
AivoTTA: An Energy Efficient Programmable Accelerator
for CNN-Based Object Recognition

Jos IJzerman∗, Timo Viitanen∗, Pekka Jääskeläinen∗, Heikki Kultala∗, Lasse
Lehtonen∗, Maurice Peemen†, Henk Corporaal†, Jarmo Takala∗

∗ Tampere University of Technology, Tampere, Finland
† Eindhoven University of Technology, Eindhoven, The Netherlands

josijzerman89@gmail.com, timo.2.viitanen@tut.fi, pekka.jaaskelainen@tut.fi,
heikki.kultala@tut.fi, lasse.lehtonen@phnet.fi, m.c.j.peemen@tue.nl,

h.corporaal@tue.nl, jarmo.takala@tut.fi

ABSTRACT
Battery driven intelligent cameras used, e.g., in police op-
erations or pico drone based surveillance require good ob-
ject detection accuracy and low energy consumption at the
same time. Object recognition algorithms based on Convo-
lutional Neural Networks (CNN) currently produce the best
accuracy, but require relatively high computational power.
General purpose CPU and GPU implementations of CNN-
based object recognition provide flexibility and performance,
but this flexibility comes at a high energy cost. Fixed func-
tion hardware acceleration of CNNs provides the best energy
efficiency, with a trade-off in reduced flexibility. This paper
presents AivoTTA, a flexible and energy efficient CNN accel-
erator with a SIMD Transport-Triggered Architecture that
is programmable in C and OpenCL C. The proposed acceler-
ator makes use of smart memory access patterns and fusion
of layers to greatly reduce the number of memory transfers
and improve energy efficiency. The accelerator was synthe-
sized using 28 nm ASIC technology for different supply volt-
ages and clock frequencies. The most power efficient design
points consume 11.3 mW for an object recognition network
running 16 GOPS at 400 MHz. The maximum clock fre-
quency is 1.4 GHz. With the maximum clock, the acceler-
ator consumes 116 mW for an effective 57 GOPS. To the
best of our knowledge, it is the most energy efficient com-
piler programmable CNN accelerator published.

1. INTRODUCTION
For intelligent camera systems, the main problems are the

large data storage and transfers, and the need for human in-
tervention [6]. Convolutional Neural Networks (CNNs) are
state-of-the-art algorithms for visual classification and other
pattern recognition tasks. These networks make human in-
tervention obsolete by offering comparable recognition ac-
curacy [4]. In addition, artificial neural networks can be
processed near the sensor, reducing the need for central pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WOODSTOCK ’97 El Paso, Texas USA
c© 2018 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

cessing and allowing for collaborative scene analysis with
minimized data transfers.

Considering recent developments in micro air vehicles such
as robotic insects [36, 23, 5], in combination with cheap lens-
less cameras [35], we are entering an age of ubiquitous visual
sensing. This gives rise to a demand in flexible, low energy
visual classification solutions for decentralized processing.

Low energy footprint is the most important factor in CNN
driven object recognition on battery powered devices such as
smartphones, watches or glasses [34, 32], or micro air vehi-
cles. Hardware accelerators for CNNs have been the focus of
attention in recent years as a low-energy, high performance
alternative to CPUs and GPUs.

Different CNNs have many different parameters such as
the number of layers and their connectivity, the number of
feature maps and the size of the weight kernels. In order
for a CNN accelerator to cover a wide range of application
domains, it must have the flexibility to support different
network parameters. However, flexibility always brings over-
heads visible as higher energy cost and larger chip area mak-
ing the combination of flexibility and a low energy footprint
contradictory goals.

Recent CNN accelerators mostly use finite state machines
(FSM) [9, 12, 31] with configurable parameters to support
different network characteristics, offering a generalized order
of processing for a wide variety of networks. However, this
approach cannot utilize flexible ways to optimize memory
access patterns [27], layer fusion [1] or other techniques that
change the order of operations in favor of energy efficiency
and low memory transfer costs. Different networks require
custom implementations of these techniques or a more flex-
ible accelerator with software programmability.

Programmable co-processors often utilize static VLIW-
style architectures [24, 3, 30] to take advantage of the in-
struction level parallelism that is visible at compile time.
However, a well-known contribution to VLIW energy con-
sumption is its register file complexity [10]. For every par-
allel functional unit, additional register file ports have to
be added, increasing the power consumption and hardware
complexity of the accelerator implementation.

In this article we propose AivoTTA, a programmable CNN
accelerator design that utilizes the Transport-Triggered Ar-
chitecture [10] (TTA), which has been shown to reduce the
register file bottleneck of VLIW designs. The bottleneck is
reduced by exposing more of the architecture to the pro-
grammer’s or compiler’s control, which trades energy effi-

ciency benefits to less dense instruction words [18].
Later in the article we demonstrate that by using a TTA

instead of a traditional VLIW, we achieve a high degree of
functional flexibility at a lower energy cost. This is because
on a TTA-based accelerator, the register file complexity does
not increase at the same rate as the number of functional
units, enabling better scalability. The result is a scalable ac-
celerator that can be programmed in higher level languages
for a variety of CNN classification tasks at a low energy cost.

The accelerator is programmable in C and OpenCL C,
utilizes wide SIMD instructions for computational efficiency
and has small local memories to statically exploit the avail-
able data locality in the networks for increased power effi-
ciency.

2. RELATED WORK
As CNNs have been one of the hottest topics in the past

years, there has been a lot of recent work regarding their ac-
celeration. Overall, CPU implementations offer limited per-
formance, while GPU [8] acceleration offer performance at
high power consumption, making them unsuitable for many
embedded applications. Implementations on FPGAs [14, 37,
16, 29] offer great flexibility with limited performance.

