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Abstract—The use of drone-cells in 5G wireless systems is
a topic of ongoing discussions in the 3GPP standardization
community. A major advantage of employing drones is that they
can dynamically and timely improve the capacity and coverage
of cellular networks. To address this challenge, efficient net-
work planning tools targeting spontaneous and rapidly changing
scenarios for dynamic network design need to be developed.
Complementing the recent studies on the optimal static drone-cell
positioning for a Poisson point process of user equipment (UE)
placement, we study UE distributions with correlated mobility
models. We first derive the coverage metrics for static drone-cell
deployments and then proceed by developing an algorithm for
adaptive drone-cell navigation. Considering the mean number
of covered UEs, we show that enabling drone-cell navigation
improves the overall system performance.

I. INTRODUCTION

The recent progress in design of light-weight drones, or

unmanned aerial vehicles, has made them suitable for utiliza-

tion in a wide range of civilian fields including surveillance,

delivery services, and agriculture, among others. One of the

emerging applications of drones currently being studied within

the 3GPP community is their use as a platform for small cells

in wireless networks [1], [2].

The key benefit of drone-based small cells is to timely

and dynamically provide or improve the network capacity by

moving them to the location with the temporarily increased

traffic demands. There are two options for using drone-based

cells in a particular scenario. Under no information about the

user equipment (UE) locations, one can apply conventional

terrestrial radio network planning (RNP) tools to deploy drones

as a hexagonal grid according to the appropriate coverage and

capacity demands. In this case, drones hover for a longer time

over specific areas without the need for navigation. In the

second case, drones assume to know the geographical position

of each UE and continuously adjust their locations by following

the UE traffic demands [2], [3].

A. Related Work

The recent studies of drone-cell deployment strategies pri-

marily target their optimal positioning to service stationary

UEs. Particularly, the authors in [4] followed an analytical

approach to obtain the optimal altitude of a Low Attitude

Platform (LAP) maximizing the coverage metrics. In [5],

the authors solved a 3D positioning problem for drone-cells.

The authors in [6] considered the use of drones to provide

emergency coverage over a disaster area in the presence of

LAPs. The drone-cell coverage problem solved in [3] has been

formulated to maximize the coverage range under the minimum

transmit power. The authors also investigated the impact of

interference in a scenario with two drone-cells.

In [7], the authors addressed 3D optimal positioning of

drone-cells to cover a number of UEs by using a heuristic

approach based on a particle swarm optimization (PSO) algo-

rithm. They established that in a dense area, it is beneficial

to decrease drone altitudes thus limiting the interference for

the farther away UEs, which are served by another drone-cell.

In low-density regions, it is preferable to increase the altitude

thus covering a larger area and serving more UEs. The authors

in [8] addressed the deployment of multiple drone-cells with

directional antennas. They derived the downlink coverage of a

drone-cell as a function of the altitude and the antenna gain as

well as determined the locations of the drone-cells, such that

the total coverage area is maximized.

The authors in [9] investigated the optimal 3D positioning

of drone-cells over an urban area by taking into account

their backhaul requirements. Finally, the aspect of dynamic

re-positioning has been addressed in [10], where the authors

proposed a distributed algorithm for dynamic adaptation of

drone-cell positions and analyzed the associated spectral ef-

ficiency performance. Particularly, they showed that adaptive

navigation may increase the spectral efficiency by almost 100%

for realistic drone speeds and flight altitudes. In [11], the

authors compared adaptive navigation with a static deployment

of drone-cells by using a set of performance metrics of interest.

They also proposed three simple algorithms for autonomous

navigation.

Despite significant efforts devoted so far to address the

optimal drone-cell positioning strategies, the reported studies

have a number of common limitations. First, in most of past

work, static UE deployment strategies have been assumed. This

naturally leads to static solutions for drone-cell positioning as

well. Further, the impact of optimal positioning on spectral

efficiency has to be analyzed before any decisive conclusions

can be made.

B. Our Contribution

This paper aims to develop an adaptive drone-cell navigation

scheme and compare its performance against static drone-cell



deployments under various UE mobility patterns. Our metric

of interest is the mean number of covered UEs.

The main contributions of this work are as follows:

• we evaluate the coverage performance of drone-cells for

a random direction mobility (RDM) model of UEs and

develop, as a comparison, an analytical model assuming

static deployment of drone-cells, by addressing different

drone-cell deployment strategies;

• we investigate the impact of adaptive navigation of drone-

cells and design an optimization algorithm, which navi-

gates drones by taking into account the UE relocations

and appropriate changes of the received signal quality;

• we compare static and dynamic drone-cell deployment

strategies for different types of mobility models and

demonstrate that adaptive navigation is beneficial when

UEs tend to cluster in groups.

