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ABSTRACT

This paper presents a low-latency neural network based speech
enhancement system. Low-latency operation is critical for speech
communication applications. The system uses the time-frequency
(TF) masking approach to retain speech and remove the non-speech
content from the observed signal. The ideal TF mask are obtained
by supervised training of neural networks. As the main contribution
different neural network models are experimentally compared to in-
vestigate computational complexity and speech enhancement perfor-
mance. The proposed system is trained and tested on noisy speech
data where signal-to-noise ratio (SNR) ranges from -5 dB to +5 dB
and the results show significant reduction of non-speech content in
the resulting signal while still meeting a low-latency operation crite-
rion, which is here considered to be less than 20 ms.

Index Terms— Speech enhancement, neural networks

1. INTRODUCTION

Speech enhancement is important in many audio applications in-
cluding noise reduction of poor quality recording, background noise
suppression of audio over communication channel, and improving
speech intelligibility of hearing-aid devices. Many applications re-
quire low-latency operation to guarantee good user experience. In
the past speech enhancement has been approached by methods like
spectral subtraction (e.g. [1, 2, 3]) and Wiener filtering (see e.g. [4]).
These rely on estimated noise or statistics that, when misestimated,
causes artifacts and leakage of non-speech content to the enhanced
signal. Recently, machine learning approaches such as deep neu-
ral networks (DNN5s) have become popular in speech enhancement
and separation [5][6], because they are capable of learning complex
non-linear enhancement models.

In the time-frequency masking based speech enhancement the
noisy input signal is masked so that the target signal, i.e. speech,
is retained. Several approaches have been introduced to estimate the
mask, including binary mask [7], ratio mask [8], and complex-valued
mask [9]. In the neural network based approach the desired mask is
predicted from the noisy input signal in the framewise processing.
For low-latency speech communication operations, the length of the
frame has to be short (e.g. < 20 ms) and it is required that the pro-
cessing occurs within the specified time constraint. The processing
time is affected by the chosen length of the synthesis time-window.
Furthermore, the complexity of the neural network structure affects
the processing time from the input to the output and therefore the
prediction time per time frame is an important property.
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DNN:ss such as fully-connected deep neural network (FC-DNN)
and recurrent neural network (RNN) are state-of-the-art approaches
to obtain time-frequency (TF) mask [10], but their practical com-
putational performance has not been thoroughly investigated for TF
masking based speech enhancement, i.e., what is the throughput time
of DNN based speech enhancement models. To investigate this mat-
ter, this paper focus on the use of FC-DNNs and RNNs for speech
enhancement in the low-latency scenario. Different neural network
models and masking approaches are compared to investigate their
computational complexity and speech enhancement performance.

The rest of the paper is organized as follows. Section 2 presents
the proposed enhancement approach. Section 3 describes the method
to obtain the enhancement model. Section 4 presents the data used
for training and testing. Section 5 presents the evaluation of the en-
hancement model and Section 6 the achieved results. Section 7 con-
cludes the paper.

2. TIME-FREQUENCY MASKING FOR SIGNAL
ENHANCEMENT

The signal model used in this work is
x(k) = s(k) +n(k), (1

where z(k) is the observed noisy signal, s(k) is the clean signal,
n(k) is the background noise, and k denotes time index. Due to
the nature of the TF masking based enhancement, the conversion to
the frequency domain is made using short-time Fourier transform
(STFT). The conversion is performed over a short block of time
domain samples. The length K of this window and the frame-hop
determine the minimum algorithmic latency of the system. With
frame-hop K /2, to synthesize the first enhanced frame there is a
delay of K + K/2 samples. However, the first & /2 samples of the
enhanced frame can be synthesized after K input samples. After
this initial delay, the following enhanced frames can be produced at
one frame-hop interval (e.g. K/2) given that processing time of the
samples is less or equal to the one frame-hop time.

After the conversion signal model becomes as follows in the
STFT domain.

z(t, f) = s, f) +n(t, f), 2
where s(¢, f) is the clean signal, n(¢, f) is the background noise,
and z(t, f) is the observed noisy signal. ¢ and f are the time frame
index and the frequency bin index, respectively. With TF masking,
the STFT of the estimated clean signal §(¢, f) is obtained as

8(t, f) = a(t, f)m(, f), 3)



where m(t, f) is the TF mask. Finally, the time-domain signal is
obtained by applying inverse STFT to §(¢, f) and using the overlap-
add method [11] to process sequential frames with 50 % overlap.
The TF mask can be estimated in many ways. In this work,
two mask types are used. The log-amplitude-ratio mask [12] uses
the clean signal s(¢, f) and the noisy signal z(¢, f) to estimate TF
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The generalized Wiener mask (see e.g. [4]) is defined as
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where p for the classic Wiener mask is 2. As shown by (5), the
generalized Wiener masks need the noise estimate n(¢, f).

