
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Open Framework for Error-Compensated Gaze Data

Collection with Eye Tracking Glasses

Kari Siivonen, Joose Sainio, Marko Viitanen, Jarno Vanne, Timo D. Hämäläinen

Laboratory of Pervasive Computing

Tampere University of Technology, Finland

{kari.siivonen, joose.sainio, marko.viitanen, jarno.vanne, timo.d.hamalainen}@tut.fi

Abstract— Eye tracking is nowadays the primary method for

collecting training data for neural networks in the Human

Visual System modelling. Our recommendation is to collect eye

tracking data from videos with eye tracking glasses that are

more affordable and applicable to diverse test conditions than

conventionally used screen based eye trackers. Eye tracking

glasses are prone to moving during the gaze data collection but

our experiments show that the observed displacement error

accumulates fairly linearly and can be compensated

automatically by the proposed framework. This paper describes

how our framework can be used in practice with videos up to 4K

resolution. The proposed framework and the data collected

during our sample experiment are made publicly available.

Keywords—eye tracking, open-source, open data set, error

correction

I. INTRODUCTION

Eye tracking is the process of measuring the gaze point of
a person. The gathered data can serve as an input for studies
on the Human Visual System (HVS) that is of particular
interest for computer vision and video coding. Computer
vision seeks to mimic the behavior of HVS where eye tracking
can be used to collect ground truth data and verify the
computational HVS models [1]. In video coding, the models
[2] or original gaze data can be used to extract the region of
interest from the scene in order to improve subjective quality
or coding efficiency. Additionally, eye tracking data can act
as a basis for objective video quality metrics [3], [4].

Many of the existing saliency models make use of neural
networks [5], [6] but they are still lacking, especially with
videos, since unlike static images, the viewer cannot scan
through the whole video frame but only some salient details in
it. Videos also introduce temporal continuity to the
observation making the models, which are aimed at static
images, insufficient. According to [3], observations made by
around twenty persons are reliable enough to construct a
generic heat map for a video sequence. Coupling this with the
fact that neural networks require massive amounts of data to
produce accurate models, there is an apparent need for a
straightforward methodology to collect gaze data from videos.

Currently, there exists three distinct classes of eye tracking
equipment used commercially: screen based solutions, eye
tracking glasses, and accessories integrated into Head
Mounted Displays (HMDs). Screen based solutions can be
either integrated into a single screen or a distinct sensor used
with various screens. The devices integrated into a screen
offer the best tracking quality but are often too expensive. In
addition, they provide a level of detail not needed in
applications that combine data from multiple observers.
Distinct sensors also offer good quality but they are often

intended for at most 24 inch screens [7], which is not adequate
for the latest video formats such as Ultra HD that typically
feature screen sizes above 24 inches.

The advantage of eye tracking glasses is that they can be
used in a large variety of scenarios, e.g., with any screen size.
However, since the glasses are attached physically to the user,
they may cause a slight discomfort and are prone to moving.
The displacement error of moving glasses can be corrected by
recalibrating the eye tracker periodically. However, manually
verifying the calibration multiple times can be cumbersome
and time consuming. Additionally, if the tracker goes out of
calibration, all data since the latest calibration has to be
discarded as it is impossible to detect the point of invalidation.
For these reasons, all known eye tracking studies gather gaze
data with screen based eye trackers [4], [8].

The proposed framework uses offline drift correction to
improve the quality of the data collected with eye tracking
glasses. Self-calibration methods based on saliency models
have been proposed in other similar works [9] but they require
a robust saliency model. Our proposal can automatically
compensate the displacement error of the glasses, which is
found to accumulate fairly linearly. In addition, this work
describes how the eye tracking experiment can be conducted
in practice. The proposed framework and the eye tracking data
gathered in our sample experiment are available for download
[10]. The framework is built using Python and the OpenCV,
numpy, and scipy libraries.

