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Abstract—In the last decade, we observed a constantly growing
number of Location-Based Services (LBSs) used in indoor envi-
ronments, such as for targeted advertising in shopping malls or
finding nearby friends. Although privacy-preserving LBSs were
addressed in the literature, there was a lack of attention to the
problem of enhancing privacy of indoor localization, i.e., the
process of obtaining the users’ locations indoors and, thus, a
prerequisite for any indoor LBS.

In this work we present PILOT, the first practically efficient
solution for Privacy-Preserving Indoor Localization (PPIL) that
was obtained by a synergy of the research areas indoor local-
ization and applied cryptography. We design, implement, and
evaluate protocols for Wi-Fi fingerprint-based PPIL that rely
on 4 different distance metrics. To save energy and network
bandwidth for the mobile end devices in PPIL, we securely
outsource the computations to two non-colluding semi-honest
parties. Our solution mixes different secure two-party compu-
tation protocols and we design size- and depth-optimized circuits
for PPIL. We construct efficient circuit building blocks that
are of independent interest: Single Instruction Multiple Data
(SIMD) capable oblivious access to an array with low circuit
depth and selection of the k-Nearest Neighbors with small circuit
size. Additionally, we reduce Received Signal Strength (RSS)
values from 8 bits to 4 bits without any significant accuracy
reduction. Our most efficient PPIL protocol is 553x faster than
that of Li et al. (INFOCOM’14) and 500x faster than that of
Ziegeldorf et al. (WiSec’14). Our implementation on commodity
hardware has practical run-times of less than 1 second even for
the most accurate distance metrics that we consider, and it can
process more than half a million PPIL queries per day.

I. INTRODUCTION

A Location-Based Service (LBS) is a service that relies on
a user’s physical location to provide the user with additional
value. Pin-pointing the user’s location on a map and offering
routes to a given destination, navigation, targeted advertising,
or finding nearby friends [1, 2, 3] are such add-on values that
have already become a reality outdoors, but as well indoors.
Privacy is a major concern in LBSs because the location
history allows very accurate user profiling and even predicting
users’ future movements [4]. A lot of literature exists on
privacy-preserving LBSs, e.g., [5, 6, 7, 8, 9]. Typically in
these works, the user’s location is assumed to be known
by the user and the privacy concerns are about how this
location information is shared and used in an LBS. In this

paper, we focus on privacy issues of localization, i.e., of
techniques for obtaining a user’s location. We emphasize
that privacy-preserving localization is the prerequisite for a
privacy-preserving LBS because if privacy is violated already
in the localization phase, then all further efforts for privacy
protection are in vain.

Global Navigation Satellite System (GNSS) such as GPS
or Galileo is the primary technology for localization in many
LBSs [10]. Here, privacy of localization is not an issue because
it is performed in a stand-alone GNSS receiver (e.g., in-
car navigator) which calculates the location locally without
any communication with other parties [11, 12]. Assisted or
cloud GNSS receivers using cellular networks or the cloud
for improving localization are exceptions where privacy of
localization becomes an issue. Even though GNSS privacy
is good, GNSS is unavailable or has poor services in indoor
environments on which we focus in this work.

Thus, other means for localization must be used in-
doors. Proposed Indoor Localization (IL) techniques include
Wi-Fi [13, 14, 15, 16], magnetic-field positioning, cellu-
lar, Bluetooth Low Energy (BLE) [17], and Ultra Wide
Band (UWB) (see, e.g., [18, 19] for good surveys on indoor
positioning technologies). Arguably, Wi-Fi fingerprinting is
the most prominent and widely-adopted solution for IL [20,
21, 22, 23], as Wi-Fi networks and Wi-Fi capable devices are
ubiquitous and therefore virtually free for the IL provider.

More recent Wi-Fi standards allow to measure additional
parameters of the Wi-Fi signals such that more accurate
propagation times [24] and angles of arrival [25, 26] can be
obtained, enabling lateration or angulation localization meth-
ods. In multipath-free scenarios, where a signal can reach the
user only once, these methods yield accuracies compareable
with fingerprinting approaches. However, they do not preserve
the users’ privacy, require knowledge about the position of
the Wi-Fi Access Points (APs), and the problems due to
multipath propagation are not solved yet. Solutions that do
not build upon Wi-Fi, such as cellular or UWB, either share
these drawbacks or require additional network infrastructure.
On the other hand, Wi-Fi fingerprinting is not limited to IL
and can be used outdoors as well [27, 28].
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Wi-Fi fingerprinting relies on the spatial distribution of
the Received Signal Strength (RSS) of Wi-Fi APs. A user
reads the RSSs of nearby APs and sends them to a server
that hosts a database of pre-measured sets of RSS signatures
and associated positions, so called Reference Points (RPs), en-
coding the measurement locations. The server then calculates
the distances between the user’s RSS measurements and the
RSSs in the database under some distance metric. After that,
the server finds the user’s location as the RP associated to
the RSSs that yielded the smallest distance. While Wi-Fi fin-
gerprinting provides good localization accuracy and practical
feasibility (e.g., cheap installation costs thanks to the use of the
existing Wi-Fi infrastructure), there is the prevailing problem
of privacy: the server, who calculates the user’s location, can
track the user’s movements inside the building covered by IL.
Also, the server has incentives not to publish its database
and, hence, calculating locations locally in the user’s device
is typically not an option either as described next.

A. Motivation

Privacy-Preserving Indoor Localization (PPIL) is a very top-
ical problem given the constantly increasing use of IL [29, 30,
31] in environments including shopping malls [21], exhibition
centers, airports, hospitals, university campuses [22, 32], and
museums. Examples of deployed IL services (mobile apps)
include AnyPlace1, HERE Indoor Positioning2, IndoorAtlas3,
and Point Inside4. At the same time, with the constantly
growing use of IL also the IL accuracy is constantly increasing,
with recent papers pointing out to cm-level accuracy [30, 33].
Al Altogether, this means that the threats to the users’ privacy
are significant and growing [4, 11, 12, 34].

In the following, we consider the use of IL for customers
of a shopping mall as a motivating example for PPIL. The
customers of the shopping mall would greatly benefit from
the availability of IL because it would help them to easily
find shops, restaurants and other places of interest in the
mall, and would also allow tailored flash discounts for nearby
customers benefiting both the customers and retailers. How-
ever, the customers’ movements in the mall and visits to
specific places may reveal personal details and preferences
that they are reluctant to share with anyone. Hence, privacy
issues may hinder the adaptation of IL among privacy-aware
customers. A trivial solution for PPIL would be to let the
customers download local copies of the database, but the
service provider has many incentives to keep the database
secret. The database is a result of laborious measurements. An
accurate database can be constructed only by making several
measurements with different devices in exact locations, which
typically requires special equipment, and/or time-consuming
crowdsourced collection of fingerprints. Hence, the database is
a central business secret of the LBS. Furthermore, the database

1https://anyplace.cs.ucy.ac.cy
2https://www.here.com/en/products-services/products/here-positioning/

here-indoor-positioning
3http://www.indooratlas.com
4https://www.pointinside.com

may reveal sensitive information about the infrastructure (at
least approximate locations of APs) and it is also not trivial to
update a distributed database. Consequently, a PPIL scheme
should prevent the leakage of both the customers’ location
and the LBS’s database. Additionally, a PPIL scheme should
permit extending the PPIL with arbitrary privacy-preserving
functionalities (e.g., with privacy-preserving location-based
marketing) in order to maintain the service provider’s financial
motivation to provide the service to its customers. Finally,
a PPIL scheme should be efficient enough for practical deploy-
ment for large-scale use. In this paper, we describe PILOT, a
PPIL scheme that fulfills the above requirements.

B. Our Contributions

We provide the following contributions in this paper:
The First Practical PPIL Scheme. Our main contribution

is the design and implementation of PILOT, the first
Privacy-Preserving Indoor Localization (PPIL) scheme that
(i) preserves the privacy of users’ locations, (ii) protects
the server’s database, (iii) can be extended with arbitrary
privacy-preserving functionalities such as location-based
advertising, and (iv) is efficient enough for large-scale use in
practice. PILOT is not just engineering, but a new synergy
between the research areas of indoor localization and ap-
plied cryptography that leads to the first practically efficient
and secure solution for PPIL. This main contribution is
based on the following specific contributions.

Outsourcing Scenario and Impracticality of the
Client/Server Scenario for PPIL. We use an efficient
outsourcing protocol for computing PPIL using two
Semi-Trusted Third Parties (STTPs). This protocol is very
efficient for mobile clients, because it (i) increases the
communication of the mobile client only by about factor
2× compared to the non-private protocol, and (ii) enables
cheap and energy-efficient computations for the mobile
clients. In contrast, we show that even optimized PPIL in
the setting with a single server using Secure Two-Party
Computation (STPC) currently requires several hundred
megabytes of communication and cryptographic operations
which makes it impractical for mobile clients.

Quantization of the Received Signal Strength Values. To
decrease the overhead of STPC evaluation, we quantize the
RSS values with reduced bit-length and show the impact on
the IL accuracy. As a result of a field experiment, we can
conclude that the reduction from 8 to 4 bits has very limited
impact on the accuracy of IL (0.1–5 %), and to 2 and 1 bit
still achieves meaningful accuracy.