Fixed function ASIC implementations offer both compu-
tational performance and low power consumption at a cost
of limited flexibility. The DianNao [9] accelerator focuses
on efficiently executing the computational primitives on its
Neural Function Units, but does not offer support for ex-
ploiting data locality of 2-dimensional convolution. DianNao
uses an FSM to support different network configurations.

ShiDianNao [12] uses modified DianNao Neural Function
Units to better exploit the data locality. It maps the en-
tire CNN in SRAM and greatly improves energy efficiency
by eliminating DRAM. Compared to GPU implementations
ShiDianNao consumes about 4700 times less energy and is
designed to be embedded near the sensor. The functionality
of this accelerator is also managed by an FSM.

NeuFlow [13, 31] is an accelerator aimed at embedded
visual applications. It has a reconfigurable dataflow archi-
tecture that is configured by a control unit. Its behavior is
defined by configuration parameters written to its control
unit.

Origami [7] is another energy efficient accelerator. An im-
portant focus point of the design is reducing external mem-
ory access and alleviating the memory bottleneck of other
designs. It exploits data locality to use its memory band-
width more efficiently. Origami is a fixed function accel-
erator and does not make use of instruction control based
processing.

The Neuro Vector Engine (NVE) [30] is a low power CNN
accelerator that uses high level XML network descriptions
to generate VLIW code [28]. The programmability of the
accelerator allows for many advanced data locality optimiza-
tions that offset the costs of programmability. The proposed
accelerator allows for the same level of programmable flexi-
bility while improving efficiency by using the exposed data
path TTA paradigm.

There are also various commerical SoCs (CEVA XM6 [3],
Movidius Myriad 2 [24]) targeting general vision applica-
tions. These systems contain VLIW cores with vector units,
but little is published about their performance and efficiency.

For these wide VLIW cores, the register file complexity
limits power efficiency and scalability. In our case, the trans-

for (o=0; o<No ; o++){ //output f ea ture maps
for (m=0; m<Nm; m++){ //row in fea ture map

for (n=0; n<Nn; n++){ //column in fea ture map
acc = b ia s [o] ; // i n i t i a l i s e with b ias
for (i =0; i<Ni ; i++){ // input f ea ture maps

for (k=0; k<Nk; k++){ //row in kerne l
for (l =0; l<Nl ; l++){ //column in kerne l

acc += in [i] [S∗m+k] [S∗n+l] ∗
weight [o] [i] [k] [l] ; }}}

out [o] [m] [n] = Sigmoid (acc) ; }}}

Figure 1: Pseudo code of a single layer in a convolutional
neural network. Subsampling and feature extraction are
merged.

port triggered architecture based design enables simpler sin-
gle ported register files.

Google’s Tensor Processing Unit (TPU) [20] is a neural
network accelerator designed for use in data centers and
cloud computing. It features a matrix multiply unit that
can offer 92 TOPS and contains a large on-chip memory.

AivoTTA provides a software programmable control with
power efficiency improved over standard VLIW designs. Its
power-efficiency is closer to fixed function accelerators than
with the previously published programmable accelerators.
Unlike other designs, the proposed one has an exposed data
path which allows additional compiler-based optimizations.

3. CONVOLUTIONAL NEURAL NETWORKS
CNNs are the state-of-the-art machine learning algorithms

for visual recognition. Our accelerator focuses on feed for-
ward inference with CNNs. Training of the network is as-
sumed to be done offline in order to save resources on embed-
ded platforms. A CNN consists of layers that transform the
representation to a higher abstraction level, starting with
the raw pixels of an input image. Simple features are ex-
tracted from the raw image in the first layer and these fea-
tures are combined into more complex representations later
in the network. The last layer combines the highest order
features and classifies objects at a location in the image.

In contrast to deep neural networks (DNNs), CNNs reuse
synaptic weights per output feature map. This allows all
weights to be simultaneously stored in a local memory. This
reflects the ability of CNNs to detect features anywhere in
the image [21].

Fig. 1 shows pseudo-code of a CNN layer; it contains a
number of parameters that define the number of neurons
and their connectivity. Every layer generates a number of
output feature maps based on parameter Nn, each output
feature map has dimensions Nm*No. Every neuron has a
bias that is shared among all neurons on an output feature
map. Every neuron performs a 3-dimensional convolution
based on parameter Ni (the number of input feature maps)
and parameters Nk and Nl, the vertical and horizontal di-
mension of the input window on a single input feature map.

The parameter S defines the subsampling factor, the step-
size between consequtive convolution windows. It allows us
to perform a data reduction and scale down the output fea-
ture maps. In some networks, subsampling and feature ex-
traction are performed in separate layers. Merging these
together reduces the computational load for comparable de-
tection accuracy [25]. Figure 2 shows the data and compu-
tational reduction that is the result of layer merging.

Figure 2: Merged convolution and 2x2 subsampling. Instead
of computing every possible neuron and then reducing the
result, we only compute a single neuron in a 2x2 window.

4. DATA LOCALITY
Recent work on low power CNN acceleration has placed

a focus on smart memory access patterns and data reuse in
an effort to reduce memory accesses and power consump-
tion [29, 12, 30]. CNNs consist of overlapping convolution
windows that can be computed independently and there is
a great potential for data reuse. There are several tech-
niques to exploit the different types of data locality that are
present in these networks, but the effectiveness depends on
the actual network parameters and connectivity.

Neurons that map to the same output feature map share
the same weight kernel and adjacent neurons have overlap-
ping receptive fields. An intuitive way of exploiting data
locality is to compute a number of overlapping neurons in
parallel; reusing data amongst multiple neurons and reduc-
ing the total amount of data transferred from memory.

Neurons associated with different output feature maps in
the same layer do not share weight kernels, but their re-
ceptive fields can have full overlap with neurons of different
output feature maps. We refer to this type of locality as
output feature map locality and it has the potential for more
reuse of input data, but it does not benefit from weight ker-
nel sharing.

