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Abstract—High-accuracy positioning enables emerging of new
vertical markets for the forthcoming fifth generation (5G) mobile
networks. In this paper, we study network-side positioning and
related location-based beamforming for high-speed train (HST)
scenario in 5G New Radio (NR) networks. To avoid tight
synchronization requirements between the train and the network,
we consider Time-Difference-Of-Arrival (TDOA) measurements
based on 5G NR uplink sounding reference signals. Moreover, in
order to facilitate the location-based beamforming, we introduce
methods for removing measurement outliers and for selecting
the optimal reference measurement for the time-difference eval-
uations. The train is tracked by utilizing Extended Kalman
Filter (EKF), which is capable to track and predict the train
position for the location-based beamformer in real-time. Based
on results obtained from extensive 5G NR compliant simulations,
the proposed approach is able to achieve a sub-meter positioning
accuracy with 90% availability, which is sufficient for many
mission-critical positioning applications in the considered HST
scenario.

Index Terms—Positioning, Location-based beamforming, Fifth
generation mobile networks, 5G, New Radio, NR, High-speed
trains, HST

I. INTRODUCTION

The high-speed train (HST) networks establish one of the
most promising vertical markets emerging from the fifth gen-
eration (5G) new radio (NR) technologies. Compared to pre-
vious generation technologies, 5G NR introduces various new
features, such as increased subcarrier spacing, new reference
signals and reduced time slot durations, for improved system
performance in the high-speed scenario. In addition, the 5G
NR supports new millimeter wave bands enabling utilization
of larger bandwidths with increased data throughput, and
facilitating massive beamforming.

The considered baseline HST network structure and the
related system parametrization has been specified by the 3rd
Generation Partnership Project (3GPP) in [1, Section 6.1.5].
In order to support both consistent passenger user experience
and critical high-reliability train communication, the train is
equipped with a relay node, which is able to distribute the
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communication link between all the carriages. The consid-
ered HST network is expected to support mobility of up to
500 km/h, which induces several challenges regarding physical
layer design and implementation of efficient Radio Resource
Management (RRM) algorithms.

High-accuracy and high-availability positioning has been
considered as one of the key features in 5G networks [2], [3].
For example, as specified in [2, Table 6.3-1], regarding appli-
cations for machine control and transportation, the required
positioning accuracy (in 2D), velocity estimation accuracy,
and the estimation availability are given as 0.1-3 m, 0.5-
2 m/s and 95%-99.9%, respectively. In this paper, we propose
a novel method for HST positioning in 5G NR networks,
which is able to achieve the given performance requirements.
Thus, as a supplementary positioning method, the proposed
approach facilitates numerous applications for railway system
management from traffic control to mission-critical safety
features, which have potential to boost the deployment of
new 5G NR networks. In addition, as studied in [4], position
information introduces a powerful asset for location-aware
Radio Resource Management (RRM), including for example,
location-based beamforming, mobility management and proac-
tive resource utilization, as well as enables mitigation of signal
impairments due to high-speed scenario in terms of Doppler
shift compensation and transmission timing alignment.

Mobile-network-based positioning has been earlier studied,
for example, in [5] regarding the fourth generation networks,
and in [6], [7] regarding 5G networks. Moreover, in [8], train-
side HST positioning in 5G NR has been studied based on
downlink (DL) reference signals. On the contrary, in this paper
the proposed positioning approach is based on network-side
positioning, where the network nodes receive uplink (UL) 5G
NR reference signals transmitted by the train. By this way, it is
possible to provide real-time position information to the train
management systems and location-aware RRM algorithms, as
the position information is maintained at the network-side.
By exploiting the available position information, we utilize
location-based beamforming at the network nodes, and thus,
avoid expensive beam training methods for searching the op-
timal beam directions. In order to avoid tight synchronization
requirements between the train and the network, we con-
sider Time-Difference-Of-Arrival (TDOA) for the positioning
measurements. Furthermore, the train is tracked by using the
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Fig. 1. Illustration of the considered HST and positioning scenario. The train transmits a periodical sounding reference signal at intervals of 100 ms with
fixed TX beamformers along the track. The RX beamformers in the network RRHs are dynamically directed towards the train based on the real-time estimate
of the train position.

