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Abstract. Context: Several companies are migrating their information systems 
into the Cloud. Microservices and DevOps are two of the most common adopted 
technologies. However, there is still a lack of under- standing how to adopt a 
microservice-based architectural style and which tools and technique to use in a 
continuous architecting pipeline. 

Objective: We aim at characterizing the different microservice archi- tectural style 
principles and patterns in order to map existing tools and techniques adopted in the 
context of DevOps. 

Methodology: We conducted a Systematic Mapping Study identifying the goal and 
the research questions, the bibliographic sources, the search strings, and the selection 
criteria to retrieve the most relevant papers. 

Results: We identified several agreed microservice architectural prin- ciples and 
patterns widely adopted and reported in 23 case studies, together with a summary 
of the advantages, disadvantages, and lessons learned for each pattern from the case 
studies. Finally, we mapped the existing microservices-specific techniques in order to 
understand how to continuously deliver value in a DevOps pipeline. We depicted the 
current research, reporting gaps and trends. 

Conclusion: Different patterns emerge for different migration, orches- tration, 
storage and deployment settings. The results also show the lack of empirical work on 
microservices-specific techniques, especially for the release phase in DevOps. 

 
Keywords: Cloud-native · Microservice · DevOps · Migration · 
Orchestration 

 

1 Introduction 

Software is becoming more complex and development processes are evolving to cope with 
the current fast-changing requirements imposed by the market, with short time-to-market 
and quickly evolving technologies. Continuous soft- ware engineering, and in particular 
DevOps, tries to address these aspects, sup- porting developers with a set of continuous delivery 
practices and tools to contin- uously deliver value, increasing delivery efficiency and reducing the 
time intervals 
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between releases [3]. However, traditional monolithic architectures are not easily applicable to 
this environment and new architectural styles need to be consid- ered. In order to adopt 
DevOps, the architectural style adopted must be designed with an agile focus; for this purpose, 
the Microservices [10] architectural style is suitable for this continuous architecture setting. 

Microservices are relatively small and autonomous services deployed indepen- dently, with a 
single and clearly defined purpose [10]. Because of their indepen- dent deployability, they 
have a lot of advantages for continuous delivery. They can be developed in different 
programming languages, they can scale indepen- dently from other services, and they can be 
deployed on the hardware that best suits their needs. Moreover, because of their size, they are 
easier to maintain and more fault-tolerant since the failure of one service will not break the 
whole system, which could happen in a monolithic system [12]. 

DevOps (Development and Operations) is a set of continuous delivery prac- tices aimed 
at decrease the delivery time, increasing the delivery efficiency and reducing time among 
releases while maintaining software quality. It combines software development, quality 
assurance, and operations [3]. DevOps includes a set of steps of the development process (plan, 
create, verify, package) and of the operational process (release, configure, monitor), combining 
the activities com- monly performed by the development teams, quality assurance and 
operations teams. In order to adopt the DevOps practices, the architectural style of the 
system must be design with an agile focus and the microservice architectural style is one of 
the most suitable architectural style to cope with them [2]. 

Despite both the microservice architectural style and DevOps being widely used in 
industry, there are still some challenges in understanding how to develop such kinds of 
architectures in a continuous software engineering process [2]. In this work, we extend our 
previous mapping study on architectural patterns for microservices [16]. 

The goal of this work is two-fold: First we aim to characterize the differ- ent 
microservice architectural styles reported in the literature both as propos- als and case 
studies on implementations. Then we aim to map the reported microservices-based 
techniques that can be applied to the DevOps pipeline in order to identify existing gaps. 
Therefore, we designed this work as a Systematic Mapping Study [13, 19]. A previous 
systematic mapping has been published by Pahl and Jamshidi [11] aimed at classifying and 
comparing the existing research body on microservices mainly considering non peer-reviewed 
content from web blogs. Our study differs in the following ways: 

– Focus: We focus on suggested architectural style definitions, emerging pat- terns and 
mapping microservices development to the DevOps pipeline, while [11] focused on initially 
characterizing the available body of research and [16] focused only on architectural styles. 

– Comprehensiveness : We included results from eight bibliographic sources and 
papers from the citations of the retrieved papers [19] to increase the paper base. Moreover, 
we included papers published up to 2016; 



Author Version  

D. Taibi et al. 
 
– Systematic approach: We conducted a Systematic Mapping Study implement- ing 

the protocol defined in [13], followed by a systematic snowballing process using all 
references found in the papers [19]; 

– Quality Assessment : Although this is not a Systematic Literature Review [8], we 
include only peer-reviewed contributions or non peer-reviewed papers only in case the 
number of their citations in peer-reviewed ones is higher than the average citations. 

The contribution of our study can be summarise as follows: 
 
– Classification of the existing microservice architectural styles and patterns; 
– Analysis of advantages and disadvantages of different architectural style prin- ciples and 

patterns based on their implementations reported in the literature; 
– Classification of microservice techniques for DevOps; 
– Identification of research gaps and trends. 

 
The paper is structured as follows. In Sect. 2 we describe the methodology used. 

Section 3 shows the results obtained. In Sect. 4 we discuss the results. Section 5 identifies 
threats to validity. Section 6 end with some conclusions. 

 
2 Methodology 

 
We used the protocol defined by Petersen [13] in combination with the systematic snowballing 
process [19]. 

 
2.1 Goals and Research Questions 

We define our research goals as follows: 

Goal 1: Analyze the architectural style proposals 
for the purpose of comparing them and related implementations 
with respect to their advantages and disadvantages 
in the context of cloud-native software implementation. 

