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Abstract— Eye tracking is nowadays the primary method for 

collecting training data for neural networks in the Human 

Visual System modelling. Our recommendation is to collect eye 

tracking data from videos with eye tracking glasses that are 

more affordable and applicable to diverse test conditions than 

conventionally used screen based eye trackers. Eye tracking 

glasses are prone to moving during the gaze data collection but 

our experiments show that the observed displacement error 

accumulates fairly linearly and can be compensated 

automatically by the proposed framework. This paper describes 

how our framework can be used in practice with videos up to 4K 

resolution. The proposed framework and the data collected 

during our sample experiment are made publicly available. 
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I.  INTRODUCTION 

Eye tracking is the process of measuring the gaze point of 
a person. The gathered data can serve as an input for studies 
on the Human Visual System (HVS) that is of particular 
interest for computer vision and video coding. Computer 
vision seeks to mimic the behavior of HVS where eye tracking 
can be used to collect ground truth data and verify the 
computational HVS models [1]. In video coding, the models 
[2] or original gaze data can be used to extract the region of 
interest from the scene in order to improve subjective quality 
or coding efficiency. Additionally, eye tracking data can act 
as a basis for objective video quality metrics [3], [4]. 

Many of the existing saliency models make use of neural 
networks [5], [6] but they are still lacking, especially with 
videos, since unlike static images, the viewer cannot scan 
through the whole video frame but only some salient details in 
it. Videos also introduce temporal continuity to the 
observation making the models, which are aimed at static 
images, insufficient. According to [3], observations made by 
around twenty persons are reliable enough to construct a 
generic heat map for a video sequence. Coupling this with the 
fact that neural networks require massive amounts of data to 
produce accurate models, there is an apparent need for a 
straightforward methodology to collect gaze data from videos. 

Currently, there exists three distinct classes of eye tracking 
equipment used commercially: screen based solutions, eye 
tracking glasses, and accessories integrated into Head 
Mounted Displays (HMDs). Screen based solutions can be 
either integrated into a single screen or a distinct sensor used 
with various screens. The devices integrated into a screen 
offer the best tracking quality but are often too expensive. In 
addition, they provide a level of detail not needed in 
applications that combine data from multiple observers. 
Distinct sensors also offer good quality but they are often 

intended for at most 24 inch screens [7], which is not adequate 
for the latest video formats such as Ultra HD that typically 
feature screen sizes above 24 inches.  

The advantage of eye tracking glasses is that they can be 
used in a large variety of scenarios, e.g., with any screen size. 
However, since the glasses are attached physically to the user, 
they may cause a slight discomfort and are prone to moving. 
The displacement error of moving glasses can be corrected by 
recalibrating the eye tracker periodically. However, manually 
verifying the calibration multiple times can be cumbersome 
and time consuming. Additionally, if the tracker goes out of 
calibration, all data since the latest calibration has to be 
discarded as it is impossible to detect the point of invalidation. 
For these reasons, all known eye tracking studies gather gaze 
data with screen based eye trackers [4], [8]. 

The proposed framework uses offline drift correction to 
improve the quality of the data collected with eye tracking 
glasses. Self-calibration methods based on saliency models 
have been proposed in other similar works [9] but they require 
a robust saliency model. Our proposal can automatically 
compensate the displacement error of the glasses, which is 
found to accumulate fairly linearly. In addition, this work 
describes how the eye tracking experiment can be conducted 
in practice. The proposed framework and the eye tracking data 
gathered in our sample experiment are available for download 
[10]. The framework is built using Python and the OpenCV, 
numpy, and scipy libraries. 

Currently, a few companies offer eye tracking glasses, 
most notably Tobii [11] and Pupil Labs [12]. Tobii is probably 
the best known supplier, but Pupil Mobile Eye Tracking 
Headset was chosen for this experiment due to its competitive 
price and open-source software stack. In principle, the 
framework could also process gaze data collected by HMDs 
but those experiments are out of the scope of this paper. 