A more high level reordering of operations for data reuse
is layer fusion [1], a technique to exploit data locality across
different layers. In layer fusion, instead of processing each
layer to completion before starting the next, multiple layers
are processed for a small region of the input image at a time,
such that the intermediate results can be kept in small on-
chip memories. This can significantly reduce memory traffic.

Using any combination of these techniques changes the
order of operations in order to reduce memory transfers. The
specific network parameters determine the benefits of these
techniques. As a result, it is desirable to have a flexible,
programmable accelerator design where computations can
be reordered in different ways to take advantage of the data
locality specific to each network.

Parameters Nk and Nl in Figure 1 represent the convolu-
tion window size on a single input feature map. Bigger win-
dows increase the overlap and favour exploiting of this type
of data locality. The subsampling parameter S increases
the step size between subsequent windows and reduces the
number of windows calculated. This reduces the available
data locality. Parameters Ni and No denote the number of
input and output feature maps respectively. A layer can be
fully or sparsely connected and this influences the available
data locality. A high number of ouptut feature maps and a
dense connectivity increase the benefits of exploiting output
feature map locality.

for (o=0; o<No ; o++){ //output f ea ture maps
for (m=0; m<Nm; m++){ //row in fea ture map

for (n=0; n<Nn; n+=Np){ //column in fea ture map
for (p=0;p<Np; p++){ // p a r a l l e l PEs

acc [p] = b ia s [o] ; } // i n i t i a l i s e with b ias
for (i =0; i<Ni ; i++){ // input f ea ture maps

for (k=0; k<Nk; k++){ //row in kerne l
for (l =0; l<Nl ; l++){ //column in kerne l

for (p=0;p<Np; p++){ // p a r a l l e l PEs
acc [p] += in [i] [S∗m+k] [S∗(n+p)+ l] ∗

weight [o] [i] [k] [l] ; }}}}
for (p=0;p<Np; p++){ // p a r a l l e l PEs

out [o] [m] [n+p] = Sigmoid (acc [p]) ; }}}}}

Figure 3: Pseudo code of a tiled loop with Np processing
elements that compute adjacent neurons in parallel.

5. MAPPING PRINCIPLES AND PROCESS-
ING

A good mapping of convolution windows to computational
primitives is important. Spreading the computation of a sin-
gle neuron among multiple processing elements would mean
that the ideal number of processing elements becomes de-
pendent on the kernel size. A small kernel might leave pro-
cessing elements unutilized and a big kernel would need to
combine partial results.

Since kernel sizes vary across different network layers, an
alternative is to map processing elements to individual neu-
rons and perform the computations in time. This approach
makes the utilization of these units invariant to the ker-
nel size. An additional advantage is the flexibility to deal
with irregular weight kernels that may be the result of intra-
kernel weight pruning, a technique used to remove insignifi-
cant weights from kernels to improve performance [2].

Fig. 3 shows the network layer pseudo-code discussed ear-
lier with the addition of several p loops. Instead of comput-
ing all windows in sequence, we tile the loop to process Np
horizontally adjacent pixels in parallel.

In addition to speeding up computation, we exploit the
data locality of overlapping receptive fields of the neurons
processed in parallel. All neurons processed in parallel share
the same weight kernel and their convolution windows over-
lap horizontally. For a layer with 5x5 kernels and no sub-
sampling, 32 parallel processing elements operating this way
reduce the weight data loaded by 97% and pixel data loaded
by 78% compared to sequential processing.

Fig. 4 shows how data locality is exploited in processing
a single row of pixels on four separate convolution windows
sharing the same kernel. Four vector multiply/add opera-
tions are performed each with a separate weight from the
first row of the weight kernel. Each vector of pixels that we
multiply overlaps with the previous vector and the results
of each multiplication are accumulated. Without subsam-
pling, the vector of pixels that is multiplied with a weight is
adjacent in memory.

We can apply layer fusion [1] by tiling loops n and m.
The tiling size of n and m is different per layer and depends
on the amount of data needed by the next layer. We can
calculate the minimal fusion tile size as shown in Fig. 5.
Parameters H, W and D denote the height, width and depth
(number of output feature maps) of a fusion tile.

Given p parallel accumulators that calculate p horizon-
tally adjacent neurons, the fusion tile of the last layer (Y)
has a width of p (to utilize the full vector width), a height
of 1 and a depth depending on the number of output fea-

Figure 4: Convolution of a single row on 4 convolution win-
dows without subsampling. A) 4 separate convolution win-
dows. B) The overlap of the first row of these 4 windows. C)
Multiplying a vector of pixels with a single weight, shifting
additional values into the pixel vector and accumulating the
results per neuron.

Figure 5: Layer fusion. The desired output tile size at the
last layer (layer Y), determines the minimal required tile
sizes of the preceeding layers.

Figure 6: Example of a TTA processor. The current in-
struction being processed is shown on the right, it contains
5 slots; each describing a move operation on one of the 5
buses.

ture maps. The dimensions of the preceding layers’ fusion
tiles are dependent on the required tile size of the next layer,
kernel size, subsampling factor and number of feature maps.

Computing all fusion tile sizes gives us the minimum mem-
ory size required to avoid all external memory accesses, ex-
cept for loading the initial image. The order of processing
for these fusion tiles opens up additional design decisions.
After the first fusion tile is computed on all layers, we can
pick a second tile that overlaps with the previous one and
buffer data. Alternatively overlapping neurons can be recal-
culated.

6. ACCELERATOR ARCHITECTURE

6.1 Architecture Template
The proposed accelerator is based on a Transport Trig-

gered Architecture [10]. The difference between TTA and
traditional VLIW is that data transports over the internal
buses are exposed to the programmer. Instead of program-
ming operations and implicitly triggering the buses, data
movements are programmed explicitly. Computations are
done as soon as the data arrives on the triggering port of
a functional unit. The set of computation operations is de-
fined by the operations available on the functional units.