Goal 2: Characterize microservices-specific techniques 
for the purpose of mapping them to the DevOps process 
with respect to identifying and comparing different techniques for different stages 
in the context of cloud-native software implementation. Regarding G1, we derived 
the following research questions: 
– RQ1: Which are the different microservices-based architectural styles? 
– RQ2: What are the differences among the existing architectural styles? 
– RQ3: Which advantages and disadvantages have been highlighted in 

implementations described in the literature for the identified architec- tural styles? 
Regarding G2, we derived the last research question: 
– RQ4: What are the different DevOps-related techniques applied in the 

microservices context? 
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2.2 Search Strategy 

Bibliographic Sources and Search Strings. We identified the relevant works in eight 
bibliographic sources as suggested in [9]: ACM Digital Library, IEEE Xplore Digital 
Library, Science Direct, Scopus, Google Scholar, Citeeser library, Inspec and Springer Link. 
We defined the search strings based on the PICO terms of our questions [9] using only the 
terms Population and Intervention. We did not use the Outcome and Comparison terms so as 
not to reduce research efficiency of the selected search strings (Table 1). We applied the 
following queries adapting the syntax to each bibliographic source: 
RQ1-3: (microservice* OR micro-service*) AND (architect* OR migrat* OR modern* 
OR reengineer* OR re-engineer* OR refactor* OR re-factor* OR rearchitect* OR re-
architect* OR evol*). 
RQ4: (microservice* OR micro-service*) AND (DevOps OR Develop* OR Creat* 
OR Cod* OR verif* OR test* OR inspect* OR pack* OR compil* OR archiv*; releas* 
OR configur* OR deploy* OR monitor* OR performance* OR benchmark*). 

The symbol * allows to capture possible variations in search terms such as plural and verb 
conjugation. 

 
Table 1. Search strings - PICO structure [16]. 

 
Population Intervention - terms 
P: microservice microservice*;   micro-service* 
I: DevOps; 
architecture; 
migration 

architect*; migrat*; modern*; evol*; reengineer*; re-engineer*; refactor*; 
re-factor*; rearchitect*; re-architect*; DevOps; 
Develop*; Creat*; Cod*; verif*; test*; inspect*; pack*; compil*; archiv*; 
releas*; configur*; deploy*; monitor*; performance*; benchmark; 

 
 

Inclusion and Exclusion Criteria. We defined the selection criteria based on our 
RQs considering the following inclusion criteria: 

 
General Criteria: We only included papers written in English. Moreover, we 
excluded papers that were not peer-reviewed. However, we also considered non peer-reviewed 
contributions if the number of citations in peer-reviewed papers was higher than average. The 
number of unique citations was extracted from the eight bibliographic sources removing non 
peer-reviewed ones. The selected works cover a maximum of two years and we can therefore 
not expect a high number of citations. For this reason, works with a high number of citations 
can be considered very relevant even if they are not peer-reviewed. 

 
Selection by Title and Abstract: We removed all papers that do not contain 
any references to microservices or that use the term microservices for different purposes or in 
different domains (i.e. electronics, social science...); 
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Selection by Full Papers: We excluded papers that do not present any evi- 
dence related to our research questions or papers using microservices with- out any clear 
reference to the adopted architectural style, and microservices- based implementations that 
do not report any advantages and disadvantages of using microservices. For the first three 
RQs, we considered proposals of microservices-based architectural styles, implementations of 
microservices-based cloud systems, migrations of monolithic systems into cloud-native 
microservices- based systems, papers reporting advantages and disadvantages of microservices- 
based architectural styles. For RQ4, we considered papers on DevOps techniques applied in the 
context of microservices-based systems, and papers on project planning,  coding,  
testing,  release,  deployment,  operation  and  monitoring   tech- niques applied 
in the context of microservices-based systems. 

 

Search and Selection Process. The search was conducted in October 2017 
including all the publications available until this period. Applying the searching terms we 
retrieved 2754 unique papers. 

 
Testing Inclusion and Exclusion Criteria Applicability: Before applying  the 
inclusion and exclusion criteria, we tested their applicability [9] to a subset of 30 papers (10 
papers per author) randomly selected from the retrieved ones. For 8 of the 30 selected papers, 
two authors disagreed and a third author was involved in the discussion to clear the 
disagreements. 

 
Applying Inclusion and Exclusion Criteria to Title and Abstract: We 
applied the refined criteria to remaining papers. Each paper was read by two authors and in 
case of disagreed and a third author was involved in the discussion to clear the 
disagreements. For seven papers we involved the third author. Out of 2754 initial papers, we 
included 85 by title and abstract. 

 
Backward and Forward Snowballing: We performed the backward and forward 
snowballing [19], considering all the references presented in the 85 papers (858 references) and 
evaluating all the papers that reference the retrieved ones result- ing in one additional relevant 
paper. We applied the same process as for the retrieved papers. The new selected studies 
were included in the aforementioned 12 papers, in order to compose the final set of 
publication. 

 
Fulfill Reading: After the full reading of the 97 papers performed by two of the authors, 

the paper identification process resulted in 40 peer-reviewed papers and 2 non peer-reviewed 
ones. The two works ([S1] and [S2]) added from the gray lit- erature have a dramatically high 

number of citations compared to the remaining works, with 18 and 25 citations, resp. (average 
number of citations = 4.21). The related citations are reported together with the full references 

in the Appendix. 
In case of [S2], we also attributed to the same work the citations obtained for [14], since 

this website was published with the same information two months later. 
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Table 2. The papers selection process [16]. 

 
Selection process #considered 

papers 
#rejected 
papers 

Validation 

Paper extracted from 
the bibliographic 
sources 

2754  10 random papers independently 
classified by three researchers 

Sift based on title and 
abstract 

 2669 Good inter-rater agreement on first 
sift (K-statistic test) 

Primary papers 
identified 

85   

Secondary  papers 
inclusion 

858 855 Systematic snowballing [19] including 
all the citations reported in the 85 
primary papers and sifting them based 
on title and abstract 

Full papers considered 
for review 

88  Each paper has been read completely 
by two researchers and 858 secondary 
papers were identified from references 

Sift based on full 
reading 

 46 Papers rejected based on inclusion and 
exclusion criteria 

Relevant papers 
included 

42   

 
 

The selection process resulted in 42 accepted papers published from 2014 to 2016. 
Although the term microservice was introduced in 2011, no publications were found from 
2011 to 2013. More than 65% of these papers were published at conferences, while another 
23% were accepted at workshops. Only 7% of the papers were published as journal articles, 
and nearly 5% are non peer-reviewed websites (gray literature) (Table 2). 