Currently, a few companies offer eye tracking glasses,
most notably Tobii [11] and Pupil Labs [12]. Tobii is probably
the best known supplier, but Pupil Mobile Eye Tracking
Headset was chosen for this experiment due to its competitive
price and open-source software stack. In principle, the
framework could also process gaze data collected by HMDs
but those experiments are out of the scope of this paper.

The rest of this paper is structured as follows. Chapter II
gives an overview of the gaze data collection conducted in
practice. Chapter III explains our methodology for fixing the
systematic error that accumulated during the experiment due
to the moving glasses. Chapter IV concludes the paper.

II. EYE TRACKING EXPERIMENT

Pupil Mobile Eye Tracking Headset [12] used in our
experiments was equipped with a world camera for capturing
the view from the subject’s perspective and two eye cameras
for recording pupil positions. The world camera supports
several capture modes with fixed sampling frequency and
resolution. In our tests, the world camera operated at 720p60
and the eye cameras at 240p120. The manufacturer promises
a 0.60° accuracy and 0.08° precision. The used monitor was a
27-inch Lenovo ThinkVision X1 [13] 4K screen with 60 Hz
refresh rate. A snapshot of the test setup is depicted in Fig. 1.

This work was supported in part by Business Finland and the Academy

of Finland (decision no. 301820).

A. Test Group

The test group consisted of 37 people out of which 17 were
female and twenty male. The minimum, maximum, mean, and
median ages were 13, 43, 27.4, and 26, respectively. Most of
the participants were of Finnish background, either students or
staff of Tampere University of Technology.

B. Test Material

Table I tabulates characteristics of our test set. It includes
all 8-bit HEVC common test sequences [14], seven videos
from Ultra Video Group [15], one from AWS Elemental [16],
and twelve from Xiph.org [17]. The sequences were stretched
to the screen while maintaining the original aspect ratio. A
black bar was added on both sides for videos narrower than
16:9. The refresh rate of videos from [15] was downsampled
from 120 Hz to 60 Hz by removing every other frame because
no 120 Hz 4K display was available at the time.

In [8], eye tracking data for the HEVC common test
sequences is provided but only fixations are included instead
of raw gaze data for each frame. In [18], eye tracking data for
sequences in [15] were collected but they were played at
nearly fifth of the original speed.

C. Test Environment

The experiments were conducted in a well lit room with a
participant sitting about one meter away from the monitor.
The participants were allowed to freely move in the seat to
stay comfortable. The screen position was adjusted so that the
viewer’s gaze was in the center of the screen when looking
straight on. The viewing conditions were prepared based on
the recommendations of ITU-T P.910 [19] despite lighting
conditions, which are movie-theater-like.

D. Test Preparation

Each test session began with calibrating the eye tracker.
The calibration results were verified by the test personnel. In
most cases, only a single calibration attempt was necessary but
in the worst (single) case three attempts were needed. Viewers
were instructed to perform a free-viewing task, i.e., only
watching the videos without any specific goal. The
experiment itself consisted of the subject watching a sequence
of videos with a calibration check after every five videos.

E. Test Execution

The videos were displayed using Media Player Classics –
Home Cinema (MPC-HC) [20]. The Pupil Capture software
uses ZeroMQ (ZMQ) sockets for internal and external
communication, and the recording can be started and stopped
through the socket interface. MPC-HC was modified to

facilitate ZMQ. It starts the recording slightly before the video
is played and stops after the video has finished playing.

The actual start time of the video can be obtained by
comparing the brightness of the screen area on the recording.
The screen is completely black before the video starts but not
during video playback. This method introduces, on average,
an 8 ms error to the positions of the gaze points on the video
timeline. An alternative solution would have been to start the
recording exactly when the video is supposed to appear on the
screen. However, the used monitor has a reported latency of 6
ms [13] and it also depends on the content making the error
more unpredictable than in the former method.

From 37 participants, five had to be discarded due to
erroneous data, leaving 32 valid. In four cases, makeup
interfered with pupil detection and in one case mistake was
made when setting up the eye tracker.

