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Abstract—Measurements from an ion mobility spectrometry
electronic nose (eNose) can be used for distinguishing different
rooms in indoor localisation. An earlier study showed that
the Nearest Neighbour classifier with Euclidean distance for
features provides reasonable accuracy under certain conditions.
In this paper 66 alternative distance measures are compared to
the Euclidean distance and principal component analysis (PCA)
is applied to the data. PCA shows that the measurements on
the various channels of the eNose are correlated and that using
principal components 1, 2 and 4 increases the accuracy con-
siderably. Furthermore, the experiments revealed three Pareto
optimal distance measures that reduce the misclassification rate
between 9-10% while using only 82-88% of the search time
compared with Euclidean distance.

Index Terms—Indoor localisation, K Nearest Neighbours,
Electronic nose, Ion mobility spectrometry

I. INTRODUCTION

Indoor localisation has received much attention over the last
decade. Besides various radio signals, such as cellular net-
works, wireless local area networks (WLAN), ultra-wideband
(UWB), Bluetooth and Bluetooth low energy (BLE), inertial
measurement units (IMUs), laser range scanners, floor maps,
and magnetic fields have been studied for localisation in the
absence of satnav [1], [2]. A source of measurement that just
has been started to be studied for localisation are electronic
noses (eNoses). To the authors’ knowledge, [3] is the only
article that has studied the use of eNose measurements for
localisation. Here localisation means localising the user/user
device, which differs from applications in which eNoses are
used for localising the source of an odour (see e.g. [14], [15])

Electronic noses are used in artificial olfaction, for de-
tecting and classifying various gases. For that purpose they
mimic the biological sense of smell and its communication

with a biological brain [4], using a sensor array, a signal-
processing unit, a reference database, and pattern recognition
software [5]. Different eNoses exist, which use different
sensor types (see e.g. [5]). In [3] an eNose using an ion
mobility spectrometry (IMS) sensor was used for localisation.
The main reason for choosing an IMS-based eNose was that
the sensor element is a metal electrode that does not age.
Therefore, the signal drift it experiences is mainly due to
environmental changes.

In [3] the K nearest neighbours (KNN) method with
different K-values was used for localisation based on IMS
measurements. For measuring the closeness between training
and test samples the Euclidean distance was used. In this
paper, 66 alternative distance measures are analysed and
compared with the Euclidean distance using the data from [3]
and the nearest neighbour classifier. The aim of the extensive
analysis is to find Pareto optimal distance measures, i.e. mea-
sures that achieve better localisation accuracy and/or reduce
the search time for the nearest neighbour compared with
the Euclidean distance. Furthermore, the principal component
analysis (PCA) method is used to shorten the classification
time and to remove potential correlation from the data. The
localisation accuracy when using different sets of principal
components is studied.

Our hypothesis is that it is possible to improve indoor lo-
calisation accuracy using Aroma Fingerprints, in comparison
with [3] by data preprocessing and improved classification
methods. Different distance measures with Principal Compo-
nent analyses are tested in order to find the one that is best
in terms of evaluation time and accuracy.

This paper is organised as follows. The ChemPro100i



eNose is described in Section II. Nearest neighbour classifica-
tion and PCA and its implementation are explained in Section
III. The eNose data is described in Section IV. Section V
describes the tests, and shows and discusses their results.
Finally, Section VI concludes the paper and gives an outlook.

II. CHEMPRO100I ENOSE

In this paper measurements from a ChemPro100i [6] eNose
from Environics are used for determining in which room the
user is. The ChemPro100i has an IMS sensor that ionises
the incoming air and separates the resulting ions based on
their velocity. Due to differences in their molecular weight,
charge and geometry between compounds the mobility of
various ions differs [7]. The ChemPro100i measures the
ions as a current with seven separate electrode pairs, and
the electric field is continuously switched between positive
and negative polarities. Thus, it generates a 14-dimensional
”fingerprint” (seven variables for positive and seven for
negative electrodes) of the air at a specific location, which is
used as a measurement in this paper.