Extended Kalman Filter (EKF), which applies linearization of
the non-linear TDOA-based measurement model and provides
computationally feasible approach for practical implementa-
tions. The main contributions of this paper can be described
and summarized as follows:

• Efficient EKF based positioning and tracking solution,
building on 5G NR uplink sounding reference signal
structures and the associated TDOA measurements in the
network nodes, is developed and described.

• The proposed solution and positioning concept are for-
mulated such that setting beam directions of all network
nodes is accomplished without any additional beam-
training methods or reference signals.

• A novel method for selecting an optimal reference timing
measurement for the TDOA, based on the Bayesian
information criterion, is described.

• Efficient outlier detection methods for measurements and
position estimates are developed and implemented, which
are crucial for the location-based beamforming in order
to avoid accumulation of positioning and beam direction
error, and correspondingly losing the signal.

• Comprehensive performance evaluations complying with
the 3GPP 5G NR Release’15 specifications and HST
evaluation assumptions are provided, showing the avail-
ability of sub-meter positioning accuracy with at least
90% probability.

The rest of the paper is organized as follows. Section II
describes the considered system model, including the HST
scenario, channel models and transmit and receive signals
structures. In Section III, the methods for obtaining the TDOA
measurements and removing measurement outliers are devel-
oped and presented. After this, in Section IV, the considered
EKF tracking algorithm is introduced. Finally, the performance
of the proposed approach is evaluated and analyzed in section
V, while the conclusions are drawn in Section VI.

II. SYSTEM DESCRIPTION AND CHANNEL MODEL

The studied HST scenario is based on the description of the
high-speed deployment model at 30 GHz carrier frequency

presented in [1, Section 6.1.5]. As illustrated in Fig. 1, the
network comprises Remote Radio Heads (RRH) located on
alternate sides of the track at intervals of 550m. In the train,
there are two antenna panels with fixed TX beams in parallel
with the nose and tail of the train. The RRHs include two
antenna panels facing towards both directions of the track
with 45 deg rotation. However, instead of fixed beams, the
RRHs utilize location-based RX beams based on the proposed
positioning approach.

We assume a spatial time-varying MIMO channel, including
path loss, shadowing, and fast fading effects, as specified
in [9] by the 3GPP. Moreover, we assume a single layer
data transmission, which is beamformed through analog/RF
processing in the transmitter and receiver antenna systems by
adjusting the signal phase between the antenna array elements.
Thus, the mth received sample at the k th RRH can be written
as

zk[m] = bRX,k (γk[m]Λk[m]bTXu[m − ζk] + nk[m]) , (1)

where u[m − ζk] is the mth signal sample transmitted by the
train with a fractional sample delay ζk ∈ R+, defined as

u[m − ζk] =
Nslot−1∑
q=0

u[q] sinc(m − q − ζk), (2)

where Nslot is the number of samples in the transmitted UL
signal including a single time slot, and ζk = Fsτk is the radio
propagation delay given in fractional samples, where Fs is the
sampling frequency and τk is the radio propagation delay for
the LOS path of the k th RRH. Furthermore, nk[m] ∈ CNRX

is a vector of white Gaussian noise for each receiver antenna
element, and bTX ∈ CNTX and bRX,k ∈ CNRX are the steering
vectors of the transmitter (i.e., the train) and the receiver
(i.e., the RRH) beamformers, respectively. Moreover, γ[m]k
is a scaling factor incorporating the effect of path loss and
shadowing, based on the urban Micro (uMI) LOS scenario
with the parametrization given in [9]. The spatial channel
matrix Λk[m] models fast fading effects based on the Clustered
Delay Line D (CDL-D) model with rms delay spread of
300 ns, and a spatial power delay profile as specified in [9,



Table 7.7.1-4]. In addition, Λk[m] incorporates the propagation
delays for each cluster in relation to the propagation delay of
the Line-Of-Sight (LOS) path τk . In order to maintain a spatial
consistency between the system geometry with particular train
and RRH positions and the CDL-D model with a fixed-
value angle distribution, we employ the angle scaling method,
specified in [9, Section 7.7.5.1].