F. Test Feedback

After the experiment, the participants were verbally
questioned on whether they had any comments on the
experiment. The majority of the feedback was positive but
some reported minor exhaustion because the test videos were
so short. The selected videos are widely adopted in the field
so their length was not considered an issue. Notably none of
the participants found the glasses uncomfortable, so they were

Fig 1. The test environment.

TABLE I. TEST VIDEO SEQUENCES

Sequence Resolution FPS Duration (s)

BaskeballPass [14] 416×240 50 10

BasketballDrill [14] 832×480 50 10

BasketballDrillText [14] 832×480 50 10

BasketballDrive [14] 1920×1080 50 10
Beauty [15] 3840×2160 60 5

BlowingBubbles [14] 416×240 50 10

Bosphorus [15] 3840×2160 60 5
BQMall [14] 832×480 60 10

BQSquare [14] 416×240 60 10

BQTerrace [14] 1920×1080 60 10
Cactus [14] 1920×1080 50 10

ChinaSpeed [14] 1024×768 30 16.7
crowdRun [17] 1920×1080 50 10

Foreman 4k [16] 3840×2160 24 10.4

FourPeople [14] 1280×720 60 10
HoneyBee [15] 3840×2160 60 5

Jockey [15] 3840×2160 60 5

Johnny [14] 1280×720 60 10
Kimono1 [14] 1920×1080 24 10

KristenAndSara [14] 1280×720 60 10

oldTownCross [17] 1920×1080 50 10
parkrun [17] 1280×720 50 10

ParkScene [14] 1920×1080 24 10

PartyScene [14] 832×480 50 10
pedestrianArea [17] 1920×1080 25 15

PeopleOnStreet [14] 2560×1600 30 5

RaceHorses [14] 832×480 30 10
ReadySteadyGo [15] 3840×2160 60 5

rushHour [17] 1920×1080 25 20

ShakeNDry [15] 3840×2160 60 2.5
shields [17] 1280×720 50 10

SlideEditing [14] 1280×720 30 10

SlideShow [14] 1280×720 20 25
speedBag [17] 1920×1080 30 19

station2 [17] 1920×1080 25 12.5

stockholm [17] 1280×720 60 10
Traffic [14] 2560×1600 30 5

vidyo1 [17] 1280×720 60 10

vidyo3 [17] 1280×720 60 10
vidyo4 [17] 1280×720 60 10

YachtRide [15] 3840×2160 60 5

unlikely to pay attention to the glasses. Therefore, it is
improbable that wearing the glasses affected the gaze points.

III. METHODOLOGY FOR FIXING SYSTEMATIC ERROR

During the experiment, gaze data was collected at a sample
rate of 120 Hz while the world view was recorded at 60 Hz.
The Pupil Labs software calculates the screen surface from the
world view. The position and orientation of the surface is
based on the tags attached to the monitor.

A. Error Detection

Fig. 2(a) depicts the physical screen with the highlighted
screen surface. The gaze data is exported to csv format, during
which the measured gaze points are projected onto the surface.
The gaze data contains the world timestamp, a frame index, a
gaze timestamp with normalized coordinates, and coordinates
scaled to surface resolution. The data also indicates whether
the gaze point is on screen and gives a confidence value for
the detection. Unobscured, clearly visible pupils usually result
in a perfect confidence value of 1.0.

The calibration was checked eight times per experiment.
A single calibration check consists of a sequence of five
calibration symbols appearing in the constant order: center,
bottom left, top left, top right, and bottom right. These checks
were used to extract error data for the correction process. The
error was measured relative to screen dimensions. The bottom
left and top right of the screen were designated to (0, 0) and
(1, 1), respectively. The recorded gaze points were not limited
to these boundaries, as it is possible to look outside of the
screen boundaries. Each gaze point was compared against its
corresponding calibration point on screen and the difference
was recorded separately for x- and y-axis.

A common visual observation among all test cases is that
the displacement error propagates fairly linearly. The linear
nature of the error is illustrated in Fig. 3 with an example test
case. In addition, the magnitude of the error is relative to
position on screen. Gaze points on the left side of the screen
have lower error values on the x-axis than points on the right
side. This is also true for y-axis, where points at the bottom
half of the screen have lower error values than the points at the
top half. The average error scaled to 4K resolution was 121
and 153 pixels for x- and y-axis, respectively.