 

3 Results 
 

We now summarize the pros and cons of microservice-based solutions based on their 
importance, considering the concerns mentioned most frequently in the papers as being 
important. We analyze the most common architectural style prin- ciples and patterns that 
emerged from the papers, also including their reported advantages and disadvantages. 
Moreover, we report on DevOps-related tech- niques applied. We first report on the 
principles of microservices architectural styles, as reflected by the literature, and then we 
extract and categorize the patterns defined in the surveyed literature. 

We consider an architectural style as a set of principles and coarse-grained 
patterns that provide an abstract framework for a family of systems. An archi- tectural 
style consists of a set of architectural principles and patterns that are aligned with each other to 
make designs recognizable and design activities repeat- able: principles express architectural 
design intent; patterns adhere to the prin- ciples and are commonly occurring (proven) in 
practice. 
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3.1 General Advantages and Disadvantages of Microservices 

and Principles of the Architectural Style 

The most common advantages of microservice architectures that are highlighted in the selected 
works are the following: 

– Increased Maintainability. All the paper reported microservices-based imple- 
mentations as the most important considered characteristic. 

– Write Code in Different Languages. Underlines benefits of using different 
languages, inconsistent with monolithic applications [S13], [S34], [S11]. 

– Flexibility. Every team can select their own technology based on their needs [S30], [S14], 
[S38] 

– Reuse. The creation of a component with shared features increase reusability by reducing 
maintenance effort since the shared component will be updated only once and the 
maintenance of the shared microservices, including all the related changes will be reflected 
by any connected microservices [S34], [S12]. 

– Ease of Deployment. The independent deployment ease the whole develop- ment 
and deployment processes since each microservice can be deployed sep- arately. Therefore, 
developers of one microservice do not need to recompile and re-deploy the whole system 
[S30] 

– Physical Isolation. This is the key for scaling, provided by microservices archi- tectural 
style [S3] and [S38]. 

– Self-Healing. Previous safe microservice versions can replace failing services [S7], [S30]. 
– Application Complexity. Components application are commonly less complex and 

easier to manage thanks to the application decomposition into several components [S29]. 
Process mining could be highly beneficial in this context [18] 

– Unlimited Application Size. Microservices has theoretically no size limitation that 
affect monolithic applications [S13]. 

These can be considered to form the principles of the architectural style as they 
are agreed advantages. On the other hand, several papers identified a set of issues and 
potential disadvantages to be consider during the development of a microservices-based   
application: 

– Testing Complexity. More components and patterns of collaborations among them 
increase the testing complexity [S21], [S24], [S26], [S31], [S37], [S28]. 

– Implementation Effort. Paired with development complexity, implementing 
microservices requires more effort than implementing monolithic applications [S28], [S30], 
[S38]. 

– Network issues. Endpoints are connected via a network. Therefore, the net- work 
must be reliable [S41], [S14]. 

• Latency. Network latency can increase the communication time between 
microservices [S14], [S11], [S9]. 

• Bandwidth. Communication often depends on the network, implementa- tions must 
consider bandwidth for normal and high peak operation. 
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– User Authorization. The API exposed by the microservices need to be pro- tected 

with a shared user-authentication mechanism, which is often much more complex to 
implement than monolithic solutions [S14]. 

– Time on the Market. Monolithic solutions are easier and faster to develop. In the 
case of small applications, with a small number of users (hundreds or thousands), the 
monolith could be a faster and cheaper initial approach. A microservices-based solution 
could be considered in a second time once performance or other requirements grows [S11]. 

– Continuously Deploy Small Incremental Changes. The  simplified 
deployment allows changing one issue at time and immediately deploy the system [S37]. 

– Independent Monitoring. A microservices architecture helps independently 
visualize the “health status” of every microservice in the system simplifying the 
identification of problems and speeding-up the resolution time [S37]. 

– Automation Requirement. A full DevOps stack is fundamental to manage the 
whole system and automate the whole process. Without the adoption of DevOps the 
system development would be much slower with microservices than with monolithic 
systems [S37]. 

– High Independence. Maintaining microservices as highly decoupled is critical to 
preserve independence and independent deployability. 

– Development Complexity. Microservices require experienced developers and 
architects that design the system architecture and coordinate teams. Learning microservices 
require much longer than monolithic systems [S30]. 

– Increased memory consumption. If each service runs in its own virtual 
machine, as is the case at Netflix, then there is the overhead of M times as many 
virtual machine instances are created [S2]. 

 
3.2 Microservice-Based Architectural Patterns 

In this section, we aim to answer RQ1, RQ2, and RQ3. From the selected works, three 
commonly used architectural patterns emerge. In this classification, we attribute to the 

different patterns the papers reporting the usage of a specific style and those where the patterns 
can be clearly deduced from the description. 

We report the results in three Sections that classify the architectural patterns emerging from 
this review: In the next sub-sections, we identify and describe orchestration and coordination-
oriented architectural patterns, patterns reflect- ing deployment strategies and storage options. 

The API-Gateway Pattern 

Concept: Microservices can provide their functions in the form of APIs, and other 
services can make use of them by directly accessing them through an API. However, the 
creation of end-user applications based on the composition of different microservices 
requests a server-side aggregation mechanism. In the selected papers, the API-Gateway 
resulted as a common approach (Fig. 1). 

 
Origin: The API-Gateway is an orchestration style that resembles more SOA principles 
than REST ones without including the Enterprise Service Bus (ESB). 
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Fig. 1. The API-Gateway architectural pattern [16]. 
 
 

Goal: The main goal is to improve system performance and simplify interactions, therefore 
decreasing the number of requests per client. It acts as an entry point for the clients, carrying out 
their requests to the connected services, connecting the required contents, and serving them to 
the clients [S2]. 

 
Properties: The API-Gateway does not provide support for publishing, promot- ing, or 
administering services at any significant level. However, it is responsible for the generation of 
customized APIs for each platform and for optimizing com- munications between the clients 
and the application, encapsulating the microser- vices details. It allows microservices to evolve 
without influencing the clients. As an example, merging or partitioning two or more 
microservices only requires updating the API-Gateway to reflect the changes to any 
connected client. In the example depicted in Fig. 1, the API-Gateway is responsible for 
communicating with the different front-ends, creating a custom API for each client so that 
the clients can see only the features they need, which simplifies the creation of end- user 
applications without adding the complexity of exposing and parsing useless information. 