The transmitted signal u[m] consists of a single uplink (UL)
time slot including 14 consecutive OFDM symbols, as defined
in [10]. The positioning-related measurements in the RRHs
are based on the 5G NR UL sounding reference signal (SRS)
specified in [10, Section 6.4.1.4]. The SRS can be transmitted
with a full band allocation or in smaller parts of the used
frequency band at a time, including both aperiodic and periodic
transmission configurations. However, since the SRS is mainly
used for channel estimation purposes, we assume the full band
SRS allocation due to the small channel coherence time in the
HST scenario. Moreover, for simplicity we consider a periodic
SRS transmission with 100 ms intervals, and we map the SRS
symbol into the 8th OFDM symbol of the transmitted UL time
slot.

III. MEASUREMENTS AND TDOA ESTIMATION

The estimation of Time-Difference-Of-Arrival (TDOA) is
based on the above-described periodic UL SRS transmitted
by the train with full band resource allocation. By utilizing
the TDOA, it is possible to avoid tight synchronization re-
quirements between the train and the network, as only the
network nodes are assumed to be synchronized. Furthermore,
by considering the high-speed deployment model with 30 GHz
carrier frequency shown in [1, Section 6.1.5], and assuming
that the RRHs collecting the positioning measurements operate
under the same Baseband Unit (BBU), the assumption of
having synchronized clocks in the network side is reasonable.
Next, in this section, we describe the proposed approach
for obtaining TDOA-based ranging measurements, including
propagation delay estimation, measurement validation, selec-
tion of a reference RRH for evaluating the time-differences,
as well as detection of measurement outliers.

A. Estimation of Propagation Delays with a Clock Error

The positioning measurements are based on the cross-
correlation between the received signal and the known SRS
signal transmitted by the train. Although incorporating signal
phase measurements would improve the timing measurement
accuracy, we consider solely the cross-correlation approach
due to its robustness and capability of operating with low SNR
values. Hence, the cross-correlation function observed in the
k th RRH can be written as

rk[l] =
Nslot−1∑
m=0

u∗SRS[m − l]zk[m], (3)

where Nslot is the number of samples in the UL time slot, and
uSRS[m] is the known SRS, extended with zeros in the end.
Now, by simply neglecting the clock error between the train
and the network, the estimate of the propagation delay for the

k th RRH can be obtained by finding the sample index, where
the absolute value of the correlation function is maximized as

l̂k = arg max
l

|rk[l]| and τ̂k =
l̂k
Fs
, (4)

where Fs is the sampling frequency, and l̂k and τ̂k are
the estimated propagation delay in samples and in seconds,
respectively. Here, it should be emphasized that due to the
clock error between the train and the network, the estimate τ̂k
does not reflect the true propagation delay, but it is merely a
pseudo-measurement used in the following steps of the TDOA
method.

B. Measurement Validation and Estimation Error Evaluation

Due to channel fading and noise, the correlation function
might be missing a clear peak and the observed maximum
peak can be originated from the noise instead of the SRS.
Therefore, the set of valid timing measurements, including a
clear correlation peak, is determined as

Ωτ̂ =

{
τ̂k | max

l
{|rk[l]|} > 4σcorr,k

}
(5)

where σcorr,k is the standard deviation of the correlation
function rk[l] of the k th RRH.

A capability for evaluating measurement accuracies is an
important feature of an accurate positioning system, as it
facilitates combination of measurements from multiple RRHs
with various SNR values, and enables estimation of posi-
tioning accuracy and estimation reliability. In this paper, we
estimate the variance of the timing measurement τ̂k based on
the estimated SNR of the received signal. As shown in [11],
the maximum likelihood estimate of the SNR value for the k th

RRH can be obtained as

ξ̂k =
zH
k

Φzk
zH
k
(I − Φ)zk

with Φ =
uSRSuH

SRS

NSRS
, (6)

where the vector zk = [zk[l̂k], zk[l̂k + 1], . . . , zk[l̂k + NSRS −
1]]T includes the first NSRS received signal samples from
the beginning of the estimated correlation peak, uSRS =

[uSRS[0],uSRS[1], . . . ,uSRS[NSRS−1]]T is the known SRS, and
NSRS is the length of the SRS in samples.

In order to map the estimated SNR into the timing estimate
variance, we utilize the Fisher information, and define the
timing estimate variance for the k th RRH as

σ̂2
τ̂,k =

1
ξ̂kB2

, (7)

where σ̂2
τ̂,k

is the Cramér-Rao Lower Bound (CRLB) for
the timing estimate τ̂k , as given in [12], and B is the SRS
bandwidth.

