardware implementation [15]. This array can be di-
rectly implemented on a pipeline structure (Fig. 3.a) or can be folded in order
to reduce the silicon area requirements (see Table 3 and Fig. 3.b,.c). However,
the resulting folded array unit can not start a new operation every clock cycle
and its latency constraints the maximum number of parallel divider units that
can be used by a single issue-slot pipeline architecture.

Fig. 3 shows the projection of a 4x4-bit non-restoring divider array to a
folded structure [15]. In Fig. 3a, the division is performed by a fully pipelined
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Table 3: Trade-off between Divider Configurations for 32-bit Division.

Latency Frequency Structure Levels Area
A single Issue-slot

can fully utilize up to

32 cycles 101.5 MHz folded 1 level 0.055 mm2 32 divider units

32 cycles 101.5 MHz pipelined 1 level 0.570 mm2 1 divider units

16 cycles 73.0 MHz folded 2 levels 0.063 mm2 16 divider units

16 cycles 73.0 MHz pipelined 2 levels 0.473 mm2 1 divider units

8 cycles 46.1 MHz folded 4 levels 0.086 mm2 8 divider units

8 cycles 46.1 MHz pipelined 4 levels 0.424 mm2 1 divider units

4 cycles 26.6 MHz folded 8 levels 0.130 mm2 4 divider units

4 cycles 26.6 MHz pipelined 8 levels 0.400 mm2 1 divider units

2 cycles 14.2 MHz folded 16 levels 0.212 mm2 2 divider units

2 cycles 14.2 MHz pipelined 16 levels 0.387 mm2 1 divider units
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Fig. 3: Different configurations of the 4x4-bit non-restoring divider array. (a) Fully
pipelined structure, (b) Two-level folded structure and (c) One-level folded structure.

array. This implementation has the shortest critical path and is able to process
a new operation every cycle. However, due to the pipelined structure, the sili-
con area for this implementation is the largest. The folded configurations use an
iterative processing scheme, e.g., by using two or one array levels (Fig. 3b/Fig.
3c). This leads to increased latency cycles and short critical paths as well. The
silicon area is significantly reduced (see Table. 3) but the folded structure does
not allow overlapped execution of multiple divisions. In real applications, the
use of a pipelined or folded architecture depends on the application code char-
acteristic. The number of division operations in the code as well as data de-
pendencies influences the maximum number of parallel utilizable divider units.
In the VLIW-MIPS and MIPS32, the divide array unit is included in the ALU
and can therefore only be used by the first issue-slot. The second issue-slot of
the VLIW-MIPS works in parallel but only processes load-/store and simple
add-/sub instructions. Generally, the TTA allows more divider units to work in
parallel due to exploited parallelism by several buses, but for an area efficient
processor architecture, the implemented number of divider units should agree to
the application code characteristics. The NEO430 already includes an optimized
divider unit which is folded due to its multi-cycle execution paradigm, while
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the AVR8 uses software emulation for division (which results in an significant
increase of the number of executed instructions on this processor).

To illustrate the performance impact on the target application (see Section
4.1) when varying the divider level configuration, an evaluation of a VLIW-
MIPS and TTA with different folded divider array configurations is presented
in Fig. 4. As shown in Fig. 4a, the maximum throughput for the VLIW-MIPS
is achieved by the use of a four-level divider unit. This is the optimal trade-off
between operating frequency (limited by long timing paths which pass through
the divider) and processing latency (required clock cycles for the division op-
eration). For the TTA, the optimum number of levels in the divider is two, as
the performance reaches its maximum there, as seen in Fig. 4b. In the TTA, the
decrease of the critical path from the four-level divider to the two-level divider
unit, which directly increases the maximum operating frequency, has a high pos-
itive impact on the total processing performance. In contrast, the increase of the
cycles on the VLIW-MIPS processor is higher than the frequency gain, so the
processing performance is reduced by a two-level divider. In this paper, only one
divider unit with a throughput optimized number of levels is implemented in
the MIPS32 and the first issue-slot of the VLIW-MIPS. Multiple divider units
can not be efficiently used due to other arithmetic operations scheduled in the
same issue-slot. In the TTA, more dividers can be used in parallel by increas-
ing the number of buses. However, the utilization efficiency also depends on the
exploitable application code parallelism.