3. TIME-FREQUENCY MASK ESTIMATION USING
NEURAL NETWORK

The chosen approach to predict TF masks is based on supervised
learning (see, e.g. [13]) and neural networks, i.e., the features of the
input signal are shown to the neural network with the target output.
Here, the target output is the TF mask, which, when applied, extracts
the target signal from the observed signal. During the training, the
neural network evolves into a model, which produces the TF masks
given the input features.

3.1. DNN models

The network architectures used in this work include FC-DNNs and
RNNs. From the RNNs variants, long short-term memory (LSTM)
and gated recurrent unit (GRU) are used. FC-DNNs is chosen for its
simplicity and therefore it is expected to have low frame processing
time. The recurrent structures are chosen for their inherent capability
to exploit the temporal structure of the data.

Based on a pilot test, two-layer FC-DNNs, and LSTM and GRU
with four to five layers are most promising for this task. There-
fore only those architectures are discussed. The number of neurons
is chosen also based on the initial results and the most promising
networks are presented in this paper. Hyperbolic tangent (tanh) and
rectified linear unit (relu) are used as the hidden activation functions.
The output layer activation is always linear.

3.2. Training of Neural Network for Mask Prediction

The features are extracted from the input audio and they are fed to
the neural network, which predicts the TF mask (¢, f). Here, the
features are the natural logarithm of the magnitude spectrum and
they are standardized by removing the mean and scaling the variance
to unity.

Instead of feeding just current frame’s features, feature vector
concatenation is tested to exploit temporal dependence of the data.
The features of the four frames preceding the current frame are
stacked into a long feature vector. These augmented feature vectors
are used only with FC-DNNs, since RNNs exploit the temporal
structure inherently. The sequence length of the RNNs in training
phase is 64 frames.

The optimization algorithm of the network was selected empiri-
cally by observing the behavior of the training error over the epochs.
Adamax [14] performed best for this task, but also Adadelta [15]
and Adagrad [16] were used due to better convergence of the train-
ing error in some cases or just to see its performance in comparison

to Adamax. Mean squared error is used as the loss function training
the neural network.

3.3. Mask post-processing

Due to relatively short time windows required for low-latency opera-
tion, large changes in sequential mask values may result in distortion
(perceived as "roughness") in the masked signal (using longer win-
dow length, e.g., 32 ms "roughness" is not present). Here, first-order
exponential smoothing was used with 0.8 as the smoothing factor.

4. DATA AND PROCESSING DESCRIPTION

The dataset is derived from the publicly available CHIME3 [17] sam-
ples. CHiME3 contains speech data derived from Wall Street Jour-
nal (WSJO) corpus (83 speakers), and background samples, which
include cafeteria (CAF), street (STR), pedestrian (PED), and bus
(BUS). The noisy samples are obtained by mixing the clean WSJO
sentences with the background according to (1). The background
signal is mixed with signal-to-noise ratio (SNR) ranging from -5
dB to +5 dB. The SNR for each sample is randomly chosen from
the range above. The SNR is global value over the sentence. All
the available clean speech sentences were used and the noise sig-
nal was obtained by extracting a randomly chosen segment from the
background recordings. The length of the segment was matched to
the length of the clean speech, which is possible because the back-
ground recordings in CHiME3 are tens of minutes long whereas the
clean speech sentences are few seconds long. Each background seg-
ment was used only once. The data is split into isolated training (75
%), validation (18.75 %), and test (6.25 %) set. The isolation means
that each speaker can be only in one of the sets.

The sampling frequency of the database and processing is 16000
Hz. Since low latency operation is required, the window length is
16 ms (256 samples) and sequential time frames overlap by 50 %
(128 frame hop). Each frame is windowed using a squared-root
of Hann window function to guarantee perfect reconstruction using
overlap-add. The length of STFT is 256 samples of which 129 first
values are retained per frame.

5. EVALUATION

The proposed system is implemented in Python v. 2.7 utilizing Keras
v. 2.0.8 deep learning library [18]. The speech enhancement perfor-
mance of the proposed method is evaluated using Source to Distor-
tion Ratio (SDR) [19] from the synthesized audio. The SDR scores
are obtained using mir evaluation toolbox [20]. First, SDR score is
calculated between the unprocessed and the reference resulting in
SDR.0isy. Next, SDR score is calculated between the file processed
by the enhancement model and the reference file (clean signal) re-
sulting in SDR¢,. The ultimate score of a given file is obtained as
the difference between values: SDRA = SDRenn — SDRyoisy. The
mean SDRA over all the files in the test set is the performance score
of a given model.