B. Error Correction

The offline correction is done by analyzing the gaze data
from the calibration checks and calculating a correction factor
based on the results of the analysis. The process consists of the
following steps:

1. Prune erroneous gaze points;
2. Cluster the remaining gaze points;
3. Create linear error timeline based on the clusters;
4. Calculate a correction factor and apply to video gaze data.

In the first phase, erroneous gaze points, such as those
when the participant has blinked, are pruned from the point
cloud. The software provided by Pupil Labs uses confidence
values to clean most of the erroneous points but still some of
them persist. For example, during blinking the software might
falsely detect the pupil from the eye lashes for a couple of
frames. These erroneous points are usually isolated from
normal points and regions in the data timeline containing these
points can be easily detected and removed.

After removal of erroneous regions, some outlying points
may still remain in the data. Here, the outlying points are a
result of saccades between fixation points or random errors in
pupil tracking. These points are usually isolated from the rest

Fig 2. Gaze point mapping. (a) Physical screen surface for gaze points (in blue tint). (b) The drifted surface due to the moving glasses (in red tint). The red

dot visualises where the gaze point will be mapped on the actual screen and the blue one where it should be mapped.

Fig 3. Error propagation at the corner calibration points in an example test.

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 100 200 300 400R
el

at
iv

e
er

ro
r

o
n

 x
-a

xi
s

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 100 200 300 400

R
el

at
iv

e
er

ro
r

o
n

 y
-a

xi
s

Time (s)
Bottom left Top left Top right Bottom right

and can be detected by calculating the local outlier factors [21]
for them. The method calculates the local density of each point
as a function of distance to its k-nearest neighbors, where k =
10. The points with substantially lower local density over their
neighbors will be removed as outliers.

The next step is to assign all valid gaze points into clusters,
which represent fixations in gaze data. At this point, the
optimal number of clusters is unknown. If the data is already
packed in a single dense cluster, no further clustering is done.
Otherwise, the optimal number is determined by silhouette
analysis [22] using k-means as the clustering algorithm. For
each point, the method calculates a similarity score over the
other points in the same cluster and difference score over the
points in other clusters. The similarity and difference scores
are measured as Euclidean distances. The number of clusters
with the best average score among all points is selected after
which the clusters are formed. The largest one is selected for
processing and the rest will be discarded.

The spatially clustered data is ordered based on the
calibration point it belongs to. An average point for both x-
and y-axes is calculated from each cluster and the points are
arranged into a timeline based on which calibration they
correspond to. This results in a graph which shows the
evolution of error over time for each separate calibration point
(Fig. 3). A linear model is fitted to each calibration point,
allowing the approximation of the gaze error at any given
point of time. The approximation can be used to form the
correction factor.

Due to the glasses moving, the surface where the gaze
points are projected is not stationary, as depicted in Fig. 2. The
surface can be transformed back where it is supposed to be by
calculating a perpective transformation matrix. It is derived
from the points of the original and shifted surface. The original
surface is defined by the corner calibration points whereas the
shifted surface is created by shifting the original points based
on the linear equation. The perspective transform matrix is
calculated for each test video separately. The correction is
done by applying a perspective transform with the supplied
transform matrix on the collected gaze data.

IV. CONCLUSIONS

This paper proposed an open framework for gathering
gaze data with eye tracking glasses and compensating the
displacement error of the moving glasses automatically. The
effect of correction can be seen in Fig. 4. From the 32 valid
participants, 27 received noticeable benefits from the
correction. The median of correction was 75 % and 78 % for

x- and y-axis, respectively, where the percentages are the ratio
of the correction to the uncorrected error. Among the eight
subjects who had the largest error, the error was corrected by
52 and 581 pixels on x- and y-axis, respectively. The raw eye
tracking data and the corrected data along with the Python
code is public [10].