 
Evolution and Reported Usage: The API-Gateway was named by Richardson 
[S2]. Ten works implemented different cloud applications based on this pattern reporting 
several API-Gateway specific advantages [S3], [S2], [S12], [S11], [S14], [S31], [S21], [S34], 
[S39], and [S37]: 

– Ease of Extension. Implementing new features is easier compared to other 
architectures since API-Gateway can be used to provide custom APIs to the connected 
services. Therefore, if a services changes, only the API-Gateway needs to be updated 
and the connected services to the API-gateway will continue to work seamlessly [S14], 
[S3] 

– Market-centric Architecture. Services can be easily modified, based on market 
needs, without the need to modify the whole system. [S14] 

– Backward Compatibility. The gateway guarantees that existing clients are not 
hampered by interface endpoint changes on service version changes [S34]. 

However, disadvantages have also been observed for this architectural pat- tern: 
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– Potential Bottleneck. The API-Gateway layer is the single entry point for all 

requests. If it is not designed correctly, it could be the main bottleneck of the system [S14], 
[S39]. 

– Implementation complexity. The API-Gateway layer increases the complexity of 
the implementation since it requires implementation of several interfaces for each service 
[S14], [S34]. 

– API reused must be considered carefully. Since each client can have a custom API, we must 
keep track of cases where different types of clients use the same API and modify both 
of them accordingly in case of changes to the API interface [S34]. 

– Scalability. When the number of microservices in a system explodes, a more efficient 
and scalable routing mechanism to route the traffic through the ser- vices APIs, and better 
configuration management to dynamically configurate and apply changes to the system will 
be needed [S37]. 

 
The Service Registry Pattern 

Concept: The communication among multiple instances of the same microservice running in 
different containers must be dynamically defined and the clients must be able to efficiently 
communicate to the appropriate instance of the microser- vice. Therefore, in order to connect 
to an existing service, a service-discovery mechanism is needed [S2]. 

 
Origin: Richardson also proposed differentiating between “Client-Side” and “Server-
Side” patterns [S2]. With client-side patterns, clients query the Service Registry, select an 
available instance, and make a request. With server-side pat- terns, clients make requests via a 
router, which queries the Service Registry and forwards the request to an available instance. 
However, in the selected works, no implementations reported its usage. 

 
Goal: Unlike the API-Gateway pattern, this pattern allows clients and microser- vices to talk 
to each other directly. It relies on a Service Registry, as depicted in Fig. 2, acting in a similar 
manner as a DNS server. 

 
Properties: The Service Registry knows the dynamic location of each microser- vice 
instance. When a client requests access to a specific service, it first asks the registry for the 
service location; the registry contacts the microservice to ensure its availability and forwards 
the location (usually the IP address or the DNS name and the port) to the calling client. 
Finally, unlike in the API-Gateway approach, the clients communicate directly with the 
required services and access all the available APIs exposed by the service, without any filter or 
service inter- face translation provided by the API-Gateway. 

 
Evolution and Reported Usage: A total of eleven papers implemented this pat- 
tern. Ten of the selected work make a complete usage of the Service Registry style [S13], 
[S25], [S10], [S9], [S24], [S26], [S30], [S16], and [S38] while [S23] 
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Fig. 2. The service registry architectural pattern. 
 

proposes a small variant, implementing the Service Registry by means of an NoSQL 
database. O’Connor et al. [S36] report on a case study of a partial migration where a 
legacy SOA system provided some services in connection with new microservices. In this case, 
the legacy system was accessed like any other microservice. The Service Registry contained 
the addresses of all microservices and all services provided by the legacy system. 

This architectural pattern has several advantages: 

– Increased Maintainability. All the papers reported an increased maintainabil- ity of 
the systems. 

– Ease of Communication. Services can communicate with each others directly, 
without interpretation [S25], [S36]. 

– Health Management. Resilient and scalable mechanisms provide health man- agement 
and out-scaling functions for atomic and composed services [S7]. 

– Failure Safety. In the case of failure, microservices can be easily restarted, due to 
their stateless properties [S7]. 

– Software Understandability. Services are relatively small and easy to under- stand 
[S1], [S2] 

– Ease of Development. Smaller services are easier to develop [S1], [S2] 
– Ease of Migration. Existing services can be re-implemented with microser- vices, 

replacing the legacy service by changing its location in the Service Reg- istry that will start 
to dynamically serve all microservices instances instead of statically pointing to the legacy 
system [S36]. 

Several papers also identified disadvantages for this pattern: 

– Interface design must be fixed. During maintenance, individual services may 
change internally but there could be a need to also update the interface, requiring 
adaptation of all connected services. They recommend keeping the interface definition as 
stable as possible in order to minimize the influence in case of interface changes [S38]. 

– Service Registry Complexity. The registry layer increases implementation 
complexity as it requires several interfaces per service [S16]. 
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– Reuse. If not designed correctly, the service registry could be the main bot- tleneck of 

the system [S25]. 
– Distributed System Complexity. Direct communication among services 

increases several aspects: Communication among Services [S2], 
Distributed Transaction Complexity [S2], Testing of distributed systems, 
including shared services among different teams can be tricky [S2]. 

 
The Hybrid Pattern 

Concept and Origin: This pattern combines the power of the Service Registry 
pattern with that of the API-Gateway pattern, replacing the API-Gateway com- ponent with a 
message bus. 

 
Goal and Properties: Clients communicate with the message bus, which acts as a 
Service Registry, routing the requests to the requested microservices. Microser- vices 
communicate with each other through a message bus, in a manner similar to the Enterprise 
Service Bus used in SOA architectures. 

 
Evolution and Reported Usage: Six works implemented this pattern [S27], [S33], 
[S32], [S35], [S4] and [S3] reporting the following advantages: 

– Easy of Migration. This pattern ease the migration of existing SOA based 
applications, since the ESB can be used a communication layer for the microservices 
that gradually replace the legacy services. 