4 Evaluation

In this section, the different processor architectures described in Section 3 are
compared in terms of silicon area, power consumption and processing perfor-
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mance. For the VHDL synthesis, Cadence Encounter RTL Compiler (RC14.28)
was used to create a gate-level netlist. A SOI CMOS technology, capable of high
temperature usage and based on transistors with a gate length of 0.18 µm, was
used at a corner case of 175 ◦C at 1.62 V to determine the silicon area require-
ments and the critical path of the synthesized circuit. The processing perfor-
mance is measured in simulation for a specific algorithm, i.e., Reed-Solomon en-
coder, by multiplying the number of executing cycles with the maximum achieved
frequency of the synthesized netlist. The switching activity, obtained from gate-
level simulation, using Questa Sim (10.6a), running the target application, was
used to estimate the power consumption using Synopsys PrimeTime (2017.06)
for execution of the application.

4.1 Target Application

The Reed-Solomon algorithm is a forward error correction (FEC) encoder/decoder
for correction of transmission errors in communication applications. It calculates
redundancy symbols to be appended to the transmitted data. The configuration
of the algorithm used for this paper calculates 16 parity symbols from 239 infor-
mation symbols which results in 255 codeword symbols in each block [2]. Each
symbol has 8-bit, i.e., represents one byte of data. The code is able to correct
8 corrupted symbols per codeword. Configurations with higher redundancy are
used for more defective channels, e.g., for the Voyager mission of the NASA [23].

An analysis of the C implementation [16] of the Reed-Solomon algorithm
shows the use of 3943 modulo operations in one encode block. These are part
of the Galois-Field’s arithmetic and could be processed by dedicated Galois
functional units (e.g., see ASIP implementation in [5]). In order to offer a flexible
implementation of the algorithm for a non-specialized processor, just modulo
operations are used as basic operations in the c code for this paper. The modulo
operation itself uses the division function.

4.2 TTA Configurations

Due to the large design space of TTA configurations, a minimum configuration
was used as a starting point and it was iteratively extended with more functional-
ity in order to increase the performance (i.e., decrease the amount of clock cycles
per encode-block run). The set of selected configurations for further evaluation
is shown in Table 4. Configuration #00 shows the minimal C compiler supported
hardware setup consisting of one bus, one ALU supporting basic instructions
(add, sub, and, or, shift,... [10]) and a small register file. Based on the utiliza-
tion of certain parts of the hardware, bottlenecks were found and removed with
the TTA toolchain from [10] (e.g., 4 buses in contrast to 1 in configuration #02).
To avoid the excessive increase of instruction word length, immediate values are
shortened to 8-bit. A long immediate unit combines multiple short immediates
from several buses to form a longer 32-bit immediate (LImm) [9]. From config-
uration #00 to #04 on, the number of buses, register files or functional units is
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increased which results in a reduced number of cycles but also in an increase of
the instruction word width.

From configuration #05 to #09 the number of divider units and their config-
urations regarding the implemented array-levels (see Section 3.6) were varied to
reduce the number of cycles, which increases the applications performance. With
increased number of divider units, the number of cycles drops due to exploited
parallelism in the application. The number of divider units for evaluation in Sec-
tion 4.3 is selected by the configuration’s silicon area efficiency, e.g., the silicon
area efficiency of the 2-level configuration with 6 instances is higher (normed to
performance) than by use of 7 instances.

As mentioned in Section 3.6, the configuration with two divider levels pro-
vides highest performance for the TTA, as the higher frequency compensates
increased number of execution cycles in comparison to divider units with cycle-
based faster execution.