Well-Suited Distance Metrics. We design, implement, and
evaluate a variety of privacy-preserving algorithms for
computing conventional and more advanced distance met-
rics. We consider the Manhattan, Euclidean, Sørensen, and
Kumar-Hassebrook distances, which differ in accuracy and
efficiency.

Improved Building Blocks. Some of our newly intro-
duced circuit building blocks are generic and thus
of independent interest. We develop a circuit for
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finding k-Nearest Neighbors (k-NN) out of N el-
ements with Nk(2`+ dlog2Ne) AND gates, and a
Single Instruction Multiple Data (SIMD) capable oblivious
access to an N -element array with dlog2dlog2Nee+ 1
multiplicative depth.

Comprehensive Performance Analysis. We provide detailed
benchmarking results for our best-performing and most
precise algorithms for ranges of Reference Points (RPs) and
Wi-Fi Access Points (APs). In addition, we provide even
more detailed benchmarks for the same practical setting
as in [35] with M=505 RPs and N=241 APs. Our most
efficient algorithm has an online run-time of 0.15 s on two
commodity servers which is orders of magnitude faster than
prior work. Furthermore, the servers can process up to half
a million PPIL queries per day.

II. RELATED WORK

Many proposed solutions for Privacy-Preserving Indoor
Localization (PPIL) use Homomorphic Encryption (HE) such
as the Paillier cryptosystem [36]. Generic shortcomings of HE-
based PPIL schemes are that they rely on computationally
demanding Public-Key Encryption (PKE), and that a user
would require to generate a new keypair at least for each
visit of the building in order to prevent possible information
leakage. Ideally, he or she would need to generate a new
keypair for each query. Consequently, key generation and any
setup phase precomputation would cause not only a large
computational overhead, but also storage problems because of
the very limited storage capacity in mobile devices. In contrast,
our solutions perform efficient precomputation of the setup
phase by the Semi-Trusted Third Parties (STTPs), i.e., only
the online phase must be evaluated in real-time, and relies
on symmetric-key cryptography. Moreover, the PPIL server
shares its database only once in the STTP initialization phase.
The client transfers as little as about twice the amount of
communication of the currently used non-private protocol, it
is not involved in the precomputation, and it performs only
plaintext operations.

Li et al. [37] design algorithms for Privacy-Preserving
Indoor Localization (PPIL) based on the k-Nearest Neighbors
(k-NN) algorithm relying on Paillier encryption. Their work
has several shortcomings: Yang and Järvinen [35] very recently
presented an attack against this system that reveals the server’s
database under a realistic attack model. Our most efficient
Euclidean distance-based PPIL protocol performs 121× faster
with respect to the total run-time and 553× faster in the online
phase than the protocol of [37] (see §VI-E for details).

Shu et al. [38] make use of the Paillier cryptosystem and
Oblivious Transfer (OT) to construct a localization protocol
that involves other mobile devices knowing their locations for
determining the user’s location. Our protocol requires only
access to the mobile Internet by the mobile client. In [38], the
weak battery-powered mobile client performs computational
heavy public-key crypto, whereas in our protocol it performs
only very cheap operations (Pseudorandom Generator (PRG)
evaluations and XORs).

In [39], Ziegeldorf et al. apply HE for computing Hidden
Markov Model-based PPIL. Our most efficient Euclidean
distance-based PPIL protocol has 100× faster total run-time
and 500× faster online run-time than the protocols in [39],
even though we benchmark on a real mobile client and a
cellular network, whereas they benchmark on two servers
connected via a Gigabit LAN (see §VI-E for details).

Konstantidis et al. [40] use k-anonymity [41] for PPIL. In
PPIL, the k-anonymity approach guarantees that the client is
hard to identify in a set of k clients, and it generally reduces
the utility of the data by adding noise.

Zhang et al. [42] propose Support Vector Machine (SVM)-
based solutions for PPIL using HE. This is, however, insecure
because the client can easily reconstruct the server’s model
using specially crafted queries. For example, the attack on a
linear SVM with the kernel function f(~x) = ~w · ~x+ b can be
conducted as follows: (i) determine b by sending all-zero ~x
and (ii) determine each element of ~w by sending a unit vector
with a single one entry for each of the M elements in ~x with
all other elements being zero.

Yang and Järvinen [35] present four high-level proposals
for implementing secure PPIL: fully homomorphic encryp-
tion, Garbled Circuits (GCs), Paillier encryption only, and
Paillier encryption combined with GCs. They conclude that
while some of them are clearly unpractical (especially, fully
homomorphic encryption), at least the one combining Paillier
encryption with GCs should be feasible in practice. Their best
scheme would require more than 3 MB communication per
query (i.e., more than 1 GB per hour with 1 query every 10 s)
vs. less than 2 kB per query in our work (less than 720 kB
per hour with 1 query every 10 s). Unfortunately, the paper
does not provide enough details to make a meaningful run-
time comparison with our protocols possible. However, even
their most efficient proposal requires expensive Paillier en-
cryption operations, for computing Euclidean distances under
encryption, and evaluation of a GC for k-NN computation
(62 thousand AND gates in our setting), which introduce sig-
nificant computational overheads for the server and the mobile
client [43], and we expect their protocol to have run-times in
the order of tens of seconds. Although the computation of a
GC can be outsourced [44, 45], which decreases the overhead
of the mobile client, it requires an additional party for the
computation and hence they would be in the same setting as
we are.

To summarize, the existing literature still lacks a PPIL
solution that is both secure and efficient enough for practical
deployment.

III. PRELIMINARIES

In this section, we describe the distance metrics
used for fingerprint-based Indoor Localization (IL) and
the application of the k-Nearest Neighbors (k-NN) al-
gorithm for IL. Afterwards, we give a summary of
Secure Multi-Party Computation (SMPC). Table I depicts no-
tation that we use throughout the paper.
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Table I: Notation used throughout this paper.

P0, P1 Parties performing secure computation
t ∈ {A,B, Y } Type of sharing: Arithmetic, Boolean, or Yao

〈s〉ti Share s in sharing t held by party Pi

〈z〉t = 〈x〉t � 〈y〉t Operation � on shares 〈x〉t and 〈y〉t
〈x〉s = s2t(〈x〉t) Sharing conversion from source s to target t

〈0〉, 〈1〉, 〈2〉 Secret-shared constants 0, 1, and 2
〈F(·)〉 Secret-shared output of a local function F

GT(〈x〉, 〈y〉) Greater Than gate yielding 1 if x > y, and 0 otherwise
MUX(〈x〉, 〈y〉, 〈s〉) Multiplexer gate yielding 〈x〉 if s = 0, and 〈y〉 otherwise
x⊕ y and x ∧ y Bit-wise XOR and AND operation

L[i] i-th element in list L
κ Symmetric security parameter; κ=128 in this work

Figure 1: Exemplified setting for IL in a three-floor building
with several Access Points (APs) (blue), pre-measured finger-
prints at the Reference Points (RPs) (orange), and a client/user
carrying a mobile device (green).

A. Indoor Localization

Location information already drives many services that
are part of our daily routines. The spectrum of the services
that rely on location information will broaden even further
as the Internet of Things and 5G cellular networks emerge.
The location information for these services is derived from
the signal’s propagation time, bearing or signal strength. We
will focus here on Received Signal Strength (RSS)-based
fingerprint localization, exemplified for Wi-Fi networks, as
Wi-Fi fingerprinting is frequently used for IL due to its balance
of complexity, availability of infrastructure, and accuracy [46].
However, our techniques can also be applied to fingerprint lo-
calization systems in other networks, e.g., cellular or Bluetooth
networks. Fig. 1 presents a typical IL setting: a three-floor
building with APs, RPs, and a user who wants to know his or
her location.

Wi-Fi fingerprinting is a technique based on the spatial
distribution of signal strengths. A location (RP) is assigned a
signal strength signature, so-called fingerprint, that is ideally
unique and therefore recognizable at a later point. It consists
of the RSSs of the surrounding APs and identifiers relating the

Table II: Positioning performance of selected Received Signal
Strength (RSS) distance metrics from [47] that are well-
suited for Secure Multi-Party Computation (SMPC). The least
accurate but most efficient metric is at the top, and the most
accurate but least efficient metric is at the bottom.

Distance Metric Success Rate (%) Error (m)

Manhattan 90.73 7.06
Euclidean 92.71 7.40
Kumar-Hassebrook 94.33 7.00
Sørensen 94.78 6.86

RSSs to their APs. To use Wi-Fi fingerprinting for localization,
first, the service provider establishes an RSS map of the
environment of interest. In a second step, a user records his
or her RSS signature at a certain location, and the service
provider can localize the user by comparing this RSS signature
with the ones stored in the database holding the RSS map. The
most likely location is the one whose fingerprint matches best
the user’s RSS signature under some distance metric, i.e., the
Nearest Neighbor (NN) in RSS space.

The comparison of the user’s RSS signature and the RSS
signatures in the RSS map is done with distance measures
which we detail below. The notation xi and yi represents
the RSS of the i-th AP found in the RSS map and the one
measured by the user, respectively. N is the number of APs. A
comparison of the success and error rates using the different
metrics is given in Tab. II. Success rate is the percentage of
test points for which the building and the floor were estimated
correctly. The error is the two-dimensional, horizontal distance
between the estimated position and the ground truth position
of test points; it was only computed for test points whose
building and floor was estimated correctly.