The rest of this paper is organized as follows. In Section II,

we introduce our system model. We assess the performance of

static drone-cell deployments under various mobility patterns

as well as introduce an adaptive drone-cell navigation algo-

rithm in Section III. Numerical results are reported in Section

IV. Conclusions are drawn in the last section.

II. SYSTEM MODEL

In this section, we outline our system model. First, we

introduce the considered scenario and then proceed by speci-

fying the sub-models including the mobility of UEs, antenna

and channel parameters, as well as drone-cell deployment

strategies.

A. Considered Scenario

In this paper, we are interested in the scenarios where the

spatial density of UEs varies over time. An example of such a

use case may be a large-scale crowded event, for example, a

festival or a concert. During this type of an event, people are

distributed evenly over a particular area, or stand beside the

stage during a concert.

Here, we consider the case where the event is start-

ing/ending, and people are moving to the appropriate area.

In this situation, people accumulate near the stage/exit, and

a queue is created. At the same time, people are initially

distributed uniformly across the scenario, and their correlated

movement might create congestion or a higher density of UEs

in a certain location. In such scenarios, most people assemble

in groups and follow one direction, despite the variations in

their individual trajectories (Fig. 1).

In what follows, M and N denote the numbers of drone-cells

and UEs, respectively. The drone-cell altitude hD is assumed

to be constant, thus resulting in a well-defined coverage of

radius R. The area to be covered is denoted by SA, while

N drone-cells cover the area of exactly SC . For the group

mobility model, we assume that each cluster comprises NU,1

UEs, where 1 stands for one cluster, while the number of

clusters is NC . We are interested in the mean value of a random

variable VC denoting the number of UEs covered by drone-

cells.

Fig. 1: Our considered “concert” scenario.

B. Mobility Models

By concentrating on the UE dynamics, we consider two

inherently different mobility patterns: RDM model [12] and

Reference Point Group Mobility (RPGM) model [13]. The

former is used to address the case of random UE dynamics

that captures the essentials of random movement and still

preserves analytical tractability. According to RDM, a UE

first randomly chooses the movement direction uniformly in

(0, 2π) and then travels in this direction at a constant speed of

vB for an exponentially distributed time with the parameter

νB = 1/E[τB ], where τB is the mean duration of the

movement. Here, the movements of UEs are independent, i.e.,

the speed and direction of one UE are not affected by other

UEs.

In realistic scenarios, a single UE trajectory is often corre-

lated with the others. For example, in a fair or a festival, UEs

are concentrated around different attractor points and move

between them in groups, which results in non-uniform den-

sity across the considered distribution. Hence, their mobility

may be influenced by other UEs and by certain distribution

parameters. The model we consider for this case is RPGM.

Accordingly, each group of UEs has either an independent

cluster center or a group leader. The movement of the group

leader/cluster center defines the mobility behavior (direction)

of the entire group. In our scenario, we assume that each group

has a cluster center.

In RPGM model, the movement of a cluster center at time t
can be denoted by a movement vector

#»

V t
group. Each member of

the group deviates from this general movement vector
#»

V t
group

by some degree. Mobility of each member is defined by a

reference point that follows the group movement. Formally,

the motion vector
#»

V t
i of a group member i can be described

as

#»

V t
i =

#»

V t
group +

# »

M t
i, (1)

where
#»

V t
group is the vector of the cluster center movement and

# »

M t
i is the random deviation vector for the group member i.

Group trajectories follow the RDM, while vector
# »

M t
i comes

from independent and identically distributed (i.i.d.) random

variables. Its length is distributed uniformly within a certain



Fig. 2: Illustration of the RPGM model.

radius [0, rmax] centered at the reference point, where rmax is

the maximum allowed distance deviation, whose direction is

distributed uniformly over the interval [0, 2π]. Fig. 2 illustrates

a sample movement for the RPGM.

C. Antenna Array

In this work, we address millimeter-wave (mmWave) com-

munications with directional antennas at drone-cells. At these

frequencies, the radiation pattern of single-element antennas

is relatively wide, while multi-element configurations often

provide very narrow beamwidths [14]. In case of drone-cell

applications, where the communication link may be oriented

almost perpendicular to the ground surface, it is necessary

to design antenna systems with high gain that have flexible

directivity patterns to meet the appropriate communication

demands for a mobile base station (BS).