A TTA processor allows for extra software optimizations
compared to VLIW, such as software bypassing [18] and
operand sharing. By programming data moves instead of
operations, we can determine register bypassing at compile
time allowing the compiler to explicitly move results from
one FU to another or keep operands on FU input ports for
multiple computations. Allowing data to be moved from
one functional unit to another greatly simplifies the archi-
tecture, reduces the required number of general purpose reg-
isters [17], and allows for more instruction level parallelism
by explicitly avoiding registers.

A TTA processor consists of a control unit, register files,
load store units, functional units, and transport buses. An
example TTA is shown in Fig. 6. The instructions contain
a slot for each bus and the instruction width is dependent
on the number of buses and the number of connections to
functional units. Units can be connected to a subset of buses
to reduce the instruction size.

6.2 Function Units

The most critical unit in the proposed accelerator is the
vector multiply/add unit (MADD). This unit is responsible
for performing convolution. It is designed to compute 32
convolutions on the same output feature map. This allows
weight sharing. The MADD unit takes a vector of 32 8-bit
pixels and either multiplies every element with a single 16-
bit signed value or multiplies elementwise with a vector of
32 16-bit weights. The result of these operations are added
to the 32 bit accumulator inputs that are stored in a vector
of 32 elements.

Given that a full crossbar shuffle is very expensive, we in-
clude a limited operation set for rearranging vectors, picked
to support the CNN mapping techniques described in the
previous Section, namely, vector shift, interleave and broad-
cast. The vector shift unit is used to shift a 32 × 8b vec-
tor left while inserting elements from a 32b scalar on the
right side. Five outputs are produced, corresponding to shift
lengths 0..4. The shift operation is used to efficiently gen-
erate inputs to the MADD unit, while reusing loaded data
for several multiplications, and avoiding the need to support
expensive unaligned loads.

The vector deinterleave unit takes two 32 × 8b input vec-
tors, and arranges their even and odd elements into separate
output vectors. This operation is used to implement 2x2
subsampled layers. Finally, the vector broadcast unit out-
puts a vector with all elements set to an input scalar value.
In this work, it is mainly used to initialize accumulators.

After a vector of convolutions is completed the result is
stored in a 1024-bit vector containing 32 32-bit elements. We
apply an activation function on these values and reduce them
to a 32-element vector of 8-bit values. Activation functions
are expensive to evaluate, so we include hardware support
for their piecewise linear approximation. The approximation
is computed with the MADD unit, but an interpolation unit
is included to generate the inputs of the MADD based on
table lookup. One vector input of the interpolation unit is
used as the lookup table which encodes the levels and slopes
of each segment.

Table 1 lists all functional units and register files. Besides
the special functional units already described, the accelera-
tor contains three basic arithmetic units. One ALU that can
perform basic arithmetic and logic operations, a unit that
can perform scalar multiplication and addition, and a scalar
add unit. These three units can all perform addition, since
this operation is common for address calculation and loop
indexing. The vector broadcast unit is used to broadcast bi-
ases to an entire vector and the vector compare unit is used
in the last layer to perform detections.

6.3 Memory System
The accelerator contains 3 on-chip SRAMs with separate

memories for weights, data and instructions. An off-chip
DRAM is assumed to store the raw image frame buffer.
Since weight kernels are shared amongst output feature maps,
all weights and biases fit in a single SRAM. The data mem-
ory is used to buffer part of the network locally and to reduce
the number of DRAM accesses.

The image DRAM, weight SRAM and data SRAM are
each accessed with a separate load-store unit (LSU). All
SRAMs are optimized with multiple banks to reduce the
energy consumption per access. The total on-chip SRAM is
128 kB: 32 kB instruction memory, 64 kB weight memory
and 32 kB data memory.

Table 1: Functional units and register files.
Unit Operations

ALU Basic arithmetic & logic
Add Add

Mul/Add Mul, Add
Immediate Immediate value from instruction

General Control Unit Jump, Call, Loop buffer
Data SRAM LSU ld32, ld256, st32, st256

Weight SRAM LSU ld16
DRAM LSU ld32, ld256, st32, st256

Vector Multiply/Add MADD scalar, MADD vector
Vector Shift Vector shift

Vector deinterleave Vector deinterleave
Word deinterleave Word deinterleave
Vector Broadcast Broadcast32x32
Vector Compare GreaterThan32x32, Vector Reduce

Interpolation Interpolation
8x1024-bit register file Single ported read/write
8x256-bit register file Single ported read/write
8x32-bit register file Single ported read/write
16x32-bit register file Single ported read/write

In case of TTAs, the register files are the second lowest
level in the data memory hierarchy with the function unit
port registers being the lowest. One of the most interesting
features of the proposed accelerator is its simplified register
files enabled by the TTA programming model. All register
files on the accelerator have only a single read and a write
port, making them area economical and power efficient.

In the design, there are three different register files: the
scalar register file contains 24 32-bit registers, the pixel vec-
tor register file has 8 256-bit registers, and the widest vector
register file 8 1024-bit registers for intermediate convolution
results. The 256-bit registers are used to store vectors of 32
8-bit pixels and the 1024-bit registers are used to store 32
32-bit accumulators. By using eight 1024-bit registers we
can interweave the processing of 256 neurons; either on the
same or different output feature maps.

6.4 Control Hardware and Interconnection Net-
work

The proposed accelerator has an instruction based control.
A TTA instruction consists of a separate move slot field for
each bus. Each move slot specifies a move which transports
data from a source to a destination on the corresponding
bus. Sources and destinations are encoded in separate fields.
The length of each field depends on the bus connectivity,
e.g., how many different operations can be triggered, or RF
registers written to, on a given bus.