1) Manhattan Distance: The Manhattan (also City Block)
distance is a distance metric where only horizontal and vertical
paths are allowed. It is calculated as shown in Eq. 1.

dm =

N∑
i=1

|xi − yi| (1)

2) Euclidean Distance: The Euclidean distance is the diag-
onal distance between two points. For computing the diagonal
between two points, we apply the Pythagorean theorem to the
distances between particular dimensions as shown in Eq. 2.

de =

√√√√ N∑
i=1

(xi − yi)2 (2)

3) Sørensen Distance: The Sørensen distance is based on
the Manhattan distance, which is normalized by the sum of
the values. The calculation of this metric is shown in Eq. 3.

ds =

∑N
i=1 |xi − yi|∑N
i=1(xi + yi)

(3)

According to [47], the Sørensen Distance outperforms most
other metrics for IL in terms of accuracy, and in particular the
two aforementioned metrics (see Tab. II).
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4) Kumar-Hassebrook Distance: The Kumar-Hassebrook
distance is almost as accurate as the Sørensen distance, and it
requires similar operations. It is computed as shown in Eq. 4.

dkh =

∑N
i=1(xi · yi)∑N

i=1 x
2
i +

∑N
i=1 y

2
i −

∑N
i=1(xi · yi)

(4)

This distance metric performs better than the Euclidean and
Manhattan distance, but marginally worse than the Sørensen
distance (see Tab. II). However, as we will show in §V-B4, the
Kumar-Hassebrook distance can be computed more efficiently
in general-purpose SMPC than the Sørensen distance.

Choice of a distance metric: In this work, we aim at
designing, implementing, and benchmarking a practically ef-
ficient PPIL system and PPIL protocols for different distance
metrics. We select the distance metrics that either can be
implemented very efficiently using SMPC or are one of the
most accurate among others (see Tab. II) but can still be
efficiently implemented. Based on the benchmarks, we show
and discuss the trade-off between the more accurate but less
efficient metrics and more efficient but less accurate metrics.
However, the choice of the best-suited metric for a specific
application is out of the scope of this paper.

Indoor Localization using k-Nearest Neighbors: To increase
the accuracy of IL, the k-Nearest Neighbors (k-NN) algorithm
can be used. In that case, not only one entry of the database
is retrieved, but instead the positions corresponding to the k
smallest RSS distances are averaged to estimate the user lo-
cation. The value k is chosen to yield good performance [48].
Typical values are k=3 or k=4 [49, 50].

B. Secure Multi-Party Computation

A Secure Multi-Party Computation (SMPC) protocol en-
ables n parties, each of whom holding a secret input, to
compute a public function on their inputs without revealing
anything except the result. In the following, we briefly review
the main cryptographic tools and implementation of SMPC
used in our solutions.

ABY Framework [51]: Among the variety of
Secure Multi-Party Computation (SMPC) frameworks,
e.g., [52, 51, 53, 54], we choose the ABY framework [51]
for its efficiency and the ability to mix multiple SMPC
protocols. ABY is a state-of-the-art framework for
Secure Two-Party Computation (STPC). It supports three
sharing types with state-of-the-art optimizations: Yao sharing
based on Yao’s Garbled Circuits (GCs) [55], Boolean sharing
based on the GMW protocol [56], and Arithmetic sharing
based on Arithmetic GMW. ABY guarantees passive security
which means that an adversary is assumed to follow the
protocol, but he or she may try to learn additional information
from the received messages.

The STPC protocols have different benefits and drawbacks.
GCs require a constant number of communication rounds, but
need substantial communication and computation per AND
gate. In low-latency networks, securely evaluating circuits with
low depth using the GMW protocol is often faster than using

GCs, but requires multiple rounds of interaction (one message
for each layer of AND gates in the circuit). Arithmetic
GMW allows computation of addition and subtraction without
any interaction, and multiplication utilizes one Multiplication
Triple (MT) [57] which can be efficiently precomputed using
Oblivious Transfer (OT) extensions [58, 59] as shown in [51].
The drawback of Arithmetic GMW is that these are the only
operations that can be computed efficiently.

The ABY framework allows to efficiently convert between
these different types of sharing and benefit from their re-
spective advantages. Moreover, it supports outsourcing of the
computation to Semi-Trusted Third Parties (STTPs) and Single
Instruction Multiple Data (SIMD) gates [60]. In principle,
ABY also allows to compute very complex distance met-
rics that require logarithm or exponentiation operations using
IEEE 754 Floating Point numbers [61], but this will slow down
the protocols significantly and thus will not be considered in
this paper.

In this work, we use Arithmetic sharing to improve the ef-
ficiency of distance computation, Boolean sharing to compute
the depth-optimized Bitonic sort (for finding k nearest RPs),
and Yao sharing to compute the size-optimized k-NN algo-
rithm (instead of Bitonic sort). The choice between Boolean
and Yao sharing depends on the network latency and the value
of nearest neighbors k (see §VI).

Arithmetic Sharing: Arithmetic sharing is a protocol that
enables two parties to secret-share an `-bit integer x, and to
evaluate a function which is expressed as an Arithmetic circuit
consisting of addition and multiplication gates based on secret-
shared values. Namely, for an integer x, each party has a
random share 〈x〉Ai , i ∈ {0, 1}, such that 〈x〉A = 〈x〉A0 + 〈x〉A1
(mod 2`) and multiplication using the OT extension-based
multiplication protocol of [51] requires O(`) bits communi-
cation and one round of interaction, whereas addition and
subtraction can be evaluated locally. However, XOR and AND
operation are expensive in Arithmetic sharing as they would
require expensive bit decomposition.

Boolean Sharing: In [56], Goldreich, Micali, and Wigder-
son (GMW) introduced a protocol which allows multiple
parties to securely evaluate a function f expressed as Boolean
circuit consisting of XOR and AND gates. We use the two-
party variant of GMW, where each input and intermediate
wire is shared by both parties with a 2-out-of-2 secret sharing
scheme, i.e., each party Pi, i ∈ {0, 1}, holds a Boolean
share 〈x〉Bi for a secret-shared bit 〈x〉B such that 〈x〉B =
〈x〉B0 ⊕ 〈x〉B1 . While a XOR gate can be evaluated locally,
an AND gate requires 2κ bits of communication in the setup
phase and 4 bits in the online phase, as described in [59]. The
communication of GMW can be further reduced at the cost of
a higher computation complexity [62, 63].

Yao Sharing: Another approach for securely evalu-
ating a Boolean circuit between two parties are Yao’s
Garbled Circuits (GCs) [55]. A GC can be generated as fol-
lows: the sender encrypts the Boolean gates of the circuit
using randomly chosen symmetric keys for the wires and
sends the encrypted function, called garbled circuit, together
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with the keys representing its input bits to the receiver.
The receiver obliviously obtains the keys corresponding to
its inputs by running an Oblivious Transfer (OT) protocol
with the sender which can be efficiently implemented using
OT extension [58, 59]. Now, the receiver can evaluate the
garbled circuit gate-by-gate using the keys and obtains the
result. ABY implements state-of-the-art GC improvements
such as point-and-permute [64], free-XOR [65], fixed-key AES
garbling [66], and half-gates [67]. With this, XOR gates are
free, whereas an AND gate costs 2κ bits of communication
in the setup phase and no communication in the online phase,
i.e., no additional rounds of communication.

Conversions: The cost of one Arithmetic to Yao (A2Y)
or Arithmetic to Boolean (A2B) conversion is 6`κ bits of
communication within 2 messages and 12` AES operations,
where ` is the bit-length of the Arithmetic share [51].

Hardware-Enhanced Secure Multi-Party Computation:
Several works propose to use additional assumptions in
form of trusted hardware to improve generic SMPC which
could be used to improve PPIL schemes on mobile devices.
Demmler et al. [68] use a smartcard in a mobile device
for locally generating correlated randomness for the GMW
protocol. Gupta et al. [69] design STPC protocols that use
Intel SGX5 for improving the efficiency of STPC. However,
all these protocols require substantial trust in the hardware
manufacturer.

IV. SYSTEM DETAILS

In this section, we describe our system PILOT for Privacy-
Preserving Indoor Localization (PPIL) using outsourcing and
detail the underlying security assumptions.

A. Outsourcing Scheme

Motivation: The best known solutions to PPIL without
the non-colluding STTPs, i.e., PPIL in the client/single server
setting, are very communication intensive. It is important to
note that by using the outsourcing setting we achieve practical
PPIL with security against malicious PPIL clients and mali-
cious PPIL servers, whereas in the client/server setting even
solutions with substantially weaker security against a semi-
honest client currently have impractical runtimes and commu-
nication. Furthermore, the outsourcing model with multiple
STTPs is widely adopted not only in recent academic papers,
e.g., for private machine learning [70, 71], and genomic
privacy [72, 73, 74, 75, 76, 77], to name just a few, but also
deployed in industrial products, see [78] for a few examples.