C. Selection of a Reference RRH with Outlier Detection

Based on the TDOA principle, the effect of the clock
error between the network and the train can be eliminated



by utilizing a set of the measured time-differences between a
selected reference RRH and the remaining RRHs, defined as

{τ̂k − τ̂kREF | τ̂k ∈ Ωτ̂, k , kREF} (8)

where kREF is the index of the chosen reference RRH, and Ωτ̂

is the set of found RRH measurements, as defined in (5). Now,
since the measurement of the selected reference RRH affects
all time-difference measurements, it is important to select one,
which provides a high-quality measurement. A straightforward
solution would be selecting the reference RRH based on the
highest estimated SNR. However, the RRH measurement with
the highest SNR does not necessarily originate from the LOS
path, which can result in large timing measurement errors.
Therefore, in order to find the optimum reference RRH, we
utilize the Bayesian Information Criterion (BIC), studied for
example in [13], which exploits a priori information on the
train position for selecting the reference RRH.

As described in Section IV, the train position is continu-
ously tracked based on the Extended Kalman Filter (EKF),
which enables the prediction of the train position based on
the position estimates at previous time instants. Moreover, the
fundamental idea of the considered BIC approach is to select
a set of time-difference measurements, which fit best for the
predicted train position at the given time instant. Based on
this, by assuming Gaussian distributed measurement error, the
log-likelihood function for the time-difference measurements
between the ith and j th RRH can be written as

Li, j (∆τ) = −
(∆τ − (τ̃i − τ̃j))2

2(σ̂2
τ̂,i
+ σ̂2

τ̂, j
)

with τ̃l =
∥pl − p̂∥

c
,

(9)

where c is the speed of light, pl ∈ R2 is the known position
of the l th RRH, and p̂ ∈ R2 is the predicted train position.

The validation of the timing measurements, as presented in
(5), does not guarantee that the detected timing measurement
is originated from a LOS path. Especially, in case of errors
in directing the transmit and receive beams, it is possible
that the detected measurement is originated from a NLOS
path resulting in large positioning errors. Assuming Gaussian
distributed measurement error, the set of RRH indices, which
provides acceptable time-difference measurements for the ref-
erence RRH index kREF, is given as

Ω
(kREF)
∆τ̂

= {k | k , kREF, |(τ̂k−τ̂kREF )−(τ̃k−τ̃kREF )|2

< (σ̂2
τ̂,k +σ̂

2
τ̂,kREF

)χ−1
2 (pL,1)} (10)

where χ−1
2 (pL,1) is the inverse of the chi-squared distribution

with 1 degree of freedom, and pL ∈ {p ∈ R | 0 < p < 1} is
the probability threshold, which determines which percentage
of all measurements are considered to be included in the
measurement set. The measurements which fall outside the
maximum allowed measurement deviation are considered as
outliers. In this paper, we set pL = 0.999 (= 99.9%), which
helps to remove large measurement outliers originating, for

example, from detecting a correlation peak of a NLOS path
instead of the LOS path.

Now, based on the BIC, the index of the optimum reference
RRH is estimated from the set of acceptable time-difference
measurements as

k̂REF = arg max
kREF

{
∑

k∈Ω(kREF)
∆τ̂

Lk,kREF (τ̂k − τ̂kREF ) | τ̂kREF ∈ Ωτ̂} (11)

where the estimated reference RRH index k̂REF maximizes
the joint likelihood of the time-difference measurements. As
a result, the set of time-difference measurements, considered
in the train tracking phase presented in Section IV, are given
as

Ω∆τ̂ = {τ̂k − τ̂k̂REF
| k ∈ Ω(k̂REF)

∆τ̂
}. (12)

Nevertheless, it is worth of emphasizing that in realistic posi-
tioning scenarios with channel fading and a risk of false LOS
path detection, utilization of the considered outlier removal
methods is extremely important. Otherwise, the considered
Bayesian tracking methods might become susceptible to high
errors due to inaccurately estimated measurement reliabilities.

IV. TDOA-BASED TRAIN TRACKING

The considered train tracking is based on the EKF [14],
which linearizes the TDOA-based non-linear measurement
function around the currently estimated tracking state. Com-
pared to other tracking methods, which are able to handle
non-linear measurement functions, such as particle filters, the
EKF is able to provide a computationally efficient solution,
which is feasible for practical implementations.