The rest of this paper is structured as follows. Chapter II 
gives an overview of the gaze data collection conducted in 
practice. Chapter III explains our methodology for fixing the 
systematic error that accumulated during the experiment due 
to the moving glasses. Chapter IV concludes the paper.  

II. EYE TRACKING EXPERIMENT 

Pupil Mobile Eye Tracking Headset [12] used in our 
experiments was equipped with a world camera for capturing 
the view from the subject’s perspective and two eye cameras 
for recording pupil positions. The world camera supports 
several capture modes with fixed sampling frequency and 
resolution. In our tests, the world camera operated at 720p60 
and the eye cameras at 240p120. The manufacturer promises 
a 0.60° accuracy and 0.08° precision. The used monitor was a 
27-inch Lenovo ThinkVision X1 [13] 4K screen with 60 Hz 
refresh rate. A snapshot of the test setup is depicted in Fig. 1.  

This work was supported in part by Business Finland and the Academy 

of Finland (decision no. 301820). 



A. Test Group 

The test group consisted of 37 people out of which 17 were 
female and twenty male. The minimum, maximum, mean, and 
median ages were 13, 43, 27.4, and 26, respectively. Most of 
the participants were of Finnish background, either students or 
staff of Tampere University of Technology.  

B. Test Material 

Table I tabulates characteristics of our test set. It includes 
all 8-bit HEVC common test sequences [14], seven videos 
from Ultra Video Group [15], one from AWS Elemental [16], 
and twelve from Xiph.org [17]. The sequences were stretched 
to the screen while maintaining the original aspect ratio. A 
black bar was added on both sides for videos narrower than 
16:9. The refresh rate of videos from [15] was downsampled 
from 120 Hz to 60 Hz by removing every other frame because 
no 120 Hz 4K display was available at the time.  

In [8], eye tracking data for the HEVC common test 
sequences is provided but only fixations are included instead 
of raw gaze data for each frame. In [18], eye tracking data for 
sequences in [15] were collected but they were played at 
nearly fifth of the original speed.  

C. Test Environment 

The experiments were conducted in a well lit room with a 
participant sitting about one meter away from the monitor. 
The participants were allowed to freely move in the seat to 
stay comfortable. The screen position was adjusted so that the 
viewer’s gaze was in the center of the screen when looking 
straight on. The viewing conditions were prepared based on 
the recommendations of ITU-T P.910 [19] despite lighting 
conditions, which are movie-theater-like.  

D. Test Preparation 

Each test session began with calibrating the eye tracker. 
The calibration results were verified by the test personnel. In 
most cases, only a single calibration attempt was necessary but 
in the worst (single) case three attempts were needed. Viewers 
were instructed to perform a free-viewing task, i.e., only 
watching the videos without any specific goal. The 
experiment itself consisted of the subject watching a sequence 
of videos with a calibration check after every five videos.  

E. Test Execution 

The videos were displayed using Media Player Classics – 
Home Cinema (MPC-HC) [20]. The Pupil Capture software 
uses ZeroMQ (ZMQ) sockets for internal and external 
communication, and the recording can be started and stopped 
through the socket interface. MPC-HC was modified to 

facilitate ZMQ. It starts the recording slightly before the video 
is played and stops after the video has finished playing.  

The actual start time of the video can be obtained by 
comparing the brightness of the screen area on the recording. 
The screen is completely black before the video starts but not 
during video playback. This method introduces, on average, 
an 8 ms error to the positions of the gaze points on the video 
timeline. An alternative solution would have been to start the 
recording exactly when the video is supposed to appear on the 
screen. However, the used monitor has a reported latency of 6 
ms [13] and it also depends on the content making the error 
more unpredictable than in the former method. 

From 37 participants, five had to be discarded due to 
erroneous data, leaving 32 valid. In four cases, makeup 
interfered with pupil detection and in one case mistake was 
made when setting up the eye tracker. 

F. Test Feedback 

After the experiment, the participants were verbally 
questioned on whether they had any comments on the 
experiment. The majority of the feedback was positive but 
some reported minor exhaustion because the test videos were 
so short. The selected videos are widely adopted in the field 
so their length was not considered an issue. Notably none of 
the participants found the glasses uncomfortable, so they were 

 

Fig 1. The test environment. 