– Learning Curve. Developers familiar with SOA can easily implement this 
pattern with a very little training. 

and  a  disadvantage: 
 
– SOA Issues. The pattern does benefit from the IDEAL properties of microser- vices and 

from the possibility to independently develop different services with different teams, but has 
the same ESB-related issues as in SOA. 

 

3.3 Deployment Strategies/Patterns 

As part of the architectural patterns, we now describe the different deploy- ment strategies 
(also referred to as deployment patterns) that emerged from our mapping study. Please note that 
here we only report on microservices-specific deployment strategies not directly related to 
DevOps, while DevOps automated deployment approaches are reported in Section III.D. 

The Multiple Service per Host Pattern 

Principle: In this strategy, multiple services and multiple services run on the same host. 
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Reported Usage: Four of the selected works implemented this approach [S19], [S33], 
[S30], and [S7] without specifying whether they deployed the services into containers or VMs. 
Fifteen works adopted the same pattern by deploying each service into a container [S10], [S25], 
[S35], [S9], [S8], [S11], [S34], [S32], [S36], 
[S38], [S37], [S40], [S16], [S41], and [S22]. Richardson refers to this sub-pattern as “Service 
instance per container pattern” [S2]. Two works implemented this pattern deploying each 
microservice into a dedicated virtual machine [S27] and [S31]. This pattern is also called 
“Service instance per virtual machine” [S2]. 

Despite reporting on the adoption of these patterns, only a few papers discuss their 
advantages such as: 
– Scalability. Easy scalability to deploy multiple instances at the same host. 
– Performance. Multiple containers allow rapid deployment of new services 

compared to VMs [S40], [S34], [S10]. 
 
The Single Service per Host Pattern 
Principle and Properties: In this pattern [S2], every service is deployed in its own 
host. The main benefit of this approach is the complete isolation of ser- vices, reducing the 
possibility of conflicting resources. However, this dramatically reduces performance and 
scalability. 

 
Reported Usage: This pattern has not been implemented or referenced in the selected 
works. 

 
3.4 Data Storage Patterns 

Like any service, microservices need to store data. Sixteen implementations reported on the 
data storage pattern that they adopted. Among these papers, we identified three different data 
storage patterns that are also described by [S1], [S24], and [S3]. Although it is recommended 
to adopt Object Relational Map- ping approaches with NoSQL databases [S1], the patterns 
identified are also applicable for relational databases. 
The Database per Service Pattern 

 
Principle and Properties: In this pattern, each microservice accesses its private 
database. This is the easiest approach for implementing microservices-based sys- tems, and is 
often used to migrate existing monoliths with existing databases. 

 
Reported Usage: In the selected works, six adopted this pattern [S23], [S12], [S36], 
[S24], [S11], and [S26]. This pattern has several advantages: 
– Scalability. The database can be easily scaled in a database cluster whithin a second 

moment [S24], in case the service need to be scaled. 
– Independent Development. Separate teams can work independently on each 

service, without affecting other teams in case of changes to the DB schema. 
– Security Mechanism. Access to other microservices or corruption of data not needed 

is avoided since only one microservice can access a schema. 
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The Database Cluster Pattern 

Principle and Properties: The second storage pattern proposes storing data on a 
database cluster. This approach improves the scalability of the system, allowing to move the 
databases to dedicated hardware. In order to preserve data consis- tency, microservices have a 
sub-set of database tables that can be accessed only from a single microservice; in other cases, 
each microservice may have a private database schema. This pattern was described by 
Richardson [S2]. 

 
Reported Usage: The pattern was implemented by [S27], [S6], and [S15] by using a 
separated DB schema for each service. [S15] also proposed it for replicating the data across 
the DBs of each service. 

This pattern has the advantage of improving data scalability. It is recom- mended for 
implementations with huge data traffic while it could be useless in the case of a limited 
number of users and data traffic. Disadvantages: 

– Increased Complexity through the cluster architecture. 
– Risk of Failure increases because of the introduction of another component and the 

distributed mechanism. 
 
Shared Database Server 

Principle and Properties: This pattern is similar to the Database Cluster Pat- 
tern, but, instead of using a database cluster, all microservices access a single shared 
database. 

 
Reported Usage: Six implementations adopted this pattern [S13], [S39], [S25], [S18], 
[S30], and [S16]. All these implementations access to the data concurrently, without any data 
isolation approach. 

The main advantage reported is the simplicity of the migration from mono- lithic 
applications since existing schemas can be reused without any changes. Moreover, the 
existing code base can be migrated without the need to make important changes (e.g., the 
data access layer remains identical). 

 

3.5 DevOps and Microservices 

Now, we change focus from microservices as an architectural style with principles and patterns to 
the relevance of the style as a continuous architecting solution. In this section, we answer RQ4, 

reporting the main DevOps related to tech- 
niques proposed and applied in conjunction with microservices, summarizing their 
advantages and disadvantages. The section is structured as follows: After a description of the 
papers reporting on the application of microservices-based implementations applying 
the DevOps pipeline (partially or completely), we describe the techniques related 
to each DevOps step: planning, coding, testing, release,   deployment,   
operation,   monitoring. 
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DevOps and Microservices. Chen et al. [S8] propose a set of tactics for 
adopting DevOps with microservices-based implementations. Adopting a set of tools enables 
(1) continuous integration, (2) test automation, (3) rapid deploy- ment and robust operations, 
(4) synchronized and flexible environment. Their proposal is to keep four quality characteristics 
under control (availability, modifi- ability, performance, and testability) by means of a set of 
tactics. As an example, they propose checking availability by monitoring the system by 
detecting excep- tions, reconfiguring clusters automatically in case of failures or lack of 
resources, creating active redundancy (by means of Zookeeper [1]) and rolling back deployed 
services in case of failure. 

 

Planning and Coding Techniques. This section includes all techniques and tools for 
code development, including requirement elicitation, software architec- tures, and coding 
techniques. As for the architectural styles, we refer to the discussion about the previously 
described patterns reported in Sects. 3.2 and 
3.3. In order to cope with continuously changing requirements whilst ensuring complexity and 

keeping product evolution under control, Versteden et al. [S16] propose a semantic approach 
combining microservices and the semantic web. The approach is based on the sharing of a set 
of ontologies among developers so that they can develop microservices that talk about the same 

content in the same way. Moreover, this also supports the semantics discoverability of 
microservices. 