Besides the train position, also the train velocity is tracked
and the state EKF state vector at the nth time step is defined
as

s[n] =
[
p[n]T ,v[n]T

]T
, (13)

where p[n] = [x[n], y[n]]T and v[n] = [vx[n], vy[n]]T are the
state of the train position and velocity with the corresponding
train x-coordinate and y-coordinate, and the train velocities
in the x-axis and y-axis, respectively. Furthermore, the state-
transition model and the measurement model are given as

s[n] = Fs[n − 1] + q[n]
ψ[n] = h (s[n]) + w[n],

(14)

where ψ[n] is the measurement vector, F is the linear state-
transition matrix, h (s[n]) is the non-linear measurement func-
tion, and q[n] ∼ N(0,Q) and w[n] ∼ N(0,W) are the noise
vectors describing the process noise and measurement noise,
respectively. Moreover, Q ∈ R4×4 and W ∈ RN∆τ×N∆τ are the
covariance matrices for the process noise and the measurement
noise, respectively, and N∆τ = |Ω(kREF)

∆τ̂
| is the number of

available time-difference measurements at a given time instant.
Regarding the state evolution, we consider a constant ve-

locity model, where the train velocity is assumed to be nearly
constant between two consecutive time steps. Consequently,
the state-transition matrix in (14) is defined as

F =
[
I2×2 ∆tI2×2
02×2 I2×2

]
, (15)



where ∆t is the time interval between two consecutive states.
By considering a continuous white noise acceleration (CWNA)
model, as given in [15], the corresponding process noise
covariance matrix is defined as

Q = σ2
v

[
∆t3

3 I2×2
∆t2

2 I2×2
∆t2

2 I2×2 ∆tI2×2

]
, (16)

where σ2
v is the variance of the train velocity.

At each time step n, the EKF estimation process consists
of two separate phases, the prediction phase and the update
phase. In the prediction phase, the a priori estimate of the state
ŝ−[n] and the covariance P̂−[n] ∈ R4×4 are obtained based on
the state-transition model, given in (14), by considering the
previous state a posteriori estimates ŝ+[n−1] and P̂+[n] ∈ R4×4

as
ŝ−[n] = Fŝ+[n − 1]
P̂−[n] = FP̂+[n − 1]FT +Q.

(17)

After the prediction step, if there are measurements avail-
able, the a priori estimate is updated based on the non-
linear measurement model shown in (14). Now, based on
the obtained time-difference measurements, the measurement
vector at the nth time instant can be written as ψ[n] =
[ψ0[n], ...,ψN∆τ−1[n]]T, where the vector elements ψi[n] consist
of the set of obtained time-difference measurements Ω∆τ̂ ,
defined in (12). Thus, the non-linear measurement function,
given in (14), can be described as

h (s[n]) = [h0 (s[n]) , ..., hN∆τ−1 (s[n])]T with

hi (s[n]) =
∥p̂[n]−pRRH,i ∥ − ∥p̂[n]−pRRH,k̂REF

∥
c

,
(18)

where p̂[n] is the estimated train position based on the a
priori state estimate ŝ−[n], pRRH,k̂REF

is the position of the
reference RRH, and pRRH,i is the position of the RRH, which
corresponds to the ith time-difference measurement in ψ[n].
Furthermore, the a posteriori estimates of the update phase
can be obtained as

ŝ+[n] = ŝ−[n] +K[n] (ψ[n] − h (ŝ−[n]))
P̂+[n] = (I − K[n]H[n]) P̂−[n], where

(19)

K[n] = P̂−[n]H[n]T
(
H[n]P̂−[n]H[n]T +W

)−1
(20)

In above, K[n] is the Kalman gain, and H[n] ∈ RN∆τ×4 is the
Jacobian matrix of the measurement function h(·) evaluated at
ŝ−[n], given as

H[n] =


η
(x)
0 − η(x)

k̂REF
η
(y)
0 − η(y)

k̂REF
01×2

...
...

...