To satisfy these requirements, we consider a planar array

directed towards the ground, see Fig. 1, where the individual

radiators are placed along a rectangular grid to provide equal

coverage in all directions. Assuming an appropriate codebook

configuration, the planar array’s main lobe is steered towards

any direction within the directivity pattern of an individual

element. To model the array functionality for our scenario,

we utilize the Fourier transform synthesis method described

in [14].

For the sweeping procedure, which is required to steer both

the TX and the RX arrays to positions, we use a simple signal

strength-based full search algorithm. In the beginning, the UE

is switching its antenna into an omnidirectional mode, where

the array functionality is disabled. Then BS sends beacon

messages in all possible array positions, and each UE saves

the configuration index in which the received signal level

was the highest. The procedure is repeated in the opposite

direction (BS is switching to the omnidirectional mode, and UE

is transmitting acknowledgments across all possible antenna

configurations).

D. Channel Model

Most of the recent studies related to drone-cells consider

an air-to-ground path loss model for low altitude platforms.

According to [15], the ground station receives three groups of

signals, including Line-of-Sight (LoS), strong reflected signals

in terms of Non-Line-of-Sight (NLoS), and multiple reflected

components, which cause multi-path fading.

In this paper, we consider the 3D mmWave stochastic

channel model [16] suitable for drone-cells. It is based on ray-

tracing data for urban-micro areas, where the path loss values

were carefully adjusted by using the ray-tracing results and

real-world radio measurements. The path loss is calculated as

PL = 20 log10

(

4π

λ0

)

+ 10npl log10 (d) + σsf , (2)

where λ0 is the wavelength, npl is the path loss exponent,

d is the distance in m, and σsf is the shadow fading. In this

work, we consider only the LoS cases, by assuming that in our

scenarios (a festival or a concert) the NLoS conditions are very

rare. To take into account the multi-path signal components,

we combine the aforementioned path loss with the multi-path

channel model taken from [16].

E. Drone-Cell Deployments

Below, we consider three representative drone-cell deploy-

ment strategies: grid deployment, random deployment, and

adaptive navigation.

In case of a grid deployment, drone-cells are hovering

at certain locations that satisfy the coverage requirements.

Coverage is defined here as a certain minimum signal-to-noise

ratio (SNR) at the cell edge. The positions of drone-cells in

a grid deployment are chosen to maximize the coverage area

with minimum SNR, by assuming that coverage areas of drone-

cells do not overlap. In case of a random deployment, drone-

cells are assumed to be distributed uniformly over the area of

interest. In the latter case, drone-cells are no longer static and

may alter their positions during the service process according

to a specified algorithm.

III. SYSTEM ANALYSIS

In what follows, we first address the case of static drone-cell

deployments and then enable drone-cell mobility, since it may

potentially lead to better system performance. We address both

fixed grid and random drone-cell deployment strategies. The

performance level for a static drone-cell deployment will then

serve as a benchmark for adaptive optimization algorithms.

We finally proceed with the description of our proposed time-

dependent optimization algorithm.

A. Static Drone-Cell Deployment

1) RDM Model: First, consider independent mobility of all

UEs according to RDM. In case of a fixed deployment, the

coverage area of drone-cells, SC , can be estimated by using

zone of interest geometry and deployment positions. Note that

we are interested in specific values of M and SA, where

SC < SA. The optimal fixed positions of drone-cells that

provide full coverage can be established by using the well-

known solutions for two-dimensional circle covering problem:

see [17] for squares and [18] for circular areas.

Let M be such that SC < SA. Recall that the stationary

distribution of RDM is uniform over the area of interest,

f(x, y) = 1/SA [12], where x and y are the coordinates of the



UEs. When UEs move independently, the probability that ex-

actly k UEs are covered in the steady-state, qk = Pr{SC = k},

is given by

qk =

(

N

k

)

(1− SC/SA)
k
(SC/SA)

N−k
, k = 0, 1, . . . , (3)

and the mean E[SC ] = N(1− SC/SA).
Consider now the static random deployment of drone-cells.

The key difference as compared to the case of a fixed deploy-

ment is that SC is now a random variable, while the coverage

is stochastic. Let fSC
(x) be the probability density function

(pdf) of the coverage area of SA by M drone-cells. In this

case, the probability that exactly k UEs are covered is

qk =

∫ SA

0

fSC
(x)

(

N

k

)(

x

SA

)k (

1−
x

SA

)N−k

dx, (4)

and the task reduces to finding the pdf fSC
(x).