Considering the coding activities, Xu et al. [S40] propose “CAOPLE”, a new 
programming language for microservices based on an agent-oriented conceptual model of 
software systems. This programming language allows defining high- level microservices 
with the aim of easily developing large connected systems with microservices running in 
parallel, thus reducing communication overhead among microservices and supporting flexible 
development. 

 

Testing Techniques. (1) Testing is one of the most challenging issues when building a 
microservice architecture. A microservice architectural style intro- duces several new 
components into the applications, and more components mean more chances for failure to occur. 
Automated testing, as one of the main steps of DevOps, has advanced significantly and new 
tools and techniques continue to be introduced to the market. Therefore, testing a 
microservices-based application is more complicated because of several issues: 

– Because of the language independence of microservices, the testing tools need to be agnostic 
to any service language or runtime [S42]. 

– Testing must focus on failure-recovery logic and not on business logic, due to the rapidly 
evolving code [S42]. 

– Existing SOA testing methods are commonly not suitable for microservices, since they do 
not address the two issues aforementioned [S42]. 

Of the selected papers, seven propose new testing techniques for microservices. However, no 
implementations report the usage of these techniques. 
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Testing can be divided into several levels, including unit tests, integration tests, system 

tests and acceptance tests. As for acceptance tests and system level tests, Rahman et al. 
[S18] and [S17] propose automating acceptance tests for microservices based on the Behavior-
Driven Development (BDD). Since inte- gration, system, and acceptance tests usually need 
access to the production file system, the network, and the databases, they propose running the 
tests in the developer’s local environment by means of a subset of replicated Docker con- 
tainers replicating the whole system, including all microservices running in the production 
environment. They propose running the large test suites in parallel with multiple docker 
containers deployed on the local development machine so as to allow developers to (1) continue 
testing on the latest data used in production 
(2) continuously run the complete test suites. Unfortunately, they report that running the 
entire test suite is time consuming and becomes infeasible when the test suite grows. Despite the 
approach working perfectly for small projects, in big projects the developers’ workstations have 
very high hardware requirements to run the whole system with all microservices and the 
development environment, making this approach inapplicable in a real development 
environment. 

Savchenko and Radchenko [S22] propose a model of validation of microser- vices that can 
be executed on local developer machines and in a test environment, before deploy the 
microservice in production. The model is compliant with the ISO/IEC 29119 [5] and it is 
based on five steps: 

 
1. Define the interface of every microservice 
2. Write unit-tests for each microservice 
3. If the unit tests are passed successfully, the microservice can be packed into a container 

and a set of container self-tests can be executed to ensure that all interfaces defined in the 
first step are working. 

4. If the self-test is passed, then the microservice can be deployed in a test envi- ronment and 
functional integration tests, load integration tests, and security integration tests can be 
performed. 

5. If all tests in the previous step are passed, the microservice can be deployed in the 
production environment. 

 
Meinke and Nycander [S20] propose a learning-based testing technique based on a Support 

Vector Machine (SVM). Thy propose to monitor the inputs of each microservice and to 
validate the output with a model checker and learn how to interpret the results by means of a 

SVM based on a stochastic equiva- lence checker. This model is applicable to high-load 
systems where statistically significant results can be used as training data. It is claimed to be 

more robust than manual checks since it can test more conditions. However, non-deterministic 
conditions cannot be verified with this approach, even though they are very rare. 

Heorhiadi et al. [S42] propose a network-oriented resiliency testing method to 
continuously test high-level requirements. They propose a two-level testing platform 
composed of two layers. The first layer composed by network prox- ies, used to control the 
communication among microservices, logging any data and reporting communications. The 
second layer responsible to check the results 
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based on the execution graph, to run the test cases, and, in case of failure, to deploy a new 
microservice through a “Failure orchestrator”. This allows creat- ing and testing long and 
complex chains of assertions, and validating complex processes. However, the system graph 
must be provided continuously updated. 

Only [S42] has been validated internally by the authors on small sample projects, while 
the other approaches are only proposals not supported by empir- ical validations. The 
applicability of the proposed testing techniques to existing large-scale systems therefore needs 
to be validated. 

In conclusion, we can claim that, based on the analysis of the reported test- ing techniques 
of microservices-based systems, there are no common validation models that support 
continuous integration of microservices. 

 
Release Techniques. No release techniques have been proposed or reported in the 
selected works. 

 
Deployment Techniques. In the selected works, only one work [S31] proposes a 
technique and a tool for automatic deployment of microservices, assuming the use of 
reconfigurable microservices. Their tool is based on three main compo- nents: (1) An 
automatic configuration of distributed systems in OpenStack [4] which, starting from a partial 
and static description of the target architecture, produces a schema for distributing 
microservices to different machines and con- tainers; (2) A distributed framework for starting, 
stopping, and removing ser- vices; and (3) A reconfiguration cordinator which is in charge of 
interacting the automatic configuration system to produce optimized deployment planning. 

 
Operation and Monitoring Techniques. Monitoring cloud services is diffi- cult 
due to the complexity and distributed nature of the systems. Anwar et al. [S5] highlight the 
complexity of monitoring task, in particular with microservices- based implementations 
monitored with OpenStack, reporting that 80% of the commonly collected data are useless, 
thus collecting only 20% of the actual data would allow analyzing smaller datasets, which are 
often easier to analyze. 

Monitoring is a very important operation at runtime, especially for detect- ing faults in 
existing services and taking appropriate actions. In this direction, Rajagopalan et al. [S19] 
propose an autonomous healing mechanism to replace faulty microservices during runtime, in 
the production environment. They pro- pose comparing the dependency graphs of previous 
versions of microservices and, in case of failures, replacing the existing microservice by re-
deploying the pre- vious version. Despite reducing performance, this approach increases the 
proba- bility of returning the correct result. 