η
(x)
N∆τ−1 − η

(x)
k̂REF

η
(y)
N∆τ−1 − η

(y)
k̂REF

01×2


with

η
(x)
i =

∆x̂i[n]
c∥p̂[n]−pRRH,i ∥

and η
(y)
i =

∆ŷi[n]
c∥p̂[n]−pRRH,i ∥

,

(21)

where ∆x̂i[n] = x̂[n] − xRRH,i and ∆ŷi[n] = ŷ[n] − yRRH,i
define the difference for the x and y coordinates between the
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Fig. 2. The position (traveled distance) and the velocity of the train, as
functions of time, assumed in the simulated HST scenario.

estimated a priori position of the train and the ith RRH, respec-
tively. Moreover, as given in [16], the measurement covariance
matrix for the obtained time-difference measurements ψ[n] is
defined as

W = σ̂2
τ̂,kREF

+ diag
(
σ̂2
τ̂,0, σ̂

2
τ̂,1, . . . , σ̂

2
τ̂,N∆τ−1

)
, (22)

where σ̂2
τ̂,i is the estimate of the timing measurement variance

for the RRH, which corresponds to the ith measurement in
ψ[n], as defined in (7).

With a low number of available measurements, and with a
specific TDOA measurement geometry, the update phase of the
EKF might result in rapid changes in the estimated state vec-
tor. In the considered location-based beamforming approach,
this might lead to a fast accumulation of the positioning error,
and thus, cause missing the correct beamforming direction
and losing the signal. For this reason, the state vector update,
presented in (19), is performed only, if

(ŝ+[n]− ŝ−[n])T P̂−[n]−1(ŝ+[n]− ŝ−[n])
< χ−1

2 (pEKF,2),
(23)

where χ−1
2 (pEKF,2) is the inverse of the chi-squared distri-

bution with 2 degrees of freedom, and pEKF ∈ {p ∈ R |
0 < p < 1} is the probability, which defines the threshold
for the outlier detection by rejecting unlikely state updates. If
the condition in (23) is not satisfied, the state vector update
is simply neglected. In this paper, we set pEKF = 99.9%,
which is considered to be high enough in order to remove
only the most significant measurement outliers. This approach
is shown, through simulations in the next section, to perform
highly reliably.

V. PERFORMANCE EVALUATION AND ANALYSIS

The performance of the proposed positioning and beam-
forming approach is evaluated by simulating a 100 km long
rail track with RRHs located along the track, as shown in Fig.
1. By following the HST scenario specified by 3GPP in [1,
Section 6.1.5], the track is defined as a straight line, which is
a reasonable assumption, as the track curvature is very limited
due to support for high velocities. Moreover, we assume that
only the 5 closest RRHs perform timing measurements at a
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time, and thus, in the proximity of the active RRHs, a track
with a limited curvature appears approximately as a straight
line. In the beginning of the simulation, the train is still
and begins to accelerate (0.5 m/s2) towards the top speed
(500 km/h). After traveling with the top speed for 4 minutes,
the train slows down (1.0 m/s2), but re-accelerates again, until
stopping in the end. The position and velocity of the train
during the considered simulation path and time are shown in
Fig. 2.

The positioning is based on the UL SRS, which is mapped
into the eighth OFDM symbol transmitted at 100 ms intervals.
The other OFDM symbols inside the time slot comprise
random QPSK-modulated subcarriers. By considering the HST
scenario with high velocity and 30 GHz carrier frequency,
and thus a wide Doppler spread, the subcarrier spacing is set
to 120 kHz. However, based on our preliminary studies, also
other subcarrier spacing values are feasible with the considered
positioning approach. On the other hand, when considering
communications signals with tight requirements for tolerable
inter-carrier interference levels, reduced subcarrier spacing
might limit the system performance. The carrier frequency and
the UL transmit power are defined as 30 GHz and 33 dBm,
respectively. The considered channel model, including the path
loss, shadowing and fast fading, is as described in Section
II. Furthemore, the noise spectral density and the RRH noise
figure are defined as −174 dBm/Hz and 5 dB, respectively,

The number of antenna elements in a single antenna panel is
given as NRX = 32 for the RRHs, and NTX = 8 for the train.
Whereas at the train side the TX beams are fixed towards
the nose and the tail of the train, the RX beams at the RRH
side are directed towards the estimated train position at each
SRS transmit time. Here, it should be emphasized that the
RRH beam directions are based on the train position estimate
available after the prediction step of the EKF (i.e., ŝ−[n])). Only
after obtaining the measurements by using the prediction-step-
based RX beamformer, the a posteriori estimate (i.e., ŝ+[n]))
can be acquired, and further used for estimating the new
beamformer parameters for the subsequent SRS transmission
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Fig. 4. Cumulative distributions of velocity estimation errors for different
bandwidth configurations, and for location-based beamforming and ideal
(reference) beamforming.

time. Thus, since the used RRH beam direction is always
based on the prediction-step of the EKF, the maximum allowed
latency for updating the position estimate is limited by the SRS
transmit interval.