The interconnection network of the proposed accelerator
consists of seven transport buses. Buses 0–2 are used for
general-purpose scalar computation, such as control flow
and address computations. The function units connected
to these units make up the equivalent of a miniature RISC
machine with RFs, ALUs, LSUs and a control unit. Buses
3–5 are scalar buses optimized for supplying kernel weights
from the weight memory. Bus 6 is used to supply 256-bit
input vectors to the MADD unit, and bus 7 handles the
1024-bit output accumulator vectors from MADD. In total,
the instruction word is 64 bits long.

The accelerator contains a hardware loop buffer. Up to

Figure 7: Weight Data Path.

64 instructions can be stored in the buffer and it keeps track
of the loop counter in hardware. The loop buffer reduces
the number of cycles by more efficiently executing loops and
also minimizes accesses to the instruction memory in code
with iterations, which are typical with CNNs.

6.5 Implementation
The accelerator was designed using the TTA-based co-

design environment (TCE) toolset [19], which includes, e.g.,
a graphical processor editor, a retargetable compiler, a cycle-
accurate simulator, and a processor RTL generator. In this
work the accelerator is programmed in C, but OpenCL C is
also supported by the toolflow.

7. EVALUATION
The accelerator was synthesized using the Synopsys design

compiler using topographical synthesis. We used the 28 nm
FDSOI (low power) technology and tested different target
clock frequencies up to 1.4 GHz. In addition, we synthesized
the design for 65 nm technology to provide more meaningful
comparison with other accelerators that utilize this older
technology. The SRAM memory costs were estimated with
CACTI [22].

Two different CNN applications were used to benchmark
the proposed accelerator: A face detection [15], and a speed
sign detection network [26]. Both networks perform recog-
nition tasks on 720p images and consist of 4 layers.

The parameters of our evaluation networks are listed in
Table 2. The face detection network has fewer connections
between the layers and it is executed a total of 4 times, once
on the normal input image and three times on downscaled
versions of the input; this allowed the network to detect faces
of different sizes. For speed sign detection we used a much
denser connected network without input downscaling.

Table 3 details the available data locality per layer of the
face and speed sign networks respectively. Using the total
number of multiplications per layer and the total size of each
layer’s input feature maps, we can calculate the total num-
ber of operations per pixel. This gives an theoretical upper
bound to the available data locality within each network.

Examining Table 3, we note that the speed sign detection
network has a much higher potential for data reuse. The
available data locality of each layer is much bigger than the
face detection network and the weighted average over all
layers is 6 times bigger. The third layer of the speed sign
network accounts for over 80% of the total computational

load of the entire network. Due to the large number of out-
put feature maps and dense connectivity of this layer, a pixel
is used by 965 computations on average.

Depending on the target supply voltage and clock fre-
quency, the silicon area of AivoTTA varies between 0.32 mm
and 0.37 mm. The three on-chip SRAMs (128 kB) require
0.21 mm2 of the total area. Fig. 9 shows the layout of the
chip for 0.6V at 400 MHz.

Table 4 lists the total number of instructions per applica-
tion and the utilization of the vector unit and loop buffer.
The power consumption of the face detection network is
higher due to the more intensive memory usage and lower
instruction buffer utilization. The speed sign network gets
half of its instructions from the loop buffer and has a vec-
tor utilization of 65%, while the face detection network has
a 36% and 38% utilization for loop buffer and vector unit
respectively.

Both networks have different memory bandwidth charac-
teristics. The face detection network generates 5MB ex-
ternal memory traffic per frame, while speed sign detection
network uses 2.3MB. Most memory traffic is kept in the local
SRAM memories, with the instruction memory accounting
for ca. half of the local traffic.

The power consumption of both networks is comparable.
Figs. 10a and 10b show the power consumption of the face
and speed sign detection respectively for different clock fre-
quencies. The power includes the core and on-chip memo-
ries, but excludes DRAM. For lower frequencies, the memory
power consumption can amount to as much as 85% of to-
tal. For the highest frequencies per voltage level the power
consumption of the SRAMs drops to 40-45%.

Table 5 shows the power breakdown of the accelerator at
400 MHz. The vector multiply/add unit is responsible for
28.6% of the total power consumption, followed by the in-
struction, weight and data SRAM. All other functional units
combined reach only 7.1% of the total power consumption
with 0.8 mW.

From this table we can also deduce the cost of the acceler-
ator’s programmability and assess somewhat the benefits of
the TTA design choice. The instruction SRAM, loop buffer,
fetch & decode logic combined make up 22.7% of the to-
tal power consumption: 2.49 mW. We consider this a small
power cost of a programmable accelerator, which is more
flexible and allowing C and OpenCL C programs to be di-
rectly compiled greatly reduces the design time. The inter-
connection network consumes an additional 0.81 mW. The
register files together only consume 0.41 mW due to their
simplicity.

Both graphs show the energy cost per frame converging.

Table 2: Network parameters for speed sign and face detec-
tion CNNs.

Face Detection No Ni Nm Nn Nk Nl S
Layer 1 4 1 638 358 6 6 2
Layer 2 14 4 317 177 4 4 2
Layer 3 14 14 312 172 6 6 1
Layer 4 1 14 312 172 1 1 1
Speed Sign No Ni Nm Nn Nk Nl S
Layer 1 6 1 638 358 6 6 2
Layer 2 16 6 317 177 6 6 2
Layer 3 80 16 313 173 5 5 1
Layer 4 8 80 312 172 1 1 1

Figure 8: Pixel Data Path.

Figure 9: Chip layout. Purple: loopbuffer; Orange: Mul-
tiply/Add unit; Red: 1024-bit register file; Blue: 256-bit
register file; Yellow: other units, buses, etc.

For example, the speed sign detection network consumes
just less than 5 mJ per frame at 1.1V for any configuration
between 8 and 23 frames per second (500-1400 MHz).