Bak et al. [S21] describe a microservices-based implementation of a dis- tributed IoT 
case study where they defined an approach for detecting opera- tional anomalies in the 
system based on the context. They propose an algorithm for detecting records not conformant 
to the expected or normal behavior of the data, continuously monitoring the various devices 
and sensors, and dynam- ically building models of typical measurements according to the 
time of the 
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day. Their anomaly detection approach is based on the analysis of performances and supposed 
malfunctions. As for failure detection, they also defined a root cause algorithm to 
understand if some devices crash when located in specific geographic areas because of 
errors in the data collected from sensors, or crash when connecting to certain devices. 

Toffetti et al. [S7] also adopt a self-healing technique in their implementation, simply 
restarting faulty microservices that return unexpected values or that raise any exceptions, in order 
to provide the most reliable result. 

 
4 Discussion 

Most of the implementations reported in the papers are related to research pro- totypes, with 
the goal of validating the proposed approaches (Table 4). Only six papers report on 
implementations in industrial context. Regarding the size of the systems implemented, all the 
implementations are related to small-sized applications, except [S38] that reports on the 
migration of a large scale system. Only four implementations report on the development language 
used ([S11], [S32] Java/NodeJS, [S34] php/NodeJS/Python, [S13] php). 

 
4.1 Architecture and Deployment Pattern Applications 

Several patterns for microservice-based systems emerged from existing imple- mentations 
(Table 3). We can associate some patterns with specific application settings such as a 
monolith-to-microservice or SOA-to-microservice migration. 

 
Migration: Several implementations report the usage of hybrid systems, aimed at 
migrating existing SOA-based applications to microservices. Maintenance, and specially 
independent deployment and the possibility to develop different services with different non-
interacting teams, are considered the main reasons for migrating monoliths to microservices. 
The flexibility to write in different lan- guages and to deploy the services on the most suitable 
hardware is also consid- ered a very important reason for the migration. Reported migrations 
from mono- lithic systems tend to be architected with an API-Gateway architecture, proba- 
bly due to the fact that, since the systems need to be completely re-developed and re-
architected, this was done directly with this approach. Migrations from SOA-based systems, 
on the other hand, tend to have a hybrid pattern, keeping the Enterprise Service Bus as a 
communication layer between microservices and existing SOA services. Based on this, the 
Enterprise Service Bus could re-emerge in future evolutions of microservices. 

 
Deployment: Another outcome is that deployment of microservices is still not clear. 
As reported for some implementations, sometimes microservices are deployed in a private 
virtual machine, requiring complete startup of the whole machine during the deployment, 
thus defeating the possibility of quick deploy- ment and decreasing system maintainability 
due to the need for maintaining a dedicated operating system, service container, and all VM-
related tasks. 
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Table 3. Classification of advantages and disadvantages of the identified patterns [16]. 
 

 Pattern Advantages Disadvantages 

Orchestration & 
coordination 

General - Increased  maintainability 
- Can  use different languages 
- Flexibility 
- Reuse 
- Physical isolation 
- Self-healing 

- Development,  Testing,  Complexity 
- Implementation  effort 
- Network-related  issue 

API gateway - Extension easiness 
- Market-centric  architecture 
- Backward compatibility 

- Potential bottleneck 
- Development complexity 
- Scalability 

Service registry - Increased  maintainability 
- Communic.,  developm., 
migration 
- Software understandability 
- Failure safety 

-Interface design must be fixed 
- Service registry complexity 
 

- Reuse 
- Distributed system complexity 

Hybrid - Migration  easiness 
- Learning curve 

- SOA/ESB integration issues 

Deploy Multiple service 
per host 

- Scalability 
- Performance 

 
Single service 
per host 

- Service isolation - Scalability 
- Performance 

Data storage DB per service - Scalability 
- Independent development 
- Security mechanism 

- Data needs to be splitted 
- Data consistency 

DB cluster - Scalability 
- Implementation  easiness 

- Increase complexity 
- Failure risks 

Shared DB 
server 

- Migration  easiness 
- Data consistency 

- Lack of data isolation 
- Scalability 

 

Table 4. The implementations reported in the selected works [16]. 
 

 Research prototype Validation-specific 
implementations 

Industrial 
implementations 

Websites - [S11], [S39] - [S15], [S24], [S26], 
[S31] 

- [S13], [S32] 

Services/API - IOT integration [S33] - [S9], [S10], [S14], 
[S16], [S23], [S37], [S36] 

- [S21], [S34] 

Others - Enterprise measurement 
system [S4] 
- IP multimedia system 
[S25] 

- Benchmark/Test 
[S35], [S41], [S42] 
- Business process 
modelling [S12] 

- Mobile dev. 
platform [S38] 
- Deployment 
platform [S30] 

 
 
4.2 DevOps Link 

Taking into account the continuous delivery process, the DevOps pipeline is only partially 
covered by research work. Considering the idea of continuous architect- ing, there is a number of 
implementations that report success stories regarding how to architect, build, and code 
microservice-based systems, but there are no 
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reports on how to continuously deliver and how to continuously re-architect exist- ing systems. As 
reported in our classification schema of the research on DevOps techniques (Table 5), the 
operation side, monitoring, deployment, and testing techniques are the most investigated 
steps of the DevOps pipeline. However, only few papers propose specific techniques, and 
apply them to small example projects. Release-specific techniques have not been investigated 
in our selected works. No empirical validation have been carried out in the selected works. 
Therefore, we believe this could be an interesting result for practitioners, to understand 
how existing testing techniques can adopted in industry. 

 

Table 5. DevOps techniques classification schema. 
 

 Proposed technique 
Planning - Semantic models [S16] 
Coding - Agent-oriented programming language [S40] 
Testing - BDD automated acceptance test [S17], [S18] 

- SVM learning-based testing [S20] 
- Validation on developers’ machine [S22] 
- Resiliency test of high-level requirements [S42] 

Release  
Deployment - Automated deployment [S31] 
Monitoring - Self-healing to replace faulty MS [S7], [S19] 
Operation - Context-based anomalies detection [S21] 

 
 
 
4.3 Research Trends and Gaps 

Industry First: Different research trends have emerged in this study. First of all, we can see 
that microservices come from practitioners and research comes later, so reports on existing 
practices are only published with delay. From the architec- tural point of view, the trend is to 
first analyze the industrial implementations and then compare them with previous solutions 
(monolithics or SOA). 