4.3 Trade-off Analysis

The instruction memory (I-Mem) and the data memory (D-Mem) of the pro-
cessors are implemented using multiple single-port RAM macro blocks from the
technology library. The bit width of the I-Mem is defined by the architecture’s
instruction word width while the D-Mem bit width is equal to the actual data
path width.

In most of the evaluated architectures, the memory defines the majority of
the required silicon area (more than 50 %), which is shown in Fig. 5 separated
for both, the memories and the core. Due to the wide instruction words (42- to
89-bit), the TTA configurations need large instruction memory sizes.

To achieve higher performance, higher frequency is not necessarily the major
design point. The NEO430 operates at about 90 MHz but provides lower perfor-
mance than the MIPS32, due to the multi-cycle (NEO430) versus the pipelined
(MIPS32) instruction execution paradigm (see Fig. 6). Among the configurations
of the TTA, there is a variance of up to 17 x in performance, which is caused by
the major differences in number and type of functional units, size of the regis-
ter file and interconnection complexity. The differences regarding the resulting
silicon area of the TTA configurations are up to 1.84 x as shown in Fig. 5.

In Fig. 7, the power requirements of the evaluated architectures are shown.
The AVR8 has the lowest requirement, while the TTA #05 demands up to 6.4 x
the amount of power. This is related to silicon area requirements and operating
frequency of the architectures. When comparing processing performance and sil-
icon area (see top of Fig. 8) of the different processor architectures, three clusters
can be defined. The smallest architectures (AVR8 and NEO430) also provide the
lowest performance. The MIPS32 and VLIW-MIPS provide higher performance
with a linear increase in silicon area requirements. The largest architectures with
the most variation in performance are presented by the TTA configurations. Not
every TTA processor outperforms the MIPS32-based architectures or even the
small 8- and 16-bit microcontrollers. The highest performance is provided by
the TTA #06 using 6 two-level divider units, which is clocked at approximately
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Table 4: Different Configurations of the TTA. Colored rows show those configurations
selected for later analysis. All divider units use a folded structure. Bus configuration
reads as follows: No. of Buses (Immediate Width, No. of Long Immediate Units).

No
Instr.
Width

Instr. Count
(Mem. Size)

Bus
Config.

Divider
Conf.