In order to estimate the enhancement model’s potential use in a
real-time system, the processing time of one frame-hop is calculated
by calling the t ime method of the Python module t ime [21] when
the processing of a frame starts. This time is stored and after the
processing is done t ime method is called again and the one frame
hop is the average difference of these times calculated over test au-
dio file. The nominal one frame-hop processing time is obtained
using a MacBook Pro Core i5 2.9 GHz 13-Inch (Late 2016) 16 GB
memory. The frame hop processing time includes data read from



memory, noisy data conversion to the frequency domain, feature ex-
traction, the processing time of the model (predict function of
the Keras [18] model running Tensorflow (v. 1.3) [22] backend was
used), conversion to the time domain signal, and write to the mem-
ory.

6. RESULTS

In this section the speech enhancement results of the proposed ap-
proach for speech enhancement are presented with a specific em-
phasis on the prediction speed. Different network architectures and
their training schemes are compared in Section 6.1 and 6.2. The per-
formance of the different masking approaches is presented in Sec-
tion 6.3.

6.1. Comparison of Network Architectures

This section presents the comparison between different neural net-
work architectures and the number of layers and nodes per layer.
This comparison is relative, i.e., all networks are trained with the
same features, mask type (logarithm-ratio-mask (4)), and mask post-
processing scheme and only the network and its training scheme is
changing.

Figures 1, 2, and 3 present the performance in terms of SDRa
as a function of one frame-hop prediction time (in milliseconds)
for FC-DNN, LSTM, and GRU networks, respectively. Since, one
frame-hop is 8 ms (16 ms window length and 50 % overlap), the
networks exceeding this limit (illustrated with the dashed black line)
would not meet the real-time operation with the comparable com-
putational power. However, networks achieving prediction times ~
10 ms are still possible candidates since the prediction times were
run on the general purpose laptop running regular operating system
processes during the prediction time test. Thus, with more computa-
tional resources and more optimized implementation of the models,
the points in the figures would move to the left while the line would
remain in the same position.

In each figure, the performance of a given network is presented
by a unique color/marker (within the figure). The network architec-
ture is described in the legend of each figure; in Figure 1 the best
performing network achieves SDRa of 5.0 dB with approximately
2.1 ms one frame-hop prediction time and it is marked with a A
symbol. The network is a two-layer FC-DNN ("Dense" is a regular
layer of a feed forward neural network) and it consists of 1000 units
in each layer with relu as the hidden activation function. This net-
work is trained using 0.25 dropout rate, batch size is 10, optimizer is
Adagrad [16], feature vector length (FVL) is 645, and the number of
epochs is 150.

In Figure 2 best performing LSTM while meeting the low-
latency criterion is presented with a <« symbol and it achieves
SDRA of 5.3 dB with approximately 6.0 ms one frame-hop predic-
tion speed. This network consists of four layers with 256 units per
layer and has tanh as the hidden activation. The network is trained
without dropout, batch size is 10, optimizer is Adamax, FVL is 129,
and number of epochs is 150.

In Figure 3 best performing low-latency GRU achieves SDRa of
5.5 dB with approximately 7.8 ms one frame-hop prediction speed
and it is marked with a X symbol. The network consists of five layers
with 256 units per layer and has relu as the hidden activation. The
network is trained with dropout rate 0.25, batch size is 400, optimizer
is Adamax, FVL is 129, and number of epochs is 250.
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Fig. 1: FC-DNN performance as a function of one frame-hop pre-
diction time.
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Fig. 2: LSTM performance as a function of one frame-hop predic-
tion time.

6.2. Detailed Analysis of the Results

As noted above, the enhancement performance of LSTM and
GRU networks is better than that of FC-DNN networks. How-
ever, FC-DNNs in general have lower one frame-hop processing
time than the recurrent structures. Thus, while sacrificing the en-
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Fig. 3: GRU performance as a function of one frame-hop prediction
time.