In Fig. 3 the cumulative distributions of the achieved
position errors are shown for 3 separate bandwidth configu-
rations, including 50 Resource Blocks (RB), 100 RBs, and
200 RBs, which correspond with physical bandwidths of
72 MHz, 144 MHz and 288 MHz, respectively. As expected,
the positioning accuracy can be improved by increasing the
transmission bandwidth. With the maximum considered band-
width of 200 RBs, 1 m positioning accuracy is achieved with
90% availability, whereas with the 50 RB bandwidth, the
corresponding accuracy is 2.1 m. Besides using the location-
based beamforming relying on the train position estimates at
the network-side, also the reference results assuming ideal
beam directions are provided for comparison purposes. For
most of the time, the proposed location-based beamforming
approach loses only a few centimeters to the case with ideal
beam directions.

The cumulative distributions of the velocity errors are
shown in Fig. 4 for the considered bandwidths. Similar to
the positioning accuracy, the velocity accuracy is improved
by increasing the bandwidth. With the highest considered
bandwidth of 200 RBs, velocity error below 1 m/s can
be achieved with 97 % availability. The estimation of train
velocity is very important for railway safety applications, and
it can also enable, e.g., Doppler shift compensation, which can
considerably increase the system throughput in the considered
HST scenario.

In order to efficiently utilize the location-based beamform-
ing for enhancing the network capacity, the accuracy of the
RRH beam directions is essential. In Fig. 5 the cumulative
error distributions of the beam direction are shown for the
considered bandwidths. As expected, since the accuracy of
the RRH beam directions are dependent on the positioning
accuracy, larger bandwidths provide better beam direction
accuracy. The shown beam direction errors are considered
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bandwidth configurations.

only for the closest RRH at a time, in which the beam
direction accuracy is the most sensitive to positioning errors.
Obviously, for a given position estimation accuracy, the beam
direction error reduces as the distance to the RRH is increased.
Nonetheless, the results shown in Fig. 5 indicate that a sub-
degree beam direction error with 90% availability can be
achieved by using the 100 RB and 200 RB bandwidths.

Considering the target accuracies for the position and ve-
locity estimation in machine control and transportation use
cases, given as 0.1-3 m and 0.5-2 m/s in [2, Table 6.3-
1], the proposed approach is able to meet the performance
requirements. With both the 50 RB and the 100 RB bandwidth
configuration, the positioning accuracy is below 3 m with 95%
availability. Furthermore, with the maximum bandwidth of 200
RBs the 3 m accuracy is achieved with 99% availability, and
with 95% availability the corresponding positioning accuracy
is 1.5 m. All bandwidth configurations achieve below 2 m/s
velocity estimation error with 99% availability, and with the
maximum considered bandwidth, 0.75 m/s estimation error is
provided with 95% availability.

VI. CONCLUSIONS

In this paper, we studied network-side positioning and
location-based beamforming for the HST scenario in 5G NR
networks. Assuming TDOA-based positioning measurements
obtained from the UL SRS transmitted by the train, we pro-
posed a method for optimal reference measurement selection,
and introduced outlier removal methods for increased system
stability. We utilized a TDOA-based EKF for tracking the
train position and velocity, and for providing the necessary
position information for the considered network-side location-
based beamforming.

Based on extensive simulation of 100 km long train track,
we evaluated the train positioning performance for the 3GPP-

specified 5G NR high speed scenario with location-based
beamforming on the network side. The results with the highest
considered bandwidth of 288 MHz show that a sub-meter
positioning accuracy can be achieved with 90% availability,
and below 3 m accuracy with 99% availability. Both the
position and velocity estimation accuracies of the proposed
approach meet the 3GPP-specified requirements regarding
machine control and transportation use cases. Therefore, the
revealed positioning potential of forthcoming 5G networks,
can be considered as a valuable asset for future railway
management systems, and is able to facilitate efficient RRM
implementations, including the location-based beamforming.
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