Observe that the pdf fSC
(x) can be interpreted as the

probability that a point uniformly distributed in the area of

interest is covered. Consider first the case of N = 1. Denote

by P a point of interest, by A1 the coverage of a single drone-

cell, and by A the area of interest. The sought probability, p1,

is then

p1 =
Pr{P ∈ A ∩A1}

Pr{A ∩A1 6= 0}
. (5)

Using the notion of kinematic measure, we have

Pr{P ∈ A ∩A1} = m(A : P ∈ A ∩A1),

P r{A1 ∩A 6= 0} = m(A1 : A1 ∩A 6= 0), (6)

where the first expression is the kinematic measure for the

set of motions of A, such that P ∈ A, while the second one

provides the measure for all the motions of A, such that A1

intersects A. For details, refer to [19].

The first measure is immediately computed to be

m(P ∈ A ∩A1) =

∫

P∈A1

dx ∧ dy ∧ dφ =

=

∫

P∈A1

dx ∧ dy

∫ 2π

0

dφ = 2πSA1
, (7)

where SA1
is the area of A1.

The measure of all the motions of A, such that A1∩A 6= 0,

is [19]

m(A1 ∩A 6= 0) =

∫

A1⊂A

dx ∧ dy ∧ dφ =

= 2π[SA + SA1
] + LALA1

, (8)

where LA is the perimeter of A.

Substituting (8) and (7) into (5), the probability q1 follows.

Assuming that the drone-cells are deployed independently, the

probability that a point is covered by at least one drone-cell

out of M deployed ones is given by pM = 1 − (1 − p1)
M .

Assuming that the zone of interest is a square with side B, we

have

pM = 1−

(

1−
πR2

B2 + πR2 + 4BR

)M

, (9)

which is interpreted as the fraction of area covered by M
drone-cells.

The results in (3) and (4) hold for the stationary behavior. For

time-dependent coverage, we have the following proposition.

Proposition 1 (Coverage). Assume that N UEs move in

an arbitrarily shaped area according to RDM. Considering

uniform independent initial distribution of the UEs at t = 0,

the probability that at any t, t > 0, exactly k UEs are covered

by M drone-cells with circularly shaped areas is given by

(3) and (4) for fixed and random deployment of drone-cells,

respectively.

Proof. Observe that N uniformly distributed nodes in the

area of interest can be interpreted as a conditional Poisson

point process named Binomial process [20]. Since random

displacements of an isotropic Poisson process are again Poisson

[21], the result of the proposition immediately follows.

An important corollary from the above is that there is no

optimal movement trajectory for the deployed drone-cells that

results in a better stochastic coverage of UEs.

2) RPGM Model: Consider again a fixed deployment of

drone-cells. Observe that with respect to the mobility model,

the centers of clusters move independently according to the

RDM model, which leads to their uniform stationary distri-

bution within the area of interest. Let p⋆1 be a fraction of the

cluster area inside the coverage area of the drone-cells. Observe

that this fraction is obtained similarly to (5), which leads to

p⋆1 =
Pr{P ∈ B ∩B1}

Pr{B ∩B1 6= 0}
=

2πSB1

2π[SB + SB1
] + LBLB1

, (10)

where B1 is the coverage of drone-cells and B is the cluster.

Recall that each cluster is associated with NU,1 UEs and the

distribution in the cluster is assumed to be uniform. Given a

certain coverage fraction of a cluster covered by drone-cells,

the number of UEs falling into this fraction follows a Binomial

distribution

νk =

(

NU,1

k

)

p⋆1 (1− p⋆1)
N−k

, k = 0, 1, . . . , (11)

with the mean of NU,1p
⋆
1.

Since the clusters are assumed to move independently from

each other, the fraction of UEs covered by statically de-

ployed drone-cells at the fixed positions is given by E[VC ] =
NU,1p

⋆
1NC , where NC is the number of clusters. Analyzing

a random deployment, we observe that the only modification

needed is to obtain the fraction of the area of the zone of

interest covered by a random deployment of drone-cells. This

has already been done in (9). The rest of the procedure is

similar to that for the fixed deployment of drone-cells. We

also note that the analysis above is precise when the overall

area covered by the drone-cells constitutes a single convex set.