A measure of energy efficiency is the GOPS/W, listed in
Figs. 11a and 11b. We use the effective number of GOPS
and only consider the vector multiply/add operations on
both networks. Arithmetic operations from other functional
units are ignored. These results show big differences be-
tween the networks. The computational efficiency depends
greatly on the TCE compiler’s ability to generate efficient
code. The speed sign network has a much higher utilization
due to network density and better data locality. Table 4

Table 3: Data locality per layer of the face detection net-
work.

Network Face detection Speed sign detection
Layer % of total ops. % of total ops.

ops. / pixel ops. / pixel
1 41.8 35.7 4.6 53.5
2 22.8 19.7 11.3 88.4
3 34.4 36.0 80.9 965.1
4 1.0 1.0 3.2 8.0

Total 100.0 23.6 100 143.2

Table 4: Vector unit and loop buffer utilization
Face Speed Sign

Total instructions (106) 21.2 58.4

Vector MADD instructions (106) 8.15 38.0

Instructions from loop buffer (106) 7.6 29.2
Vector unit utilization 38.5% 65.2%
Loopbuffer utilization 36.1% 50.0%

(a) Face detection network.

(b) Speed sign detection network.

Figure 10: Total power consumption

Table 5: Power breakdown 0.6V 400 MHz
Module Power (mW) (%)

Data SRAM 1.32 11.7
Weight SRAM 1.99 17.6

Instruction SRAM 2.16 19.1
Multiply/Add Unit 3.23 28.6

Other Functional Units 0.80 7.1
Loopbuffer, Fetch & Decode Logic 0.58 5.1

Interconnection Network 0.81 7.2
Register Files 0.41 3.6

Total 11.3 100

(a) Face detection network.

(b) Speed sign detection network.

Figure 11: Energy efficiency (GOPS/W).

shows that while running the speed sign network, 65% of all
cycles contain a multiply/add operation, compared to 39%
for face detection.

The best energy efficiency is found at 28nm, 400MHz,
0.6V. With this synthesis target, the processor can run in-
ference for the speed sign detection network at 7FPS. The
highest reachable single-core performance for this network
is 23FPS. The face detection network has performances of
19FPS and 66FPS, respectively.

A sparse network contains less exploitable data locality
and cannot be run as efficient as a more dense network. For
sparse networks, it becomes more difficult for the compiler
to efficiently schedule a multiply/add operation every cy-
cle. Since there are less operations per pixel (Table 3), the
compiler has to schedule more operations to load data in
the background, increasing the scheduling complexity. Ad-
ditionally, the face detection network loads multiple scaled
images from DRAM and spends more cycles on buffering
this data on local SRAM.

Compiler optimizations can greatly improve the compu-
tational efficiency. Manual analysis of the compiled code of
each layer’s inner loops show that many opportunities for
improvement remain.

The main contributors to the low energy usage are the
use of local banked memories and the TTA programming
model, which enable simple control unit and register files.
We almost exclusively use local memories and avoid costly
external memory transfers by using layer fusion and other
techniques that change the order of operations. The TTA
instruction overhead is relatively low since instruction de-
coding is simple and the use of an instruction buffer reduces
the instruction loads by up to 50%.

7.1 Comparison
Table 6 shows a number of ASIC CNN accelerators and

several implementations of the proposed accelerator with dif-
ferent clock frequencies and voltages. Since different tech-
nologies are difficult to compare, we also synthesized our
design for 65 nm CMOS technology.

The proposed accelerator has less computational resources
than most of our comparison targets. The only exception is
the NVE, which uses 16-element vectors instead of our 32.

The different accelerators listed in the table employ differ-
ent techniques of parallelizing computation. Both our design
and the NVE perform convolution in time and map compu-
tational resources to different neurons. This makes utiliza-
tion of the functional units invariant to convolution window
size. Other accelerators such as the DianNao variations and
Origami, perform convolution in space, mapping computa-
tional resources to different pixels on the receptive fields of a
neuron. This makes the computational efficiency dependent
on the window size and can negatively impact utilization if
hardware choices and network parameters do not match.

The most efficient configuration has a low power budget.
At 400 MHz the proposed accelerator consumes 11 mW for
1434 GOPS/W. Designs with higher clock frequencies trade
an increase in performance for a decrease in power efficiency.
However, the energy cost per frame for both the dense and
sparse network remain stable.

External memory bandwidth is a major constraint for
CNN accelerators. All power budgets listed exclude DRAM
power consumption. Using layer fusion, our design reduces
the number of external accesses to a minimum; only the
first layer reads from DRAM. The NVE uses the exact same
speed sign detection network as was used for our benchmark-
ing and lists the number of external accesses. Our implemen-
tation of this network makes 3.2 x 105 external accesses, a
factor of 56 fewer compared to the 1.8 x 107 DRAM read
operations of the NVE. The NVE uses a much smaller local
memory and so has to use DRAM more intensively. For the
same reason the NVE has a smaller chip area even though
it uses a bigger technology.

When we express the bandwidth efficiency in GOPS/GB,
we notice significant differences between our dense and sparse
network. The speed sign detection network loads a total of
2.3 MB from DRAM for an efficiency of 1081 GOPS/GB.
The face detection network has a much bigger memory foot-
print due to the fact that it loads multiple rescaled images for
a total load of 5 MB. Combined with the fact that this net-
work is more sparse and performs fewer computations, the
bandwidth efficiency drops to 102.4 GOPS/GB. NeuFlow
and Origami report 50 and 521 GOPS/GB respectively. It
should be noted that the only design with a clearly better
reported bandwidth economy is the server-oriented Tensor
Processing Unit [20], which has a very large on-chip memory.