Implementation: The outsourcing scheme we use is de-
picted in Fig. 2. The scenario involves three parties: a client
who is interested in finding his or her coordinates, and two
non-colluding Semi-Trusted Third Parties (STTPs), denoted
as T0 and T1, that obliviously compute coordinates of the
client using STPC. An additional entity in our scenario is the
PPIL server (IL provider), which is not depicted in the figure
because its overhead is one-time, and it is involved in the

5https://software.intel.com/en-us/sgx

T0 T1

Client

(1,5)

(2
) (2)

(3)

(4
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Figure 2: System model of our outsourcing scenario for
efficient Privacy-Preserving Indoor Localization (PPIL). The
PPIL server is not depicted in the figure, because it shares its
database with the Semi-Trusted Third Parties T0 and T1 only
once for the initialization of the protocol.

initialization of the STTPs only. On the initialization of the
system or whenever updates occur (which in practice happens
rarely), the PPIL server secret-shares its database of N ·M
Received Signal Strength (RSS) values between T0 and T1,
where N is the number of APs and M is the number of RPs.

The STTPs are assumed to not collude. The assumption
for STTPs not colluding is supported also by the facts that
(i) a privacy-preserving service is a selling-point by itself to
privacy-aware customers and getting caught from colluding
would seriously damage reputation, and (ii) modern legisla-
tion, e.g., the EU General Data Protection Regulation (GDPR),
emphasizes users’ privacy and services have an obligation to
protect their customers’ data.

The PPIL works as follows (see Fig. 2):
1) The client collects RSS data from the APs (predefined by

the PPIL server) to create a list (RSS1, . . . ,RSSN ), and
secret-shares these values into (〈RSS1〉, . . . , 〈RSSN 〉).

2) The client sends (〈RSS1〉0, . . . , 〈RSSN 〉0) to T0 and
(〈RSS1〉1, . . . , 〈RSSN 〉1) to T1 over two secure channels.

3) The STTPs execute a PPIL protocol using STPC. As
the result of the computation, they get the secret-shared
coordinate (〈x〉, 〈y〉, 〈z〉).

4) T0 sends (〈x〉0, 〈y〉0, 〈z〉0) to the client and T1 sends
(〈x〉1, 〈y〉1, 〈z〉1) to the client over two secure channels.

5) The client recombines the shares and reconstructs the
cleartext coordinate (x, y, z).

B. Deployment

In a practical deployment, the parties in our system can be
run by the following entities:
Client can be run by any visitor of the building on his/her

mobile device.
Each of the STTPs can be operated by any of the following

entities: the building owner, the mobile network operator,
or a cloud provider.

PPIL server can be run by the mall or building owner. Real-
world examples of IL providers are given in §I-A.
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For the number of STTPs, we see three possible real-world
settings: one, two, and three STTPs.
One STTP has the advantage that it requires only one server

and one entity to operate the STTP. However, the computa-
tional overhead is substantial (cf. §II and §VI-E), and here
the single server learns the database in the clear.

Two STTPs is the best model for real-world applications
regarding the costs and security, since it is substantially
more efficient than the model with one STTP, and the
support and maintenance costs remain moderate compared
to the setting with three STTPs. Furthermore, the STTPs
obtain only a secret-shared database which preserves its
privacy. Due to this, we choose the two-STTP setting in
this paper.

Three STTPs can be more efficient than both previous mod-
els in an honest majority setting where at most one party can
be corrupted, e.g., using the protocols of [79, 80]. However,
it (i) guarantees a weaker level of security (it is easier
to corrupt any two out of three parties than two out of
two), and (ii) has much higher costs for the support and
maintenance (to mitigate attacks, each STTP would need a
different software stack and its own administration team).

C. Security Assumptions

In this work, we concentrate on a realistic scenario where
the STTPs can only be passively corrupted, and the client
and PPIL server can be actively corrupted. The latter is
due to the fact that an actively corrupted PPIL server can
only affect the correctness of the protocol by changing its
inputs, and an actively corrupted client can only change the
single message sent which corresponds to choosing a different
input to the ideal functionality. The two STTPs have no
inputs to the protocol (the inputs are already shared by the
PPIL server and client) and thus can only try to learn more
information from the protocol. Using standard techniques for
outsourcing with active security [81, 82, 83], our protocols
can be extended to full active security at the expense of
higher communication and run-times. In this case, the system
will detect one actively corrupted STTP, which can arbitrarily
deviate from the protocol.

In order to guarantee privacy of the PPIL users, we make
the following assumptions:
• When a device connects to a Wi-Fi Access Point (AP), it

transmits to the AP its global Media Access Control (MAC)
address, which is a unique, persistent identifier. Therefore,
the client should be aware that there exists the possibility
of being tracked by the AP owner, who could collude
with the PPIL server or even be the same entity, e.g., the
building owner provides a PPIL service and free Wi-Fi in
the building. The use of such an AP would allow its owner
to track the potential presence of the user in particular parts
of the building. To mitigate this, we propose to use mobile
Internet for PPIL, since even when a Wi-Fi enabled device
is not connected to other Wi-Fi devices, it periodically scans
its environment by sending probe requests. These requests
also include the sender’s MAC address and can be used to

track the user [84]. However, in these requests the device
is allowed to use a local MAC instead of its global MAC.
Therefore, the client must use a randomized, changing local
MAC address in the probe requests. This became possible
in iOS version 8 and in Android version 6 [85].6 One can
root older Android devices or jailbreak older iOS devices
that do not support randomized MACs by default, which
enables randomized MACs and monitor mode.

• The STTPs must be chosen s.t. there is a strong incentive
to not collude. One possibility is that the building oper-
ator operates T0 and the user’s mobile Internet provider
operates T1.

• For preventing an attacker from restoring the secret-shared
inputs or coordinates by intercepting both shares, secure
channels between the client and the STTPs must be used.
However, a persistent TLS channel would leak information
about the client. We avoid this potential leakage by estab-
lishing a new TLS connection for each new dynamically
assigned IP address of the client. If the client’s IP address is
hidden behind a Network Address Translation (NAT) router
getting a new network port for each query, he or she could
establish a new TLS channel for each PPIL query to prevent
tracking of his or her session.

D. Security Analysis

Here, we briefly analyze the security of our outsourc-
ing scheme based on the SMPC model defined in [88]
with concrete participants, i.e., client, PPIL server, and
two outsourcing parties: STTPs T0 and T1. Kamara and
Raykova [88] define and prove secure a generic construc-
tion that turns an n-party SMPC protocol into a protocol,
where computation is outsourced to n non-colluding out-
sourcing parties. For our PPIL protocol, we instantiate the
outsourcing scheme of [88] with the secure two-party (n=2)
ABY framework. Our PPIL scheme is secure against semi-
honest non-colluding STTPs, malicious clients, and malicious
PPIL servers. Our threat model does not cover malicious
Received Signal Strength (RSS) values and the leakage from
the protocol output (i.e., client’s coordinate), but in practice
it would be hard to learn the PPIL server’s database by
fabricating RSS values.

Theorem IV.1. Suppose that the SMPC building blocks im-
plemented in ABY [51] are secure, then our PPIL scheme is
secure against passively corrupted non-colluding STTPs, and
malicious clients and malicious PPIL servers.

Proof (sketch). Each secret-share 〈φ〉ti for i ∈ {0, 1}
and some value φ is blinded with a one-time random value
(determined by the sharing type t of ABY). Namely, each
uncompromised secret-share is statistically close to a truly

6Recent research, e.g., [86], have shown that MAC randomization is
vulnerable to different types of attacks. As additional privacy measure, the
client could set its Wi-Fi card into monitor mode which disables the probe
requests but allows listening to the beacons from APs and measuring their
RSS. In the current Android implementations, the Wi-Fi monitor mode
requires rooting the Android device and installing the required application
packages [87].
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Figure 3: Uniform 2-bit quantizer showing the partitions.

random value. Hence, a corrupted party obtaining a secret-
share from its honest partner cannot obtain any useful in-
formation from it with overwhelming probability. Since two
non-colluding STTPs cannot be both corrupted by definition,
they will not collude in the security experiment. In this sense,
at least one of the inputs of the subsequent STPC protocol
is from an uncorrupted STTP (which received it from the
corresponding uncorrupted party). Thus, we can reduce the
security of our protocol to that of the STPC protocol (executed
between STTPs) that uses the secure building blocks from
the ABY framework. Namely, the security of the ABY-based
STPC protocol ensures that the intermediate secret-shares (i.e.,
the outcome of any operation between secret shares), share
conversions, and the final target location coordinate shares
are secure as well. If the client and at least one STTP are
not corrupted, then no party except the client can get the
final location since the location coordinate shares are only
reconstructed by the client. Analogously, if the PPIL server
and at least one STTP are not corrupted, all secret shares leak
no information about the RSSs of the server’s database. PPIL
server’s malicious input can only affect the correctness of the
protocol. Each malicious input from the client corresponds to
a different input to the ideal functionality.

V. PRIVACY-PRESERVING INDOOR LOCALIZATION

In this section, we show our practical protocols for Privacy-
Preserving Indoor Localization (PPIL) and optimizations.