ALU - FU
Register File

(32-bit)
Cycles

00 42-bit 3 780(4k) 1 (32-bit, -) - 1 ALU 1x5 825 577

01 42-bit 3 672(4k) 1 (32-bit, -) 1x2level 1 ALU 1x5 249 911

02 58-bit 1 024(1k) 4 (8-bit, 1x) 2x2level 1 ALU+1 Add 3x8 64 698

03 68-bit 861(1k) 5 (8-bit, 1x) 2x2level 1 ALU+2 Add 3x16 53 053

04 89-bit 831(1k) 6 (8-bit, 1x) 2x2level 1 ALU+2 Add 2x16+1x32 50 664

- 89-bit - 6 (8-bit, 1x) 6x1level 1 ALU+2 Add 2x16+1x32 45 443

- 89-bit - 6 (8-bit, 1x) 8x1level 1 ALU+2 Add 2x16+1x32 40 445

05 89-bit 877(1k) 6 (8-bit, 1x) 10x1level 1 ALU+2 Add 2x16+1x32 39 201

- 90-bit - 6 (8-bit, 1x) 12x1level 1 ALU+2 Add 2x16+1x32 39 058

- 89-bit - 6 (8-bit, 1x) 3x2level 1 ALU+2 Add 2x16+1x32 42 038

- 89-bit - 6 (8-bit, 1x) 4x2level 1 ALU+2 Add 2x16+1x32 35 614

- 89-bit - 6 (8-bit, 1x) 5x2level 1 ALU+2 Add 2x16+1x32 33 708

06 89-bit 751(1k) 6 (8-bit, 1x) 6x2level 1 ALU+2 Add 2x16+1x32 32 042

- 89-bit - 6 (8-bit, 1x) 7x2level 1 ALU+2 Add 2x16+1x32 31 804

- 89-bit - 6 (8-bit, 1x) 1x4level 1 ALU+2 Add 2x16+1x32 53 334

- 89-bit - 6 (8-bit, 1x) 2x4level 1 ALU+2 Add 2x16+1x32 35 010

07 89-bit 697(1k) 6 (8-bit, 1x) 3x4level 1 ALU+2 Add 2x16+1x32 30 010

- 89-bit - 6 (8-bit, 1x) 4x4level 1 ALU+2 Add 2x16+1x32 29 298

- 89-bit - 6 (8-bit, 1x) 6x4level 1 ALU+2 Add 2x16+1x32 29 060

- 89-bit - 6 (8-bit, 1x) 1x8level 1 ALU+2 Add 2x16+1x32 37 842

08 89-bit 670(1k) 6 (8-bit, 1x) 2x8level 1 ALU+2 Add 2x16+1x32 28 042

- 89-bit - 6 (8-bit, 1x) 3x8level 1 ALU+2 Add 2x16+1x32 27 328

- 89-bit - 6 (8-bit, 1x) 4x8level 1 ALU+2 Add 2x16+1x32 27 330

- 89-bit - 6 (8-bit, 1x) 1x16level 1 ALU+2 Add 2x16+1x32 30 341

09 89-bit 647(1k) 6 (8-bit, 1x) 2x16level 1 ALU+2 Add 2x16+1x32 26 773

- 89-bit - 6 (8-bit, 1x) 3x16level 1 ALU+2 Add 2x16+1x32 26 820

60 MHz. The processing performance is 37.70 x the performance of the AVR8
with only an increase in silicon area of 4.10 x.

The efficiency of the implementations is calculated by normalizing the silicon
area requirement to the reached throughput (Reed-Solomon encodes per second)
for the different processor architectures. Results are shown at the bottom of Fig.
8. The optimum is in the bottom left corner. The TTA configurations #06 and
#07 yield the highest efficiency. This is due to the exposed parallelism of the
evaluated application. For the VLIW-MIPS, a single issue-slot constrains further
possible parallelism of the applications code. More issue-slots would allow more
parallelism and divider units but excessively increase the instruction memory size
and therefore the silicon area requirements. For the TTA, the units are controlled
by short encodings for the corresponding sockets and the total instruction length
increase is small for multiple divider units.
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Fig. 5: Silicon area of instruction memory, data memory and core.
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Fig. 6: Performance and frequency of the evaluated architectures.
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Fig. 7: Power requirements of the processors architectures for executing the Reed-
Solomon encoder.

5 Conclusion

In harsh environments, the design space for microcontrollers is large and allows
to achieve different goals like minimum silicon area, minimal energy consumption
or high processing performance. Different processors architecture organizations
differ regarding the efficient use of silicon area and power. However, the efficient
use of the processor’s resources highly depends on the target application. In this
paper, a Reed-Solomon encoder algorithm was used to evaluate different proces-
sor architecture organizations. Processors with minimum silicon area or energy
consumption (AVR8 and NEO430) are not the most efficient architectures in
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Fig. 8: Top: Silicon area and processing performance of the evaluated architectures.
Bottom: Efficiency: Silicon area and power normalized to performance. Zoom of red
box in top left of diagram.

terms of energy consumption vs. performance and silicon area utilization vs.
performance. Larger cores, like VLIW-MIPS and variants of the TTA, provide
higher efficiencies due to the better exploitation of the application code paral-
lelism and the pipelined execution of the instructions. The parallel utilization of
the available processing resources (i.e., functional units) is constrained by the
application code and hardware implementation (i.e., sufficient data parallelism
or number of parallel instructions). Due to the flexible customization, the TTA
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processor provides the highest efficiency in silicon area utilization and energy
consumption per Reed-Solomon encode block. The proposed configuration #06

of the TTA processor using 6 divider units provides the best silicon area effi-
ciency results. In comparison with the VLIW-MIPS, the TTA better exploits the
application code parallelism without a strong increase of the instruction mem-
ory requirement. This makes it an efficient choice for use in area-constrained and
performance-limited high-temperature technologies.
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