TABLE I.  TEST VIDEO SEQUENCES 

Sequence Resolution FPS Duration (s) 

BaskeballPass [14] 416×240 50 10 

BasketballDrill [14] 832×480 50 10 

BasketballDrillText [14] 832×480 50 10 

BasketballDrive [14] 1920×1080 50 10 
Beauty [15] 3840×2160 60 5 

BlowingBubbles [14] 416×240 50 10 

Bosphorus [15] 3840×2160 60 5 
BQMall [14] 832×480 60 10 

BQSquare [14] 416×240 60 10 

BQTerrace [14] 1920×1080 60 10 
Cactus [14] 1920×1080 50 10 

ChinaSpeed [14] 1024×768 30 16.7 
crowdRun [17] 1920×1080 50 10 

Foreman 4k [16]  3840×2160 24 10.4 

FourPeople [14] 1280×720 60 10 
HoneyBee [15] 3840×2160 60 5 

Jockey [15] 3840×2160 60 5 

Johnny [14] 1280×720 60 10 
Kimono1 [14] 1920×1080 24 10 

KristenAndSara [14] 1280×720 60 10 

oldTownCross [17] 1920×1080 50 10 
parkrun [17] 1280×720 50 10 

ParkScene [14] 1920×1080 24 10 

PartyScene [14] 832×480 50 10 
pedestrianArea [17] 1920×1080 25 15 

PeopleOnStreet [14] 2560×1600 30 5 

RaceHorses [14] 832×480 30 10 
ReadySteadyGo [15] 3840×2160 60 5 

rushHour [17] 1920×1080 25 20 

ShakeNDry [15] 3840×2160 60 2.5 
shields [17] 1280×720 50 10 

SlideEditing [14] 1280×720 30 10 

SlideShow [14] 1280×720 20 25 
speedBag [17] 1920×1080 30 19 

station2 [17] 1920×1080 25 12.5 

stockholm [17] 1280×720 60 10 
Traffic [14] 2560×1600 30 5 

vidyo1 [17] 1280×720 60 10 

vidyo3 [17] 1280×720 60 10 
vidyo4 [17] 1280×720 60 10 

YachtRide [15] 3840×2160 60 5 

 



unlikely to pay attention to the glasses. Therefore, it is 
improbable that wearing the glasses affected the gaze points. 

III. METHODOLOGY FOR FIXING SYSTEMATIC ERROR 

During the experiment, gaze data was collected at a sample 
rate of 120 Hz while the world view was recorded at 60 Hz. 
The Pupil Labs software calculates the screen surface from the 
world view. The position and orientation of the surface is 
based on the tags attached to the monitor.  

A. Error Detection 

Fig. 2(a) depicts the physical screen with the highlighted 
screen surface. The gaze data is exported to csv format, during 
which the measured gaze points are projected onto the surface. 
The gaze data contains the world timestamp, a frame index, a 
gaze timestamp with normalized coordinates, and coordinates 
scaled to surface resolution. The data also indicates whether 
the gaze point is on screen and gives a confidence value for 
the detection. Unobscured, clearly visible pupils usually result 
in a perfect confidence value of 1.0.  

The calibration was checked eight times per experiment. 
A single calibration check consists of a sequence of five 
calibration symbols appearing in the constant order: center, 
bottom left, top left, top right, and bottom right. These checks 
were used to extract error data for the correction process. The 
error was measured relative to screen dimensions. The bottom 
left and top right of the screen were designated to (0, 0) and 
(1, 1), respectively. The recorded gaze points were not limited 
to these boundaries, as it is possible to look outside of the 
screen boundaries. Each gaze point was compared against its 
corresponding calibration point on screen and the difference 
was recorded separately for x- and y-axis.  