 
Style Variants: A new microservice architectural styles variant was proposed by 
researchers ([S24] and [S26]), applying a database approach for microservice orchestration. 
However, because they have just been published, no implemen- tations have adopted these 
practices yet. Also in this case, we believe that an empirical validation and a set of 
benchmarks comparing this new style with existing one could be highly beneficial for 
researchers and practitioners. 

Despite the increasing popularity of microservices and DevOps in industry, this work 
shows the lack of empirical studies in an industrial context reporting how practitioners are 
continuously delivering value in existing large-scale sys- tems. We believe that a set of 
studies on the operational side of the DevOps 
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pipeline could be highly beneficial for practitioners and could help researchers understand 
how to improve the continuous delivery of new services. 

We can compile the following research gaps and emerging issues: 

– Position Papers and Introduction to microservices. An interesting 
outcome of this work, obtained thru the reading of the whole literature is the tendency of 
publishing several position papers, highlighting some microservices properties or reporting 
about potential issues, without any empirical evidence. 

– Comparison of SOA and Microservices. The differences have not been thor- 
oughly investigated. There is a lack of comparison from different points of view (e.g., 
performance, development effort, maintenance). 

– Microservices Explosion. What happens once a growing system has thou- 
sands/millions of microservices? Will all aforementioned qualities degrade? 

– DevOps related techniques. Which chain of tools and techniques is most suit- 
able for different contexts? 

– Negative Results. In which contexts do microservices turn out to be counter- 
productive? Are there anti-patterns [6, 15, 17]? 

 
4.4 Towards an Integrated Microservice Architecture 

and Deployment Perspective 

Further to the discussion of trends and gaps that we have provided in the previ- ous subsection, 
we focus a short discussion here on an aspect that has emerged from the discussion of DevOps 
and Microservices in the section before. Automa- tion and tool support are critical concerns 
for the deployment of microservices for instance in the form of containers, but also the 
wider implementation of microservice architectures in a DevOps pipeline with tool support 
for continu- ous integration and deployment. 

In [7], the success of mmicroservices is linked to the evolution of technology platforms. 

– Containerization with LXC or Docker has been the first wave, enabling the independent 
deployment of microservices. 

– Container orchestration based on Mesos, Kubernestes or Docker Swarm enables better 
management of microservices in distributed environments. 

– Continuous delivery platform such as Ansible or Spinnaker have also had its impact as our 
DevOps discussion shows. 

Currently, further technologies are finding their way into architecting soft- ware: 

– Serverless computing fociussing on function-as-a-service solutions that allow more fine-
grained service functions without the need to be concerned with infrastructure resources. 

– Service meshes address the need fully integrated service-to-service communi- cation 
monitoring and management. 

This indicates that as the technology landscape evolves, we can expect new patterns to 
emerge. Thus pattern identification will remain a task for the future. 
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5 Threats to Validity 

 
Different types of threats to validity need to be addressed in this study. 

Construct validity reflects what is investigated according to the research ques- tions. 
The terms microservices, DevOps, and all sub-terms identified in Table I are sufficiently 
stable to be used as search strings. In order to assure the retrieval of all papers on the selected 
topic, we searched broadly in general publication databases, which index most well-reputed 
publications. Moreover, we included gray literature if their citations were higher than the 
average, in order to con- sider relevant opinions reported in non-scientific papers. Reliability 
focuses on whether the data are collected and the analysis is conducted in a way that can be 
repeated by other researchers with the same results. We defined search terms and applied 
procedures that can be replicated by others. Since this is a map- ping study and not a 
systematic review, the inclusion/exclusion criteria are only related to whether the topic of 
microservices is present in a paper [9]. 

Internal validity is concerned with data analysis. Since our analysis only uses 
descriptive statistics, the threats are minimal. 

External validity is about generalization from this study. Since we do not draw 
any conclusions about mapping studies in general, external validity threats are not applicable. 

 

6 Conclusion 
 

In this work, we conducted a systematic mapping study on micro-services-based architectural 
style principles and patterns, also looking at techniques and tools for continuously delivering 
new services by applying the DevOps approach when implementing  micro-services-based  
systems. 

As main outcome we identified several research gaps, such as the lack of comparison 
between SOA and Microservices, the investigation of consequences of microservices 
explosion and the high interest in exploring microservices in DevOps settings. Most of the 
selected works were published at workshops or conferences, which confirms the novelty of 
this topic and the interest in con- ducting this mapping study. 

We have used architectural patterns to identify common structural prop- erties of 
microservice architectures. Three orchestration and data-storage pat- terns emerged that 
appear to be widely applied for microservices-based sys- tems. Although some patterns 
were clearly used for migrating existing mono- lithic applications (service registry pattern) 
and others for migrating existing SOA applications (hybrid pattern), adopting the API-
Gateway pattern in the orchestration layer in order to benefit from microservice architectures 
without refactoring a second time emerges as a key recommendation. Overall, a 3-layered 
catalog of patterns comes out with patterns for orchestration/coordination and storage as 
structural patterns and for deployment alternatives. 

Independent deployability, being based on strong isolation, and easing the deployment 
and self-management activities such as scaling and self-healing, and 
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also maintainability and reuse as classical architecture concerns are the most widely agreed 
beneficial principles. 

DevOps in the contest of microservices is an hot topic being frequently dis- cussed 
online among practitioners, despite small number of works, probably because of its novelty. 
Work in this topic is mainly covering testing and monitor- ing techniques, while there are not yet 
papers on release techniques. Nonetheless, the independent deployability property often cited 
requires microservices to be mapped to a continuous architecting pipeline. Therefore, we 
believe DevOps would need more empirical validation in the context of microservices. 

A further analysis regards the notion of a architecture style itself in case of continuous 
architecting. The latter becomes an integral element of software architecture these days. 
Correspondingly, an architectural style requires to cover continuous architecting activities as well 
in addition to purely development stage regards such as system design usually focused on in 
architectural styles. 
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