A. Quantization of Received Signal Strength

We rely on the concept of a uniform quantizer to quantize
the Received Signal Strength (RSS) values. A uniform quan-
tizer is characterized by equally spaced boundary points [89]
forming 2` non-overlapping partitions, where ` is the number
of available bits. The midpoints of these partitions (except
the two outermost partitions) correspond to the output levels,
such that an input to the quantizer that lies within a partition is
rounded off to the partition’s midpoint. Each output level can
be represented arbitrarily according to the application. Fig. 3
illustrates a uniform quantizer for `=2.

To construct the quantizer for the RSSs, we specify the
midpoints of the partitions by dividing the range between the
lower and upper limit of the RSS values (of all fingerprints) by

1-bit 2-bit 4-bit 8-bit
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Figure 4: Positioning Root Mean Square Error (RMSE) in me-
ters of k-NN for 1-, 2-, 4-, and 8-bit quantization of Received
Signal Strength and different distance metrics obtained in a
field experiment.

2`− 1. To allow the localization algorithm to benefit from the
information about the approximate coverage areas of the APs,
we want to distinguish the cases when a signal is received
with low RSS from the cases when a signal is not received
at all. Therefore, we reserve one quantization partition for
recording these signal-not-received cases and use this special
partition during both the collection of the fingerprint database
and the positioning phase. The boundary points for the RSS-
quantizer are given by the midpoints plus half the size of
a partition. The reserved partition for the zero-bit is added
to the uniform quantizer, making it actually non-uniform. Its
midpoint is chosen to be smaller than the lower RSS limit.
For the purpose of RSS-based Indoor Localization (IL) via
fingerprinting it suffices to represent the output levels of the
quantizer simply by `-bit codewords. The fingerprints of the
Reference Points (RPs) can be quantized off-line on the server
side. The fingerprints measured by the user must be quantized
on the user device, thus, the quantizer must be made available
for the clients.

Localization Performance: We compare the positioning
accuracy, in terms of Root Mean Square Error (RMSE), of
the k-NN algorithm for the four distance metrics specified in
§III and consider additionally the modified Sørensen metric
(see Eq. (5) in §V-B3). The data for that experiment was
collected in a three-floor building at Tampere University of
Technology, which is shown in Fig. 1. The corresponding
database consists of M=446 RPs and N=449 APs; further
details and the database itself are available at [90].

Fig. 4 shows the RMSE (averaged over a path through the
building) for these four distances for several bit-lengths `.
The number of neighbors of the k-Nearest Neighbors (k-NN)
was set to k=3. As shown in the figure, the accuracy of 4-bit
quantization is similar to that of 8-bit with only 0.1–5 % loss of
accuracy. Even with 1-bit quantization, a positioning accuracy
of about 7–9 meters is achievable. This confirms the benefit of
the information about the approximate coverage of the APs.
The positioning error reduces with the number of bits spent
to quantize the RSS, as expected. The Manhattan distance
shows the poorest accuracy, whereas the (Modified) Sørensen
distance is the most accurate one. We further investigate the
effects of RSS quantization in [91].
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Table III: AND-sizes and minimum bit-length of the circuits for the distance algorithms with N=241 Access Points, bit-length
of Received Signal Strength `, and the scaling factor of γ=16 bits.

Distance metric
Naive: Boolean / Yao Sharing Optimized: Arithmetic, Boolean, Yao Sharing, OT

Min. bit-length
Min. bit-length with fixed `

AND-size AND-size A∗ A2B / A2Y C-OTs `=1 `=2 `=4 `=8

Manhattan 4(N · `)− ` N · (3`− dlog2 `e − 2) 0 0 2N log2N + ` 8.9 9.9 11.9 15.9
Euclidean7 N(2`2 + 2`) 0 N 0 0 log2N + 2` 9.9 11.9 15.9 23.9
Sørensen 6(N · `)− 2`+ 7079 N · (3`− dlog2 `e − 2) + 7 079 0 2 2N log2N + `+ γ 24.9 25.9 27.9 31.9
Modified Sørensen N(2`2 + 3`) + 7 079 7 079 N 2 0 log2N + 2`+ γ 25.9 27.9 31.9 39.9
Kumar-Hassebrook 2N(3`2 − `) + 2`+ 7079 7 079 N 2 0 log2N + 2`+ γ 25.9 27.9 31.9 39.9

B. Secure Multi-Party Computation of Distance Metrics

In this section, we describe in detail our privacy-preserving
evaluation of the aforementioned distance metrics using the
ABY framework [51]. These can be split into four categories:
pure Arithmetic sharing (A), pure Boolean sharing (B), pure
Yao sharing (Y), and mixed sharing (AB, AY, ABOY where
O denotes OT) implementations. The latter use Arithmetic
sharing first and then convert into Boolean or Yao sharing,
respectively. In the following, we give the complexities for
computing one distance, but for Privacy-Preserving Indoor
Localization (PPIL), M instances need to be computed in
parallel, one for each of the M Reference Points (RPs).

For Yao sharing we use size-optimized circuits of [92], and
for Boolean sharing we use depth-optimized circuits of [60], as
implemented in ABY [51], see [60, Tab. 7] for the complexities
of the building blocks. We give an overview of size and depth
complexities of the described algorithms as well as the mini-
mum bit-length of the output to guarantee the correctness in
Tab. III. In all our algorithms for securely computing distance
metrics, we use sufficient bit-lengths which guarantees that
the accuracy of the metrics does not decrease when compared
with the cleartext protocols (denoted as minimum bit-length
in Tab. III).

1) Manhattan Distance (cf. Eq. 1 on p. 4): The Manhattan
distance requires computation of absolute values. This opera-
tion is nonlinear and hence cannot be efficiently computed in
Arithmetic sharing. This is why we propose two workarounds
to mitigate this issue: (i) enhancing the “naive” computation
of the Manhattan distance without the loss of predicting accu-
racy by using Correlated OT (C-OT)-based multiplication of
Arithmetic shares by a secret-shared bit (inspired by [93, 51]),
and (ii) reducing the bit-length of the RSSs to 1 bit, which
allows for the use of more efficient building blocks while
guaranteeing accuracy acceptable in many scenarios.

To compute the Manhattan distance in a “naive” way, we
use the size-optimized circuit of [92] that requires 1 Greater
Than (GT), 2 Multiplexer (MUX), and 1 Subtraction (SUB)
circuit which results in 4N`− ` AND gates, where N is the
number of APs and ` is the bit-length of the RSS values.

In our first improvement, we use very efficient C-OT-based
multiplication of secret-shared values to choose either the
initial result of 〈RSSC〉A − 〈RSSS〉A or its two’s comple-
ment [94] based on the outcome of the comparison of both
in Boolean sharing (the comparison can also be performed
by using the underflow bit of the result, but this also incurs
some overhead because of the conversion to Boolean sharing).

This does not violate the security, since the multiplication
protocol is performed obliviously on random-looking secret-
shared values and yields random-looking secret-shared values
as the result. A similar technique was used, for example,
in the ABY framework for precomputing MTs [51]. This
protocol is not only much more efficient than doing this
using the “naive” solution, but also allows to sum up the
distances of all dimensions locally, since the computation
yields Arithmetic shares for each dimension. This protocol
requires only 1 Greater Than (GT) gate and 2 C-OTs for each
dimensions resulting in N(3`− dlog2 `e − 2) AND gates and
2N parallel C-OTs of `-bit strings. We depict our C-OT-based
implementation of the Manhattan distance in Alg. 1 in §A.

In our second improvement, which we denote as 1-bit
Manhattan distance, we use 1-bit RSS values and compute
the distance in pure Yao sharing. Since the Manhattan dis-
tance of 1-bit values corresponds to their XOR, we per-
form the computation non-interactively. To compute the sum
of the computed distances, we utilize the AND-optimized
Hamming Weight (HW) circuit of Boyar and Peralta [95] with
` − dH(`) AND gates, where dH(`) denotes the HW of `.
This protocol comes at the price of accuracy reduction, which,
however, remains meaningful for many scenarios, i.e., 9 m
RMSE in our experiments (see Fig. 4). By replacing the
HW circuit with the custom C-OT-based protocol of [96]
for securely computing an Arithmetic sharing of the HW,
the communication of this protocol can be improved by a
factor of 3.7× from 5.2 MB to 1.4 MB. Overall, this improves
communication over the naive approach by factor 215×.

2) Euclidean Distance (cf. Eq. 2 on p. 4): Since computing
the square root is very expensive in SMPC, we replace the
Euclidean distance with its squared version, which only omits
the last operation of computing the square root. Note that
this does not affect the outcome of finding the nearest RPs
because all distances are squared. The Boolean circuit-based
Euclidean distance requires N(2`2+2`) AND gates, whereas
the Arithmetic sharing optimized algorithm can completely
be computed using Arithmetic sharing only. This algorithm
utilizes N multiplication gates in Arithmetic sharing. An
important difference to the other securely computed distance
metrics is that the result of the computation has to be con-
verted to another sharing type for efficient computation of k
nearest RPs, which for other metrics either happens during
the distance computation (if required) or does not happen at
all (if not required). We give our Arithmetic sharing-based
implementation of the Euclidean distance in Alg. 2 in §A.
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3) Sørensen Distance (cf. Eq. 3 on p. 4): The Boolean
circuit-based Sørensen Distance can be computed using 6(N ·
`) − 2` + 7079 AND gates. To reduce the overhead for
computing the Manhattan distance in the numerator, we utilize
the idea of the C-OT-based Manhattan distance protocol. Since
the addition of the values in the denominator is performed
on the Arithmetic shares, the difference in the interactive
operations to the Manhattance distance protocol comes from
the 32-bit division operation, which costs 7079 AND gates.