ACKNOWLEDGMENT

The authors would like to thank all volunteers for taking
part in our eye tracking experiment.

V. REFERENCES

[1] L. Itti, “Automatic foveation for video compression using a
neurobiological model of visual attention,” IEEE Trans. Image
Process., vol. 13, no. 10, pp. 1304-1318, Oct. 2004.

[2] C. Guo and L. Zhang, “A novel multiresolution spatiotemporal saliency
detection model and its applications in image and video compression,”
IEEE Trans. Image Process., vol. 19, no. 1, pp. 185-198, Jan. 2010.

[3] Y. Gitman, M. Erofeev, D. Vatolin, B. Andrey, and F. Alexey,
“Semiautomatic visual-attention modeling and its application to video
compression,” in Proc. IEEE Int. Conf. on Image Process., Paris,
France, Oct. 2014.

[4] Z. Li, S. Qin, and L. Itti, “Visual attention guided bit allocation in video
compression,” Image and Vision Computing, vol. 29, no. 1, pp. 1-14,
Jan. 2011.

[5] S. S. S. Kruthiventi, K. Ayush, and R. V. Babu, “DeepFix: A fully
convolutional neural network for predicting human eye fixations,”
IEEE Trans. Image Process., vol. 26, no. 9, pp. 4446-4456, Sept. 2017.

[6] X. Li, L. Zhao, L. Wei, M. H. Yang, F. Wu, Y. Zhuang, H. Ling, and
J. Wang, “DeepSaliency: Multi-task deep neural network model for
salient object detection,” IEEE Trans. Image Process., vol. 25, no. 8,
pp. 3919-3930, Aug. 2016.

[7] Tobii Pro x3-120 [Online]. Available:
https://www.tobiipro.com/product-listing/tobii-pro-x3-120/

[8] M. Xu, L. Jiang, X. Sun, Z. Ye and Z. Wang, “Learning to detect video
saliency with HEVC features,” IEEE Trans. Image Process., vol. 26,
no. 1, pp. 369-385, Jan. 2017.

[9] Y. Sugano and A. Bulling, “Self-calibrating head-mounted eye trackers
using egocentric visual saliency,” in Proc. ACM Symp. User Interface
Software and Technol., Charlotte, North Carolina, USA, Nov 2015.

[10] Eye-tracking framework [Online]. Available:
https://github.com/ultravideo/eye-tracking-framework

[11] Tobii Pro Glasses 2 [Online]. Available:
https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/

[12] Pupil Labs [Online]. Available: https://pupil-labs.com/pupil/

[13] ThinkVision X1 Datasheet [Online]. Available:
https://support.lenovo.com/fi/en/solutions/pd104221

[14] F. Bossen, “Common HM test conditions and software reference
configurations,” JCTVC-L1100, 12th JCT-VC meeting, Geneva, Jan.
2013.

[15] Ultra Video Group [Online]. Available: http://ultravideo.cs.tut.fi/

[16] AWS Elemental [Online]. Available:
https://www.elemental.com/resources/4k-test-sequences

[17] Xiph.org, Derf’s Collection [Online]. Available:
https://media.xiph.org/video/derf/

[18] T. Vigier, J. Rousseau, M. Perreira Da Silva, and P. Le Callet, “A new
HD and UHD video eye tracking dataset,” in Proc. ACM Multimedia
Syst. Conf., Klagenfurt, Austria, May 2016.

[19] ITU: “Subjective video quality assessment methods for multimedia
applications,” ITU-T Recommendation P.910, Geneva, Switzerland,
Apr. 2008.

[20] Media Player Classic – Home Cinema [Online]. Available:
https://mpc-hc.org/

[21] M. Breunig, H. Kriegel, R. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proc. Int. Conf. on Management of
Data, Dallas, May 2000.

[22] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53-65, Nov. 1987.

Fig 4. Comparison of uncorrected and corrected heatmaps. The pictures are
from sequences Johnny frame 300 (top) and Honeybee frame 240 (bottom).