The major drawbacks of the ChemPro100i as a potential
mass market device are its size and price. However, for
the localisation only its measurement cell would be needed,
whose dimensions are around 4 cm by 2 cm by 1 cm (i.e.
approximately the size of a match box) and which contributes
only a small part to the price of the ChemPro100i. Alter-
native IMS chips have recently appeared, for example by
Owlstone, whose field asymmetric ion mobility spectrometer
is ”fabricated on a single microchip with dimensions under
a centimetre” [8].

III. IMS FINGERPRINT-BASED LOCALISATION

A. Nearest neighbour classification

For localisation only the nearest neighbour (NN) classifier is
used in this paper, because in [3] it yielded the same perfor-
mance as the KNN with K = {3, 5, 7}. The idea behind NN
is to find the training fingerprint xi = [xi,1 . . . xi,14] from a
set of N fingerprints that is closest to a test fingerprint xtest.
For the training fingerprints the location at which they were
taken is known, while for the test fingerprint the location
is the unknown parameter that has to be determined. The
closeness of the test fingerprint and any training fingerprint
can be measured by various distance measures. In this paper
67 different measures are analysed and compared.

B. Principal Component Analyses

One drawback of KNN classifiers is that they can be fooled
by irrelevant features. Furthermore, the measurements of the
14 electrodes in the used eNose might be correlated. In
order to address these two drawbacks, in this paper principal
component analysis (PCA) is used. PCA converts the set of
14 potentially correlated variables into a lower-dimensional
set of linearly uncorrelated variables [9, p. 580].

For the training data X = {x1, ..,xN} with d = 14
dimensions PCA works as follow [9, p. 568]:

1) Compute d-dimensional mean vector µ and d-by-d
covariance matrix C of data set X.

2) Compute eigenvectors and eigenvalues of C, and sort
them according to decreasing eigenvalues.

3) Choose a subset of these eigenvalues, for example,
the first k eigenvalues and form d-by-k matrix A (k
eigenvectors as columns of A).

4) PCA-transformed data Y = {y1, ..,yN} is now defined
as yi = AT(xi − µ), where each yi has k variables.

The choice of the k principal components affects how much
of the total variance in X is explained by the transformed data
Y. In principle all d principal components could be used.
However, in general a small subset is chosen that explains at
least 95% or 99% of the total variance in the training data.

In order to find the nearest neighbour of xtest the test
sample has to be transformed into the same format as the
training data. This can be achieved using mean vector µ and
matrix A. The PCA-transformed test sample is then defined
as ytest = AT (xtest − µ).

IV. DATA

The eNose data was collected from seven different indoor
locations at Tampere University of Technology, Finland, in
May 2017. Table I summarises the locations and their types
[3]. There was one office room for four people (location 1), a
coffee room (location 2), a corridor connecting two buildings
(location 5), and four large open areas (locations 3, 4, 6, 7).
Locations 6 and 7 were in close proximity to cafeterias. Fig.
1 shows approximate positions of all seven locations.

At each location two measurements of 10 minutes’ dura-
tion were made. The first set was collected during a Saturday,
when the buildings were almost empty and the cafeterias
were closed, and the second set was collected either two or
three days later, when staff and students of the university
were present and lunch buffets were on display at the two
cafeterias. The measurement frequency was 1 Hz. Table I
shows the sizes of both measurement sets for all seven
locations.

TABLE I
MEASUREMENT DESCRIPTIONS

id location type # measurements total
empty crowded

1 office room 629 618 1247
2 coffee room 643 631 1247
3 open space 616 618 1234
4 open space 609 614 1223
5 corridor 630 646 1276
6 open (cafeteria) space 608 637 1245
7 open (cafeteria) space 626 611 1237∑

4361 4375 8736

V. EXPERIMENTS

In the experiments both IMS data and PCA-transformed data
with varying sets of principal components were used. For
the experiments the data was split into two sets: training set
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Fig. 1. Representation of the campus with approximate positions of all
seven locations.

and test set. In a first experiment both sets contained mea-
surements from each room in empty and crowded conditions.
In this experiment classification accuracies of close to 100%
were achieved for all tested distance measures, which was in
line with the findings in [3]. However, for the experiments
presented in this section, in order to evaluate the potential of
each distance measure, the training contained only measure-
ments from empty rooms and the test set contained only data
from crowded rooms (see Table I).