Modified Sørensen Distance: Since the computation of
absolute values cannot be efficiently done in Arithmetic
sharing, we introduce a more SMPC-friendly variant of the
Sørensen Distance where we replace the Manhattan distance
by the Euclidean distance (cf. Eq. 5) and evaluate its IL
accuracy. We denote this distance metric as modified Sørensen
distance.

d′s =

∑D
i=1(xi − yi)2∑D
i=1(xi + yi)

(5)

The Root Mean Square Error (RMSE) of the modified
Sørensen distance is depicted in Fig. 4, and in particular
settings this metric is even more accurate than the origi-
nal Sørensen distance. The Boolean circuit-based Modified
Sørensen distance can be computed using N(2`2+3`)+7 079
AND gates. As a result, this protocol requires 7 079 AND
gates, N multiplication gates in Arithmetic sharing, and 2 A2B
or A2Y conversions, respectively.

In Alg. 4 in §A, we show the AY implementation of the
modified Sørensen distance. We use a γ=16-bit scaling factor
for both Sørensen and Kumar-Hassebrook distance to achieve
a precision comparable to that of floating point arithmetic, i.e.,
we perform a bit-shift on the distance by γ bits before dividing
it by the denominator.

4) Kumar-Hassebrook Distance (cf. Eq. 4 on p. 5): The
Kumar-Hassebrook distance, unlike the Sørensen distance, re-
quires multiplications in the numerator. Therefore, its Boolean
circuit-based algorithm requires 2N(3`2 − `) + 2` + 7079
AND gates. However, it can naturally be optimized in Arith-
metic sharing. The complexities of the optimized algorithm
are as follows: 7 079 AND gates, N multiplication gates
in Arithmetic sharing, and two A2B or A2Y conversions,
respectively. The implementation of the optimized Kumar-
Hassebrook distance is shown in Alg. 3 in §A.

C. k-Nearest Neighbors

Songhori et al. [97] propose a circuit for k-Nearest Neigh-
bors (k-NN) with size M(2k−1)(2`+dlog2Me) AND gates,
where M is the number of elements (here, the number of
Reference Points) and ` is their bit-length.

Optimized k-Nearest Neighbors: We improve the k-NN
circuit of [97] by using more efficient conditional swap circuits
of [65]. This results in Mk(2`+ dlog2Me) AND gates which
for k=3 is an improvement by factor 1.6× over [97]. Our
modified k-NN implementation is given in Alg. 6 in §A.

k-Nearest Neighbors via Oblivious Sorting: An alterna-
tive approach for computing k-NN is to use Oblivious Sorting.
This improves the efficiency of the non-constant round SMPC
protocols such as GMW because the k-NN algorithm of [97]
has high depth of O(Mk`). Instead, we use the Bitonic Sort
algorithm of [98] that is summarized in Alg. 5 in §A. As a
baseline for our implementation, we use the algorithm of [99].
The algorithm requires 0.5 · dlog2Me(dlog2Me + 1) stages
with M(4`−dlog2 `e−2+dlog2Me) AND gates each. This is
by factor ∼12x larger than for our optimized k-NN algorithm
for M=505 and k=3. However, this algorithm produces a
Boolean circuit that is by factor ∼10x shallower than that of
our improved k-NN already for k=3, and its AND-depth does
not grow with k.

D. Oblivious Array Access

In order to find the user’s coordinates in Privacy-Preserving
Indoor Localization (PPIL), we have to find the coordinates
that correspond to the nearest Reference Points (RPs) by
their secret-shared indices computed by the k-NN algorithm.
We use an approach similar to the one proposed by Keller
and Scholl [100] for our size-optimized implementation, and
design a new Single Instruction Multiple Data (SIMD) capable
circuit for the depth-optimized implementation with the same
AND-depth and slightly larger AND-size than the circuit pro-
posed by Buescher et al. [101] (the latter cannot be parallelized
easily with SIMD).

The size-optimized circuit is built as an inverted binary tree,
i.e., initial elements represent leaves, and the selected element
represents the root. Each intermediate node between the root
and the leaves is a MUX-gate which has two elements and a
choice bit as input. The tree has dlog2Me depth, where M
is the length of the array, and all MUX-gates on the layer i
have the same choice bit 〈idx〉b[i], i.e., the i-th bit of the
secret-shared index 〈idx〉b with b ∈ {B, Y }. This requires
M − 1 MUX-gates which yields `(M − 1) AND gates (8 064
for M=505 and `=16), where ` is the bit-length of the coor-
dinate. The AND-depth is hereby dlog2Me (9 for M=505).
The size-optimized circuit is depicted in Alg. 7 in §A.

The depth-optimized circuit is designed as follows: the
server provides a list l which contains the secret-shared
coordinates corresponding to the APs. For each index 〈idx〉b
which corresponds to one of the k nearest APs, we compare
〈idx〉b with (〈1〉b, . . . , 〈M〉b) using a comparison circuit. This
yields a list of secret-shared zeros with a single secret-shared
one entry. Afterwards, we apply a MUX gate to each set of
coordinates which results in all coordinates being zeros except
of exactly one set. To get the final result, we perform the
XOR operation on all the coordinates. This circuit has AND-
depth dlog2dlog2Mee + 1 (5 for M=505, 44 % shallower
than the size-optimized) and M(dlog2Me− 1+ `) AND-size
(12 120 for M=505 and `=16, by 50 % larger than the size-
optimized). The depth-optimized circuit is shown in Alg. 8
in §A. In contrast to the circuits of Buescher et al. [101],

7The optimized Euclidean distance uses only Arithmetic sharing.
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our Oblivious Array Access (OA) circuit is slightly larger, but
it has a much simpler structure and therefore the same sub-
circuits can be applied in parallel using SIMD.

For PPIL, the circuits are applied kD times to find all D
dimensions of the k coordinates. Note that for both Oblivious
Array Access circuits the AND-depth is independent of k and
D because the circuits are evaluated in parallel.

E. Extended Functionalities

A service provider runs the Indoor Localization (IL) service
in order to get financial profit, e.g., by using customers’ loca-
tion information for location-based advertising. Hence, it is
essential that Privacy-Preserving Indoor Localization (PPIL)
can be extended with other Location-Based Services (LBSs),
because otherwise the service provider could lose its incentive
to offer the IL service in the first place. We emphasize that
this requirement is met by PILOT. The extended functionalities
can be implemented either (i) as an additional layer within
PILOT (which would even not leak the location as intermediate
result) or (ii) as an additional privacy-preserving protocol after
localization with PILOT (which leaks the location).

VI. EVALUATION

We implement and benchmark our protocols on two servers
acting as Semi-Trusted Third Parties (STTPs) T0 and T1,
respectively, each equipped with an Intel Core i7-4770K
3.5 GHz processor and 16 GB RAM. The servers are located
in a local Gigabit network with average network latency
of about 0.1 ms. The client is run on a Samsung Galaxy
S7 mobile device equipped with a Qualcomm MSM8996
Snapdragon 820 processor and 4 GB RAM and is connected
to the servers via LTE mobile Internet with 229 ms average
Round Trip Time (RTT) and 163 ms median RTT.

Here, we describe the benchmarking results of our algo-
rithms in the outsourcing scenario. We instantiate all primi-
tives with a security level of κ=128-bit and report run-times
averaged over 10 executions. We use 4-bit Received Signal
Strength (RSS) values (see §V-A) in all but one (1-bit Yao
sharing-based Manhattan distance) of our benchmarks.

For establishing a TLS 1.28 connection between the client
and the STTPs given an established TCP connection (establish-
ing a TCP connection adds a delay of ∼1 RTT), we measured
468 ms average run-time, which is approximately equal to 2
RTTs. The time for transferring the data was approximately
1 RTT. These additional time demands depend almost only
on the network latency which significantly varies depending
on the environment. Note that with broader use of TLS 1.39,
the latency for establishing a secure channel will be reduced
by half due to the 1-RTT handshake protocol. Furthermore,
in TLS 1.3 it is possible to resume the connection at very
low additional costs due to the 0-RTT connection resumption
protocol.

8https://tools.ietf.org/html/rfc5246
9https://tools.ietf.org/html/rfc8446

A. Input Sharing of Mobile Client

As shown in Tab. IV, the overhead for sharing the RSS
values ranges from 0.2 ms to 6.1 ms depending on the number
of Access Points (APs) N and hence is negligible com-
pared to the run-time of the STPC protocols, e.g., about 2 %
overhead compared to the run-time in the online phase of
the most efficient Euclidean distance-based PPIL. In addi-
tion, both the bit-length of the shared value and the shar-
ing type only slightly influence the run-times because of
the high level of abstraction for the Java code that runs
on the mobile client. The shares are created using a mod-
ified java.security.SecureRandom class, which is
extended for generating also values of small byte-lengths.