Table 1: Comparison of masking strategies without and with post-
processing (indicated with pp). The log-amplitude-ratio mask and
the generalized Wiener masks are denoted as mg and mw, respec-
tively.

mr  mw  mw mg(Pp) mw (pp) mw (pp)
=1 @®=2) =D ®=2
SDRnoisy

-4.5 7.1 8.5 8.9 6.3 7.5 8.1
-3.5 6.6 7.8 8.1 5.7 6.8 7.2
-2.5 6.4 7.9 7.8 5.6 6.8 6.9
-1.5 6.1 7.5 7.3 5.3 6.4 6.4
-0.5 6.0 7.4 7.1 5.3 6.3 6.2
0.5 5.4 6.5 5.9 4.7 5.5 5.1
1.5 5.0 5.9 5.2 4.2 4.9 4.3
2.5 4.8 5.6 4.8 4.3 4.6 3.9
3.5 4.4 4.6 3.7 3.7 3.6 2.8
4.5 3.8 4.0 3.0 3.2 2.9 2.0
Average 5.5 6.6 6.2 4.8 5.5 5.3

hancement performance, FC-DNN may be good option in a very
low-latency operation mode and in applications with scarce compu-
tational resources.

The FC-DNNs presented in this paper contain only two layers
since for the data used in this work deeper and wider (more neurons
per layer) networks overfit; already three-layer networks performed
worse in our experiments (results not included in this paper) than any
of tested two layer networks for this data. The enhancement perfor-
mance of FC-DNN can be improved by concatenating sequential fea-
ture vectors. The FC-DNN network presented by the black A marker
in Figure 1 uses five concatenated feature vectors and it achieves
SDRA = 5.0dB (cf. SDRA ~ 3.9 dB without concatenation). Fur-

thermore, the concatenation did not slow down the prediction speed.
This result indicates that temporal dependence of data can be ex-
ploited in this way in the case of DNNs. However, training with the
temporally augmented feature vectors may require changes; in this
case the optimizer had to be changed to Adagrad [16] from Adamax
due to very slow decrease of the training error with the latter. Fur-
thermore, training with more epochs increases the performance of
the FC-DNN, e.g., see model denoted by magenta pentagon.

LSTMs and GRUs networks included in this work can be 4 —
5 layers without overfitting issues, but as the model complexity in-
creases with more layers and neurons and there is no significant ob-
served improvement after certain point and the training parameters
are more important to obtain good enhancement performance. Fur-
thermore, the increase of the model complexity results in longer pre-
diction time.

The smoothing of the predicted mask (Section 6.1) was intro-
duced to reduce the perceived "roughness" of the time-frequency
masked signal. This approach decreases the SDRa, but some lis-
teners preferred the sound quality obtained with the smoothed mask
to the unsmoothed mask. For comparison to the results presented
above, the traditional spectral subtraction achieves SDRa =~ 1.0 dB
(the method implemented in [23] was used).

6.3. The Effect of Time-frequency Mask Type to Performance

This section presents the enhancement results obtained with different
masking strategies. The results are obtained with a GRU network:
five layers, 128 units per layer, training phase sequence length 64,
hyperbolic tangent hidden activation, and linear output activation.
For this model the one frame-hop prediction time is approximately
6.5 ms run on the hardware presented in Section 5. Table 1 presents
the results with and without mask post-processing (see Section 3.3).
The table details by how SDRAa changes with a given SNR (i.e.
SDR,0isy) of the unprocessed sound sample as well as the average
over all SNRs. E.g., in Table 1, using the log-magnitude-ratio mask
mp (4) without post-processing for the unprocessed samples with
SDR0isy = —4.5 dB, the average SDRa ~ 7.1 dB.

The results in Table 1 show that the Wiener mask with p = 1
performs best for this type of data achieving SDRa ~ 6.6 dB. The
Wiener filter with p = 2 achieved SDRa ~ 6.2 dB and may be sub-
jectively less preferable than the Wiener mask with p = 1 and log-
magnitude-ratio mask (SDRa ~ 5.6 dB). Furthermore, mask post-
processing has a negative effect on the enhancement performance in
terms of SDRa. This result is expectable due to the chosen mask
post-processing approach. However, some listeners may prefer the
sound samples obtained using the post-processing approach.

7. CONCLUSIONS

This paper investigated a neural network based single-channel
speech enhancement aimed at low-latency applications. The reg-
ular feed-forward neural networks and recurrent neural networks
were tested on a modern laptop. The best performing real-time
capable network architecture was gated recurrent unit achieving
approximately 6.6 dB improvement in Source to Distortion Ra-
tio (SDR). Long Short-Term Memory architecture achieved sim-
ilar performance. Fully-connected deep neural network FC-DNN
achieved moderate performance compared to the recurrent struc-
tures, but their computational economy was better than that of the
tested recurrent networks making FC-DNNs a viable solution for
applications with less computational resources.
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