The results of this subsection deliver the steady-state cover-

age probabilities in a static random and fixed deployment of

drone-cells. However, even if the exact positions of the UEs are

known, with a large number of UEs under the i.i.d. mobility



assumption, it is not required to navigate the drone-cells to

track any of these UEs, since the total number of covered UEs

will not change during navigation to another point. However,

with a small number of UEs or under a correlated mobility,

the navigation of drone-cells will make a difference.

B. Adaptive Drone-Cell Navigation

To optimize the coverage for the case of the RPGM cluster-

based model, we consider a PSO-based dynamic optimization

approach. PSO is a heuristic computational algorithm that

tackles the problem of dynamic optimization by iteratively

attempting to improve a solution in relation to a given measure

of quality. A candidate solution is a member of the set of

possible solutions in the feasible region of a given problem.

The algorithm solves a problem by having a population of

candidate solutions and moving these particles around the

search space. Each particle’s movement is influenced by its

local best-known position but is also guided toward the best-

known positions in the search-space, which are updated as

better positions are found by other particles. The algorithm

is expected to move the swarm toward the best solutions.

The ultimate goal of our implementation of the PSO algo-

rithm is to achieve maximum coverage. Assuming N UEs, the

coverage constraint is formulated as

P (γij∗ > γ) ≥ η, i = 1, ..., N, (12)

where j∗ = argmaxγij , γij is the SNR of the UE i receiving

service from the drone-cell j, γ is the minimum SNR level

required for each UE, and η is the proportion of all UEs

covered by a drone-cell. The goal is to cover at least η percent

of all the UEs.

The utility function is then

U =

{

∑N

i=1 Ii if constraint holds,

0 otherwise,
(13)

where

Ii =

{

1 if UE is covered by drone-cell,

0 otherwise.
(14)

The proposed algorithm is demonstrated in Algorithm 1.

IV. PERFORMANCE EVALUATION

The numerical results and their analysis are described in

this section. The following is divided into three parts. First, we

discuss the network and geometry parameters of the considered

scenario as well as briefly outline the utilized simulation tool.

Next, we present the analytical results for a static drone-cell

deployment and compare them with the simulation output as

well as with the results of the adaptive navigation algorithm.

Here, the emphasis is made on the comparison between the

two discussed approaches. Finally, we report on the signal-to-

interference-plus-noise ratio (SINR) values associated with the

adaptive navigation algorithm.

Algorithm 1 PSO algorithm for the deployment of drone-cells

1: Generate a population consisting of L random

particles W (l)(0), l = 1, . . . , L.

2: Each particle has the size of 3×M .

3: Set t = 1, U (global)=max
{

U (l)(0, l = 1, . . . , L)
}

4: while U (global) < N do

5: for l = 1, . . . , L do

6: Compute V (l)(t),W (l)(t), U (l)(t)
7: if U (l)(t) > U (l,local)(t) then

8: W (l,local) = W (l)(t), U (l,local) = U (l)(t)
9: if U (l,local) > U (global) then

10: W (global) = W (l,local),
11: U (global) = U (l,local)

12: t = t+ 1

TABLE I: Modeling parameters.

Parameter Value

Deployment size (m2) 100x100

Number of drone-cells 3

Number of UEs 100

UE height (m) 2

Drone-cell altitude (m) 30

UE speed (m/s) 1.4

Drone-cell speed (m/s) 8.3

TX power (dBm) 24

Power control scheme Full-power

Number of BS array elements 8x8

Number of UE array elements 4x4

Frequency of beam-sweeping (µs) 3

Frame size (µs) 3

Type of transmission (UL and DL) TDM

Carrier frequency (GHz) 73

Transmission bandwidth (GHz) 0.56

Packet size (byte) 3000

Traffic requirement (Mbps) 100

BS scheduler Round-Robin

A. Evaluation Methodology and System Parameters

The considered deployment area is assumed to be 100 by

100 meters. The drone-cell flight altitudes are fixed, while the

drone-cells as well as the UEs are assumed to always reside

in the deployment area. The choice of a fixed altitude of the

drone-cells is justified by maximizing the coverage and signal

strength for the UEs. Other parameters are summarized in

Table I. The analytical results reported below are accompanied

and complemented by those obtained with our system-level

simulation (SLS) tool.

The SLS tool has the following capabilities. At the entity

level, we construct the network, as well as create parameters,

functions, and relationships between the modules. Further,

supplementary system code generates traffic, handles the input

and output operations, automates certain operations on the

entity level, and provides libraries for other modules. The

event subsystem handles the events according to their time

and priority as well as synchronizes the physical layer (PHY)

abstraction modules. PHY abstraction generates the channel

model by taking into account a 3D antenna directivity pattern

and calculates interference on the time-frequency transmis-



sions. In the end, data is stored in the database for further

processing by the statistics rendering module. Most of the SLS

code is written in Python.