B. Precomputation in the Setup Phase

As shown in Tab. V, the setup phase of the 4-bit protocols
has between 164 MB and 6.1 GB communication and a run-
time between 0.7 s and 66.3 s, depending on which distance
metric and protocol is used. Since the setup phase is indepen-
dent of the inputs (only correlated randomness is produced),
it can efficiently be precomputed by the STTPs while they
are idling, e.g., over night. The most important advantage of
our outsourcing scheme is that this setup phase is run only
between the STTPs, i.e., it is independent of the PPIL server
and client. Moreover, the PPIL computation is independent
of the user’s identity, i.e., neither the identity of the user
influences the setup phase nor the precomputation of the setup
phase violates the privacy of the user. Due to the fact that the
STTPs are easy to equip with hard disk drives of large capacity
for a reasonable price, the STTP servers can precompute
thousands of PPIL queries. If this throughput is not sufficient,
we can think of the following: one can either upgrade the
available hardware or continue the precomputation on the days
while the building is closed (weekends, holidays). While the
first gives many degrees of freedom for possible efficiency
improvements, the second allows the precomputation of more
than 100 000 queries during only one weekend.

C. k-Nearest Reference Points

We show the performance differences between the k-NN
and Bitonic Sort algorithm on the left of Tab. IV. As it can be
seen, k-NN in Yao sharing significantly outperforms Bitonic
Sort in Boolean sharing for k=3. On the other hand, Bitonic
Sort becomes more efficient with increasing k and would be
more efficient than k-NN when k is greater than 40 or 50
because its performance is independent of k. However, for
IL k is usually small, e.g., k=3 or k=4. Our k-NN protocol
achieves a 1.4× to 1.6× run-time improvement over [97].

D. Oblivious Array Access

The run-times of the Yao-based size-optimized and GMW-
based depth-optimized Oblivious Array Access (OA) algo-
rithm for the ranges of RPs are given in the middle of
Tab. IV. As it turns out, the size-optimized implementation of
OA slightly outperforms the depth-optimized implementation
in our standard setting with M=505 RPs. While the first
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Table IV: The run-times in milliseconds for sharing client’s inputs and for the online phase of our most promising PPIL protocols
for N Access Points (APs) and M Reference Points (RPs). In the right part of the table, we depict the best-performing protocols
for PPIL using the corresponding distance metrics. k-Nearest Neighbors (k-NN) is implemented in Yao and Bitonic Sort in
Boolean sharing.

M
Input k nearest RPs Oblivious Array Manhattan (ABOY) Euclidean (AY) Kumar-Hassebrook (AY) Sørensen (ABOY) Mod. Sørensen (AY)

sharing 3-NN 3-NN [97] 30-NN Bitonic Sort Size-opt. Depth-opt. N=256 N=512 N=256 N=512 N=256 N=512 N=256 N=512 N=256 N=512

32 0.2 0.7 1.1 8.3 26.5 1.2 2.1 47.2 75.0 11.7 18.9 57.6 61.1 66.2 80.9 58.8 61.6
64 0.4 1.5 2.3 16.3 51.9 2.3 4.1 85.6 151.9 20.6 35.8 109.7 114.5 123.0 151.2 112.0 119.3
128 0.8 3.1 4.5 32.7 106.1 4.6 7.3 159.8 289.7 38.3 62.0 213.6 230.5 234.9 293.6 215.4 228.9
256 1.5 5.9 10.3 59.0 186.9 9.3 15.6 304.1 570.9 74.5 124.1 420.3 455.2 476.7 575.0 424.9 455.2
512 3.1 12.3 19.7 120.4 332.4 20.1 31.0 599.7 1 137.4 162.5 270.9 843.8 922.8 948.7 1 144.4 874.6 948.1
1 024 6.2 24.7 40.4 239.8 681.3 39.5 63.8 1 184.6 2 167.8 363.7 594.3 1 646.4 1 969.4 1 873.4 2 179.8 1 710.1 1 979.9

Table V: Benchmarking results for Privacy-Preserving Indoor
Localization run between two Semi-Trusted Third Parties
(STTPs) based on the introduced distance metrics with N=241
Access Points and M=505 Reference Points. The most effi-
cient solutions for each metric are marked in bold.

Distance metric (Protocol)
Comm. across STTPs in MB Runtimes across STTPs in s

Setup Online Total Setup Online Total

Manhattan (B) 974 15 990 4.2 15.0 20.6
Manhattan (Y) 301 51 B 301 3.9 2.2 6.1
Manhattan (ABOY) 167 11 178 0.7 0.4 1.1
Manhattan (1-bit, Y) 5.2 47 B 5.2 0.3 0.2 0.5

Euclidean (Y) 6 100 50 B 6 100 66.3 16.9 82.3
Euclidean (AB) 203 4.0 207 1.0 0.9 1.9
Euclidean (AY) 164 2.7 167 0.8 0.15 1.0

Kumar-Hassebrook (AB) 319 6.6 326 1.6 2.5 4.1
Kumar-Hassebrook (AY) 280 2.5 283 2.2 0.8 3.0

Sørensen (ABO) 196 9.2 205 1.1 2.0 3.1
Sørensen (ABOY) 148 5.7 154 1.5 0.9 2.6

Modified Sørensen (AB) 321 6.6 328 1.6 2.4 4.0
Modified Sørensen (AY) 282 2.6 285 2.2 0.8 3.0

requires 34 ms run-time in the online phase, the second runs
in 39 ms which is by ∼15 % slower. However, in total the
depth-optimized algorithm runs by factor ∼1.5× faster than
the size-optimized (46 ms vs. 72 ms) and requires almost 2×
less communication (1.3 MB vs. 2.3 MB).

E. Performance of Privacy-Preserving Indoor Localization
Concrete parameters for Indoor Localization (IL) depend on

the specific application:
• The accuracy of IL depends on the number of RPs, the

demands of which depend on the particular scenario, e.g.,
in one scenario we need to determine whether a user is in
a room and in another scenario whether the user is in a
particular part of the room.

• One will not always require all possible RPs in the building,
e.g., only one floor, or all floors, but only one wing of the
building.

• The APs often have many MAC addresses which causes
duplicating the same APs in IL. Duplicates can be filtered
out by creating the public list of single APs. Moreover, the
APs that provide unreliable data can also be filtered out
using machine learning techniques, such as [102]. Using
these techniques, also the most reliable APs can be found.
In this section, we present the performance results for our

PPIL protocols: (i) for a real-world dataset with N=241 APs
and M=505 RPs, (ii) for the settings used in the existing
literature for comparing our solutions with those proposed in
the previous works, and (iii) for ranges of APs and RPs.

Real-World Setting: In Tab. V we show the benchmarking
results of our algorithms for N=241 APs, M=505 RPs, and
k=3 Nearest Neighbors. The setting is the same as in [35]
and represents a typical size for a single building database.
Examples on databases with similar sizes can be found, e.g.,
in [103, 104, 105]. Note that only algorithms fitting into
16 GB RAM on the STTPs are depicted in the table. Since
the setup phase can efficiently be precomputed, the most
important information in this table are the online run-times
and communication.

We can deduce the following from Tab. V:

• Even with all our optimizations, 4-bit PPIL in the
client/server setting with a single server would require
transferring at least 100 MB between the mobile client and
the server over the mobile Internet per query. This is highly
unpractical, especially given today’s mobile dataplans of
usually a few GB per month. Therefore, outsourcing to two
or more non-colluding servers as in the model investigated
in this work is the only realistic model because only a few
kB need to be sent over the mobile Internet.

• Our most efficient Euclidean distance-based PPIL protocol
using Arithmetic and Yao sharing achieves 1.0 s total and
0.15 s online time, which is a reasonable delay in practice.

• Many optimized algorithms require less than 1 second on-
line time even for the most precise metrics which is also a
reasonable delay in practice.

• The optimized algorithms outperform the non-optimized
ones in terms of online run-time by up to factor 100×.

• The optimized algorithms in Yao sharing outperform the
ones in Boolean sharing in terms of online time by factor
3–4×. This is due to the fact that although the circuits in
Boolean sharing have reasonable depth (298–596), they are
up to factor 6× larger than the circuits in Yao sharing.

• For the Manhattan/Euclidean/Kumar-Hassebrook/Sørensen/
Modified Sørensen-based PPIL in Arithmetic and Yao shar-
ing (AY), our two commodity hardware-based servers can
daily precompute 172k/86k/28k/33k/28k queries, and pro-
cess 432k/576k/108k/96k/108k queries, respectively.

• The 1-bit Manhattan distance PPIL protocol yields 57× less
communication than the “naive” solution (only 5.2 MB in
total), it requires only 0.5 s of total run-time, 0.2 s online
time, and its online communication is in the order of a few
Bytes, which makes this protocol an excellent candidate also
for the client-server scenario without outsourcing.

12



Comparison with Related Work: In the following,
we compare our most efficient 4-bit Euclidean distance-
based PPIL protocol with the most recent related works of
Li et al. [37] and Ziegeldorf et al. [39].
[37]: The experiments of [37] have very high run-times
of 60.9 s for very small IL parameters (N=15 APs and
M=1000 RPs) and outdated security parameters (1024-bit
Paillier modulus which is considered insecure today [106]).
For these values of N and M and state-of-the-art 128-bit
security, our solution has an online run-time of 0.11 s (553×
faster) and a total run-time of 0.5 s (121× faster).