A total of 67 distance measures, including the Euclidean
distance as reference distance measure, were studied. The
aim was to minimise misclassification error and evaluation
time (aka search time).

A. NN using Euclidean distance

First it was studied if PCA reduces the misclassification
error when using the Euclidean distance as distance mea-
sure. Fig. 2 shows the misclassification errors when using
standardised IMS data (see [3] for details), as reference, and
various subsets of principal components. All tests yielded
similar misclassification errors, except for using only the
first principal component. This indicates that data from the

Fig. 2. Errors of room’s correct identification. The x axes labels are ’raw’
and list of used PCA components. Bars are listed in order: Euclidean,
Ruzicka, Canberra and Vicis-Symmentric χ2.

IMS electrodes was indeed correlated and that the evaluation
time could be reduced significantly by transforming training
and test data using PCA, because only two to four principal
components are enough to achieve similar performance than
when using the 14-dimensional IMS data. Therefore, in the
following test localisation using IMS data was compared
with localisation using two sets of principal components:
{1, 2, 3, 4} and {1, 2, 4}.

The large misclassification rates are in line with the results
from [3], and might be caused by the differences in the
environmental conditions in which training and test data were
collected. As mentioned in Section II, the IMS measurement
depends on the mobility of the ions in the air sample,
which in turn depends on humidity and temperature, but also
barometric pressure, and air currents [10, pp. 250 ff.].

B. NN using different distances

The goal of the second test was to find the best distance
measures with respect to classification error and evaluation
time. In total 67 distance measures were studied. Due to space
constraints, here only results from three Pareto optimal dis-
tance measures are shown and compared with the results of
Euclidean distance. The 67 distance measures are described
in [11] and [12], and the full list of distances can be found
in [13].

All experiments with raw data and with principal com-
ponents {1, 2, 3, 4} and {1, 2, 4} yielded different sets of
Pareto optimal distance measures. The lowest misclassifica-
tion errors were obtained using principal components 1, 2
and 4, as can be seen in Fig. 2. Therefore, the three Pareto
optimal distance measures based on the test with principal
components 1, 2 and 4 were chosen. Euclidean distance
was used for comparison. The formulas of the three Pareto
optimal distance measures and Euclidean are shown in Table
II. The evaluation time of squared Euclidean distance is
slightly less than Euclidean evaluation time with the same
error. The Euclidean distance is used for simplicity.

Fig. 2 shows the misclassification errors of the three Pareto
optimal distance measures and of the Euclidean distance.
Based only on the errors the Ruzicka distance is the best



TABLE II
DISTANCE MEASURES

id name d(P,Q) Source
1. Euclidean,

p = 2,
r = 2

(
∑
|Pi −Qi|p)1/r [11, chap-

ter 17.2]

25. Ruzicka,
aka
Soergel,
Tani-
moto

∑
|Pi −Qi| /

∑
max(Pi, Qi) [11, chap-

ter 17.1]

30. Canberra
∑

(|Pi −Qi| / |Pi|+ |Qi|) [11, chap-
ter 17.1]

60. Vicis-
Symmetric
χ2

∑ (Pi−Qi)
2

min(Pi,Qi)2
[12]

Fig. 3. Pareto optimal with PCA components {1, 2, 3, 4}, {1, 2, 4} and
Raw data.

choice. However, for practical application also the evaluation
time has to be taken into account. Therefore, Fig. 3 shows
misclassification errors and evaluation times of the three
Pareto optimal measures and Euclidean distance when using
IMS data, first four principal components, and principal
components 1, 2 and 4. The figure shows that Ruzicka
with principal components 1, 2 and 4 yielded the lowest
misclassification rate but not the fastest evaluation time,
which was achieved by Canberra distance using also principal
components 1, 2, and 4. These two combinations of distance
measures and choice of principal components are therefore
Pareto optimal. The Euclidean distance showed middling
accuracy and the worst evaluation time independent on the
choice of data.