A common visual observation among all test cases is that 
the displacement error propagates fairly linearly. The linear 
nature of the error is illustrated in Fig. 3 with an example test 
case. In addition, the magnitude of the error is relative to 
position on screen. Gaze points on the left side of the screen 
have lower error values on the x-axis than points on the right 
side. This is also true for y-axis, where points at the bottom 
half of the screen have lower error values than the points at the 
top half. The average error scaled to 4K resolution was 121 
and 153 pixels for x- and y-axis, respectively.  

B.  Error Correction 

The offline correction is done by analyzing the gaze data 
from the calibration checks and calculating a correction factor 
based on the results of the analysis. The process consists of the 
following steps:  

1. Prune erroneous gaze points; 
2. Cluster the remaining gaze points; 
3. Create linear error timeline based on the clusters; 
4. Calculate a correction factor and apply to video gaze data. 

In the first phase, erroneous gaze points, such as those 
when the participant has blinked, are pruned from the point 
cloud. The software provided by Pupil Labs uses confidence 
values to clean most of the erroneous points but still some of 
them persist. For example, during blinking the software might 
falsely detect the pupil from the eye lashes for a couple of 
frames. These erroneous points are usually isolated from 
normal points and regions in the data timeline containing these 
points can be easily detected and removed. 

After removal of erroneous regions, some outlying points 
may still remain in the data. Here, the outlying points are a 
result of saccades between fixation points or random errors in 
pupil tracking. These points are usually isolated from the rest 

 
Fig 2. Gaze point mapping. (a) Physical screen surface for gaze points (in blue tint). (b) The drifted surface due to the moving glasses (in red tint). The red 

dot visualises where the gaze point will be mapped on the actual screen and the blue one where it should be mapped. 

Fig 3. Error propagation at the corner calibration points in an example test.  
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and can be detected by calculating the local outlier factors [21] 
for them. The method calculates the local density of each point 
as a function of distance to its k-nearest neighbors, where k = 
10. The points with substantially lower local density over their 
neighbors will be removed as outliers.  

The next step is to assign all valid gaze points into clusters, 
which represent fixations in gaze data. At this point, the 
optimal number of clusters is unknown. If the data is already 
packed in a single dense cluster, no further clustering is done. 
Otherwise, the optimal number is determined by silhouette 
analysis [22] using k-means as the clustering algorithm. For 
each point, the method calculates a similarity score over the 
other points in the same cluster and difference score over the 
points in other clusters. The similarity and difference scores 
are measured as Euclidean distances. The number of clusters 
with the best average score among all points is selected after 
which the clusters are formed. The largest one is selected for 
processing and the rest will be discarded. 

The spatially clustered data is ordered based on the 
calibration point it belongs to. An average point for both x- 
and y-axes is calculated from each cluster and the points are 
arranged into a timeline based on which calibration they 
correspond to. This results in a graph which shows the 
evolution of error over time for each separate calibration point 
(Fig. 3). A linear model is fitted to each calibration point, 
allowing the approximation of the gaze error at any given 
point of time. The approximation can be used to form the 
correction factor. 

Due to the glasses moving, the surface where the gaze 
points are projected is not stationary, as depicted in Fig. 2. The 
surface can be transformed back where it is supposed to be by 
calculating a perpective transformation matrix. It is derived 
from the points of the original and shifted surface. The original 
surface is defined by the corner calibration points whereas the 
shifted surface is created by shifting the original points based 
on the linear equation. The perspective transform matrix is 
calculated for each test video separately. The correction is 
done by applying a perspective transform with the supplied 
transform matrix on the collected gaze data. 

IV. CONCLUSIONS 

This paper proposed an open framework for gathering 
gaze data with eye tracking glasses and compensating the 
displacement error of the moving glasses automatically. The 
effect of correction can be seen in Fig. 4. From the 32 valid 
participants, 27 received noticeable benefits from the 
correction. The median of correction was 75 % and 78 % for 

x- and y-axis, respectively, where the percentages are the ratio 
of the correction to the uncorrected error. Among the eight 
subjects who had the largest error, the error was corrected by 
52 and 581 pixels on x- and y-axis, respectively. The raw eye 
tracking data and the corrected data along with the Python 
code is public [10]. 
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