[39]: Evaluation of the prototype implementation of [39] on
two servers with 1 ms network latency resulted in a 10 s run-
time for only N=20 APs and 160 possible states. For the
same setting (we set the number of RPs to M=160), we
achieve an online run-time of 0.02 s (500× faster) and a total
run-time of 0.1 s (100× faster).

Ranges of APs and RPs: An intuitive solution for rep-
resenting the real-world scalability of our algorithms is to
perform benchmarks for different real-world buildings. This,
however, has the drawback that the benchmarks for a few
buildings are valid only for these buildings and say nothing
about other buildings. To solve this problem, we benchmark
our algorithms on ranges of APs and RPs in constant in-
tervals. This allows to interpolate the benchmarking results
for determining overhead for any numbers of APs and RPs
in the measured range. Since the function or shape of a
building does not affect the performance of our algorithms,
the benchmarking results will apply to all buildings with the
same number of APs and RPs. We give the online times for our
most efficient protocols for ranges of APs and RPs in Tab. IV.

VII. CONCLUSION

In this work, we designed, implemented, and evaluated
PILOT, a system for practical Privacy-Preserving Indoor Lo-
calization (PPIL). To the best of our knowledge, PILOT is the
first PPIL system with practical online run-times of less than
1 s and is by several orders of magnitude faster than previous
works. We applied quantization to reduce the Received Sig-
nal Strength bit-length without significant loss of accuracy.
We designed efficient building blocks for PPIL, which are
of independent interest: a size-efficient k-Nearest Neighbors
circuit, and a Single Instruction Multiple Data-capable and
easy-to-implement Oblivious Array Access circuit. We used
an outsourcing scenario that shifts most of the communication
and computation away from the weak and battery-powered
mobile client. Overall, our PPIL system PILOT can process
hundreds of thousands of queries per day on commodity
hardware.
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APPENDIX

A. Algorithms
In this appendix, we give details on our algorithm imple-

mentations in the ABY framework [51].

distances← dABOYm (RSSC, RefPoints, N)

1 : distances← ∅
2 : foreach RSSS in RefPoints do

3 : 〈dist〉A ← 0

4 : for i = 1 : N do

5 : 〈gt〉B ← Y2B(GT(〈RSSS[i]〉Y , 〈RSSC[i]〉Y ))

6 : 〈d〉A ← 〈RSSS − RSSC〉A

7 : 〈d′〉A ← Two’sComplement(〈d〉A)
8 : 〈d〉A ← 〈d〉A · 〈gt〉B //using C-OT

9 : 〈d′〉A ← 〈d′〉A · INV(〈gt〉B) //using C-OT

10 : 〈dist〉A ← 〈dist〉A + 〈d〉A + 〈d′〉A

11 : distances.append(〈dist〉A)
12 : return distances

Algorithm 1: Manhattan distance using Arithmetic, Boolean,
and Yao sharing, and Correlated OT (C-OT).

distances← dAe (RSSC, 〈RSS2C〉A, RefPoints, N)

1 : distances← ∅
2 : foreach RSSS in RefPoints do

3 : 〈dist〉A ← 〈RSS2C〉A + 〈RSS2S 〉A //precomputed
4 : for i = 1 : N do

5 : 〈product〉A ← 〈RSSC[i]〉A · 〈RSSS[i]〉A

6 : 〈product〉A ← 〈product〉A + 〈product〉A

7 : 〈dist〉A ← 〈dist〉A − 〈product〉A

8 : distances.append(〈dist〉A)
9 : return distances

Algorithm 2: Euclidean distance using Arithmetic sharing.

distances← dAY
kh (RSSC, 〈RSS2C〉A, RefPoints, N, ScalingFactor)

1 : distances← ∅
2 : foreach RSSS in RefPoints do

3 : 〈nom〉A ← 0

4 : 〈denom〉A ← 〈RSS2C〉A + 〈RSS2S 〉A //precomputed
5 : for i = 1 : N do

6 : 〈product〉A ← 〈RSSS[i]〉A · 〈RSS[i]C〉A

7 : 〈nom〉A ← 〈product〉A

8 : 〈denom〉A ← 〈denom〉A − 〈product〉A

9 : 〈nom〉Y ← A2Y(〈nom〉A)
10 : 〈nom〉Y ← 〈nom〉Y � ScalingFactor //bit-shift

11 : 〈denom〉Y ← A2Y(〈denom〉A)
12 : distances.append(〈nom〉Y /〈nom〉Y )

13 : return distances

Algorithm 3: Kumar-Hassebrook distance using Arithmetic
sharing and Yao sharing.
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distances← d
′AY
s (RSSC, RefPoints, N, 〈ScalingFactor〉A)

1 : distances← ∅
2 : foreach RSSS in RefPoints do

3 : 〈num〉A ← 0

4 : 〈denom〉A ← 0

5 : for i = 1 : N do

6 : 〈eucl〉A ← dAe (〈RSSS[i]〉A, 〈RSSC[i]〉A)
7 : 〈sum〉A ← 〈RSSS[i]〉A + 〈RSSC[i]〉A

8 : 〈num〉A ← 〈num〉A + 〈eucl〉A

9 : 〈denom〉A ← 〈denom〉A + 〈sum〉A

10 : 〈num〉Y ← A2Y(〈num〉A)
11 : 〈num〉Y ← 〈num〉Y � ScalingFactor //bit-shift

12 : 〈denom〉Y ← A2Y(〈denom〉A)
13 : distances.append(〈num〉Y /〈denom〉Y )

14 : return distances

Algorithm 4: Modified Sorensen distance using Arithmetic
sharing and Yao sharing. Euclidean distance is computed
similar to Algorithm 2.

BitonicSort(dists, ids, start,M)

1 : for i = 1 : M do

2 : m = M/2

3 : BitonicSort(dists, ids, start,m)

4 : BitonicSort(dists, ids, start+m,M −m)

5 : BitonicMerge(dists, ids, start,M)

BitonicMerge(dists, ids, start,M)

1 : m = PO2LT(M)

2 : for i = begin : begin−M +m

3 : 〈gt〉B = GT(〈dists[i]〉B , 〈dists[i+m]〉B)
4 : CondSwap(〈dists[i]〉B , 〈dists[i+m]〉B , 〈gt〉B)
5 : CondSwap(〈ids[i]〉B , 〈ids[i+m]〉B , 〈gt〉B)
6 : BitonicMerge(dists, ids, start,m)

7 : BitonicMerge(dists, ids, start+m,M −m)

Algorithm 5: Bitonic Sort algorithm using Boolean sharing.
The function y ← PO2LT(x) finds an y such that y is the
biggest power of two less than x.

minIds← k-NN(dists,M, k)

1 : minDists,minIds← ∅
2 : for i = 1 : k + 1 do

3 : minDists.append(〈MAX_VALUE〉Y )

4 : minIds.append(〈0〉Y )

5 : for i = 1 : M do

6 : minDists[k + 1]← dists[i]

7 : minIds[k + 1]← 〈i〉Y

8 : for j = k + 1 : 2 do

9 : 〈gt〉Y ← GT(〈minDists[j − 1]〉Y , 〈minDists[j]〉Y )

10 : CondSwap(〈minDists[j]〉Y , 〈minDists[j − 1]〉Y , 〈gt〉Y )

11 : CondSwap(〈minIds[j]〉Y , 〈minIds[j − 1]〉Y , 〈gt〉Y )

12 : return minIds[1 : k]

Algorithm 6: k-Nearest Neighbors (k-NN) circuit using Yao
sharing.

〈coord〉Y ← OAs(coords, 〈idx〉Y ,M)

1 : poTwo← PO2LT(M)

2 : for i = M − 1 : 2 · poTwo do
3 : coords.append(NULL)
4 : i← 1

5 : bitNum← 0

6 : while (i < 2 · poTwo) do
7 : 〈sel〉Y ← 〈idx〉Y [bitNum]

8 : j ← 0

9 : while (j < coords.size()) do

10 : if (〈coords[j]〉Y == NULL)

11 : j ← j + 2 · i
12 : continue

13 : else if(〈coords[j + i]〉Y == NULL)

14 : j ← j + 2 · i
15 : continue
16 : else

17 : 〈coords[j]〉Y ← MUX(

18 : 〈coords[j + i]〉Y , 〈coords[j]〉Y , 〈sel〉Y )

19 : j ← j + 2 · i
20 : i← 2 · i
21 : bitNum← bitNum+ 1

22 : return 〈res[0]〉Y

Algorithm 7: Size-optimized Oblivious Array Access (OA)
circuit using Yao sharing.

〈coord〉B ← OAd(coords, ids, 〈idx〉B ,M)

1 : res← ∅
2 : for i in 1 : M do

3 : res.append(EQ(〈ids[i]〉B , 〈idx〉B))
4 : 〈res[i]〉B ← MUX(〈0〉B , 〈coords[i]〉B , 〈res[i]〉B)
5 : for i in 2 : M do

6 : 〈res[0]〉B ← 〈res[0]〉B ⊕ 〈res[i]〉B

7 : return 〈res[0]〉B

Algorithm 8: Depth-optimized Oblivious Array Access (OA)
circuit using Boolean sharing.
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