An interesting observation from Fig. 2 was that the mis-
classification errors for all four distance measures increased
when using the third principal component in addition to the
first two components. Therefore, the third component was
removed for the last test (see rightmost group of bars in
Fig. 2), which yielded lower misclassification rates than using
the first four principal components.

Finally, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 show the
confusion matrices for Euclidean, Ruzicka, Canberra and
Vicis-Symmetric χ2 distances when using data on principal
components 1, 2 and 4. Over all seven rooms Ruzicka

Fig. 4. Confusion matrix using PCA components {1, 2, 4} and Euclidean
distance. The number of observations and the percentage of the total number
of observations are shown in each cell.

Fig. 5. Confusion matrix using PCA components {1, 2, 4} and Ruzicka
distance. The number of observations and the percentage of the total number
of observations are shown in each cell.

distance improves the classification accuracy by ≈10% while
using only ≈88% of the evaluation time compared to the
Euclidean distance. The Canberra distance improved the
classification accuracy by ≈9% while using only ≈84%
of the evaluation time compared to the Euclidean distance.
The Vicis-Symmetric χ2 distance improved the classification
accuracy by ≈8.9% while using only ≈75% of the evaluation
time compared to the Euclidean distance.



Fig. 6. Confusion matrix using PCA components {1, 2, 4} and Canberra
distance. The number of observations and the percentage of the total number
of observations are shown in each cell.

Fig. 7. Confusion matrix using PCA components {1, 2, 4} and Vicis-
Symmetric χ2 distance. The number of observations and the percentage
of the total number of observations are shown in each cell.

VI. CONCLUSION AND OUTLOOK

Localisation based on measurements from an electronic nose
has only recently attracted some attention. In the first, to
the authors’ knowledge, paper dealing with eNose-based
localisation KNN classifiers using Euclidean distance as
distance measure were tested [3]. In this paper, 66 alternative
distance measures were tested on the data from [3] using
a NN classifier (i.e. a KNN with K = 1). Furthermore,
principal component analysis was applied to the data.

The hypothesis was proved with the experiments. It is
possible to improve indoor localisation accuracy using Aroma

Fingerprints, in comparison with [3]. The Pareto optimal
distance measures are found and shown in the experiments.

The results of PCA showed that the measurement chan-
nels from the ion mobility spectrometry eNose are corre-
lated, which means that localisation should rely on PCA-
transformed data to remove these correlations and at the
same improve the evaluation time of search algorithm. Low-
est misclassification errors were achieved when using first,
second and fourth principal components. The analysis of the
67 distance measures using this subset of principal compo-
nents yielded three Pareto optimal distance measures. These
three measures, Ruzicka, Canberra and Vicis Symmetric χ2

achieved better evaluation speed and accuracy than Euclidean
distance. The three distance measures are non-dominated
points (Pareto-optimal). Ruzicka [1, 2, 4] has lower error
than Canberra [1, 2, 4] but higher evaluation time. Canberra
[1, 2, 4] has lower error than Vicis Symmetric χ2 [1, 2, 4] but
higher evaluation time. All three distance measures dominate
Euclidean distance in all experiments and present the Pareto-
optimal points, the Pareto Front.

The experiments were repeated for some distances with
KNN classifiers using K = {3, 5, 7, 9}. However, the change
in K had no significant influence on the classification accu-
racy because for all tested Ks all nearest neighbours were
from the same class (aka room).

More experiments with PCA will be done in the future.
For example, the reason for the beneficial effect of removing
the third principal component on classification accuracy will
be studied in more detail. In addition, the effect of other
similarity measures (see e.g. [11]) will be studied. Fur-
thermore, alternative classification algorithms will be tested
and compared with KNN-type classifiers. Finally, adding
filtering and smoothing to eNose-based localisation will be
investigated.
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