To model a dynamic mmWave network, we created a

dedicated module in the SLS, in which all of the discussed

mmWave components are implemented. Here, for the sake of

simulation simplicity, higher layers are abstracted with a simple

packet-based traffic generator. We implemented a preliminary

version of MAC, which emulates all the necessary procedures,

including signal strength-based initial access and handover

featuring 10 ms Time Division Multiplexing (TDM) frame

(with 1 ms sub-frames) equally divided between the UL and the

DL transmissions, as well as beam-sweeping and scheduling.

The first two sub-frames of every frame are allocated for the

control signaling, where the BS sends synchronization beacons,

while the UEs may perform initial access and handover.

B. Coverage Analysis

Fig. 3a shows the proportion of covered UEs for the RDM

model obtained by using SLS and analytical modeling for

the random and fixed drone-cell deployments. It is easy to

observe a close match between analysis and simulation for

the grid deployment, in which the percentage of covered UEs

fluctuates between 56% and 60%, whereas for a random drone-

cell deployment it is only 24.4%. On average, the grid model

performs better than a random drone-cell deployment. These

results also confirm that for purely random mobility models

there is no need for adaptive navigation of drone-cells.

Consider now the case of correlated mobility according to

the RPGM model. Fig. 3b illustrates the proportion of covered

UEs for RPGM in the grid deployment and adaptive navigation

strategies. As one may observe, the percentage of covered UEs

for the grid deployment decreases after 40 seconds of simu-

lation time. Then, until the end of the simulation, it remains

stable even though minor fluctuations caused by the mobility

model still remain. On the other hand, adaptive navigation

demonstrates 5% improvement on average. Furthermore, notice

that the percentage of covered UEs changes periodically. It

is explained by the navigation strategy that has been chosen:

drone-cells take a “snapshot” of the current UE channel quality

and then update their positions every 5 seconds according to

the designed PSO algorithm.

C. SINR Analysis

While in this paper we primarily concentrate on the coverage

analysis, the use of SLS allows to report on the SNR dynamics

experienced by the UEs. Fig. 4a illustrates the SNR results

obtained with SLS for the static grid deployment and adaptive

navigation of drone-cells under the RDM model. Analyzing the

data, we observe that adaptive navigation of drone-cells does

not improve the SINR. Therefore, for this particular scenario,

we can conclude that there is no need for a navigation strategy

as predicted by the analytical results.

Fig. 4b reports simulation results for the static grid de-

ployment and adaptive navigation of the drone-cells under the

RPGM model. In contrast to Fig. 4a, we notice an improvement

(a) Random Direction Mobility Model

(b) Reference Point Group Mobility Model

Fig. 3: Proportion of covered UEs.

in the SINR for adaptive navigation as compared to the

grid deployment. These differences are attributed to varying

densities of UEs in the zone of interest for the two considered

UE mobility models. In RDM, UEs are distributed uniformly

across the deployment area and thus the average SINR and

the coverage percentage do not change drastically over time.

In RPGM, UEs are concentrated in enclosed spatial regions

of the deployment area, thus decreasing the overall system

performance on average.

V. CONCLUSION AND FUTURE WORK

In this work, we investigated the impact of adaptive naviga-

tion of mmWave-based drone-cells for the RDM and RPGM

user mobility models. The obtained results show that for the

RDM model with a grid drone-cell deployment the number

of covered UEs remains unchanged over time, thus implying

that in purely random deployments there is no need for

adaptive navigation. In correlated deployments, such as the one

characterized by the group mobility, navigation leads to notable

improvements in coverage and SNR performance as compared

to a static grid deployment.

An adaptive navigation algorithm proposed in this paper

employs information about the positions of all the UEs across



(a) Random Direction Mobility Model

(b) Reference Point Group Mobility Model

Fig. 4: SINR variation over time.

the deployment area. This approach may be inefficient in

larger scenarios with a high number of drone-cells. Our future

work includes the development of a distributed algorithm to

decrease the operational complexity in the system. We also

plan to use more realistic trace-driven models of the UE

mobility. For example, one scenario of interest may include

a combination of pedestrian and vehicular traffic, by assuming

realistic simulations of mmWave NLoS blockage. Finally, we

intend to test various network optimization functions, which

target to not only evaluate the coverage but also network

capacity and drone-cell power consumption.
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