The accelerator designed in [33] avoids most multiplica-

Table 6: Comparison with state-of-the-art

mW V Tech. MHz GOPS GOPS GOPS/W On-chip GOPS Control mm2 GOPS
(nm) /W Core only Mem. /GB /mm2

Neuflow [31] 600 1.0 45 400 294 490 N/A 75 kB 50 Dataflow 12.5 23.5

Origami [7] 93 0.8 65 189 55 803 N/A 43 kB 521 Config 1.31 42

NVE [30] 54 N/A 40 1000 30 559 595 19 kB 125 VLIW 0.26 115

DianNao [9] 485 N/A 65 980 452 931 N/A 44 kB N/A FSM 3.02 149.7

ShiDianNao [12] 320 N/A 65 1000 1281 4001 4701 288 kB N/A FSM 4.86 26.3

SoC [11] 51 0.575 28 200 79 N/A 1542 6 MB N/A Config 34 2.3

DNPU [33] 35 0.765 65 50 73 21002 N/A 290 kB N/A FSM 16 4.5

TPU [20] 40000 N/A 28 700 460003 11503 N/A 28 MB 13523 CISC <331 >139

AivoTTA 11 0.6 28 400 16 1434 2030 128 kB 1081 TTA 0.36 44.4
(proposed) 35 0.8 ” 900 36 1049 ” ” 0.36 100

41 0.85 ” 1000 40 986 ” ” 0.36 112
93 0.95 ” 1350 54 587 ” ” 0.36 150
116 1.1 ” 1400 57 489 ” ” 0.35 163
41 1.0 65 350 14 349 ” ” 1.43 9.8

1 Indicates theoretical peak performance, as opposed to measurements on a real network.
2 Q-table lookup of precomputed multiplication results.
3 Results with 16-bit arithmetic. TPU can also operate at 8-bit for double performance.

tions by performing lookups in a Q-table containing pre-
computed multiplication results. It contains a custom in-
struction set-based controller that configures finite state ma-
chines on lower level convolution cores.

[11] presents a chip with multiple DSP cores for general
vision processing, a big on-chip memory, and a co-processor
subsystem with multiple convolution accelerators. The pa-
per only lists power consumption for the co-processor, ex-
cluding on-chip memory. Control of the convolution accel-
erators is handled through a set of configuration registers
that configure a stream switch, allowing the reuse of data
streams. Multiple accelerators can be grouped or chained
together.

8. CONCLUSION
The available instruction level and data level parallelism,

and the regular structure of convolutional neural networks
makes them very suitable for VLIW-style processors. In
this paper, we demonstrated that a transport triggered ar-
chitecture with wide SIMD operations allows for additional
energy savings by simplifying the architecture and allow-
ing more compile time optimizations. By exploiting data
locality and using local memories, the number of external
memory accesses could be minimized.

The proposed accelerator is scalable to match energy bud-
gets and performance requirements of the application. Most
importantly, the accelerator is software programmable, al-
lowing memory access patterns and computational ordering
to be easily customized for specific networks. The costs of
programmability were offset by the efficient transport trig-
gered architecture and optimized data locality.

A compiler programmable accelerator offers more flexibil-
ity than fixed function accelerators in exchange for an in-
crease in power consumption. FPGA solutions offer even
more flexibility but cannot compete with the power effi-
ciency of the proposed accelerator. The compiler is designed
to adapt to changes in the architecture, allowing for perfor-
mance portability in the form of scalability.

The efficiency of the accelerator is strongly dependent on

the density of the network, the available data locality and
the compiler’s ability to exploit this locality. Our dense ex-
ample network achieves 1434 GOPS/W, while the sparse
example network performs at 813 GOPS/W. Both networks
can perform object detection at a cost of less than 2 mJ per
frame, allowing for battery powered, mobile object recogni-
tion in ubiquitous visual sensing applications.

In the future, we plan to improve the TCE compiler to
further increase vector MADD utilization, and allow com-
pilation for architectures with more parallel units. In early,
manually scheduled results, this would give some improve-
ment in computational efficiency. Moreover, we are working
on optimizing the design for FPGA soft core use.

9. REFERENCES
[1] M. Alwani, H. Chen, M. Ferdman, and P. Milder.

Fused-layer CNN accelerators. In Proc. Int. Symp.
Microarch., pages 1–12, 2016.

[2] S. Anwar, K. Hwang, and W. Sung. Structured
pruning of deep convolutional neural networks. ACM
J. Emerging Tech. in Comput. Sys., 13(3):32, 2017.

[3] B. Barry, C. Brick, F. Connor, D. Donohoe,
D. Moloney, R. Richmond, M. O’Riordan, and
V. Toma. Always-on vision processing unit for mobile
applications. IEEE Micro, 35(2):56–66, 2015.

[4] A. Blanton, K. C. Allen, T. Miller, N. D. Kalka, and
A. K. Jain. A comparison of human and automated
face verification accuracy on unconstrained image sets.
In Proc. Conf. Computer Vis. and Pattern Recog.
Workshops, June 2016.

[5] R. Brockers, M. Hummenberger, S. Weiss, and
L. Matthies. Towards autonomous navigation of
miniature UAV. In Proc. Conf. Computer Vis. and
Pattern Recog. Workshops, pages 645–651, 2014.

[6] C. Bobda. Distributed Embedded Smart Cameras:
Architectures, Design and Applications. Springer,
2014.

[7] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi,
B. Muheim, and L. Benini. Origami: A convolutional

network accelerator. In Proc. Great Lakes Symp.
VLSI, pages 199–204, 2015.

[8] L. Cavigelli, M. Magno, and L. Benini. Accelerating
real-time embedded scene labeling with convolutional
networks. In Proc. Design Automation Conf., pages
1–6, 2015.

[9] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen,
and O. Temam. DianNao: A small-footprint
high-throughput accelerator for ubiquitous
machine-learning. In Proc. Int. Conf. Architectural
Support for Programming Languages and Operating
Systems, pages 269–284, 2014.

[10] H. Corporaal. Microprocessor Architectures: From
VLIW to TTA. John Wiley & Sons, Inc., 1997.

[11] G. Desoli, N. Chawla, T. Boesch, S. p. Singh, et al. A
2.9TOPS/W deep convolutional neural network SoC
in FD-SOI 28nm for intelligent embedded systems. In
Proc. Int. Solid-State Circuits Conf., pages 238–239,
2017.

[12] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
X. Feng, Y. Chen, and O. Temam. ShiDianNao:
Shifting vision processing closer to the sensor. In Proc.
Int. Symp. Computer Architecture, pages 92–104, 2015.

[13] C. Farabet, B. Martini, B. Corda, P. Akselrod, et al.
NeuFlow: A runtime reconfigurable dataflow processor
for vision. In Proc. Conf. Computer Vis. and Pattern
Recog. Workshops, pages 109–116, 2011.

[14] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun.
CNP: An FPGA-based processor for convolutional
networks. In Int. Conf. Field Programmable Logic and
Applications, pages 32–37, 2009.

[15] C. Garcia and M. Delakis. Convolutional face finder: a
neural architecture for fast and robust face detection.
IEEE Trans. Pattern Analysis and Machine
Intelligence, 26(11):1408–1423, 2004.

[16] V. Gokhale, J. Jin, A. Dundar, B. Martini, and
E. Culurciello. A 240 G-ops/s mobile coprocessor for
deep neural networks. In Proc. Conf. Computer Vis.
and Pattern Recog. Workshops, pages 696–701, 2014.

[17] J. Hoogerbrugge and H. Corporaal. Register file port
requirements of transport triggered architectures. In
Proc. Int. Symp. Microarch., pages 191–195, 1994.

[18] P. Jääskeläinen, H. Kultala, T. Viitanen, and
J. Takala. Code density and energy efficiency of
exposed datapath architectures. J. Signal Process.
Syst., 80(1):49–64, July 2015.

[19] P. Jääskeläinen, T. Viitanen, J. Takala, and H. Berg.
HW/SW Co-design Toolset for Customization of
Exposed Datapath Processors, pages 147–164. Springer
International Publishing, 2017.

[20] N. P. Jouppi, C. Young, N. Patil, P. David, et al.
In-datacenter performance analysis of a tensor
processing unit. In Proc. Int. Symp. Computer
Architecture, pages 1–12, 2017.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proc. IEEE, 86(11):2278–2324, 1998.

[22] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi. CACTI-P: Architecture-level modeling for
SRAM-based structures with advanced leakage
reduction techniques. In Proc. Int. Conf.
Computer-Aided Design, pages 694–701, 2011.

[23] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J.
Wood. Controlled flight of a biologically inspired,
insect-scale robot. Science, 340(6132):603–607, 2013.

[24] Movidius. Always-on vision processing unit for mobile
applications.

[25] M. Peemen, B. Mesman, and H. Corporaal. Efficiency
optimization of trainable feature extractors for a
consumer platform. In Proc. Int. Conf. Adv. Concepts
for Intelligent Vis. Systems, pages 293–304, 2011.

[26] M. Peemen, B. Mesman, and H. Corporaal. Speed sign
detection and recognition by convolutional neural
networks. In Proc. Int. Automotive Congress, pages
162–170, 2011.

[27] M. Peemen, B. Mesman, and H. Corporaal. Inter-tile
reuse optimization applied to bandwidth constrained
embedded accelerators. In Proc. Design, Automation
& Test in Europe Conf., pages 169–174, 2015.

[28] M. Peemen, W. Pramadi, B. Mesman, and
H. Corporaal. VLIW code generation for a
convolutional network accelerator. In Proc. Int.
Workshop on Software and Compilers for Embedded
Systems, pages 117–120, 2015.

[29] M. Peemen, A. A. A. Setio, B. Mesman, and
H. Corporaal. Memory-centric accelerator design for
convolutional neural networks. In Proc. IEEE Int.
Conf. Computer Design, pages 13–19, 2013.

[30] M. Peemen, R. Shi, S. Lal, B. Juurlink, B. Mesman,
and H. Corporaal. The neuro vector engine:
Flexibility to improve convolutional net efficiency for
wearable vision. In Proc. Design, Automation & Test
in Europe Conf., pages 1604–1609, 2016.

[31] P. H. Pham, D. Jelaca, C. Farabet, B. Martini,
Y. LeCun, and E. Culurciello. Neuflow: Dataflow
vision processing system-on-a-chip. In IEEE Int.
Midwest Symp. Circuits and Systems, pages
1044–1047, 2012.

[32] Samsung electronics. Samsung gear2 tech specs.

[33] D. Shin, J. Lee, J. Lee, and H. J. Yoo. 14.2 DNPU: An
8.1TOPS/W reconfigurable CNN-RNN processor for
general-purpose deep neural networks. In Proc. IEEE
Int. Solid-State Circuits Conf., pages 240–241, 2017.

[34] T. Starner. Project glass: An extension of the self.
IEEE Pervasive Computing, 12(2):14–16, 2013.

[35] D. G. Stork and P. R. Gill. Optical, mathematical,
and computational foundations of lensless
ultra-miniature diffractive imagers and sensors. Int. J.
Advances in Systems and Measurements, 7(3):4, 2014.

[36] R. Wood, B. Finio, M. Karpelson, K. Ma,
N. Pérez-Arancibia, P. Sreetharan, H. Tanaka, and
J. Whitney. Progress on ’pico’ air vehicles. Int. J.
Robotics Research, 31(11):1292–1302, 2012.

[37] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and
J. Cong. Optimizing FPGA-based accelerator design
for deep convolutional neural networks. In Proc. Int.
Symp. Field-Programmable Gate Arrays, pages
161–170, 2015.

