
 

Low-latency Packet Parsing in Software Defined 

Networks 
 

 

Hesam Zolfaghari  

Laboratory of Electronics and 

Communications Engineering 

Tampere University of Technology 

Tampere, Finland 

hesam.zolfaghari@tut.fi 

Davide Rossi 

department of Electrical, Electronic 

and Information Engineering 

University of Bologna 

Bologna, Italy 

davide.rossi@unibo.it 

Jari Nurmi 

Laboratory of Electronics and 

Communications Engineering  

Tampere University of Technology 

Tampere, Finland 

jari.nurmi@tut.fi 

Abstract— Packet parsing is the first step in processing of 

packets in devices such as switches and routers. In this paper, 

we present a totally new program control unit as well as 

further enhancements for a recently designed packet parser 

architecture which can parse headers of most commonly used 

protocols such as Ethernet, IPv4, IPv6 and TCP in a time 

window shorter than 10 nanoseconds. However, when it comes 

to parsing variable-length headers and multiple stacked 

headers, it deviates from its maximum throughput due to 

inefficiencies in its program control logic. We have designed 

and employed a more advanced program control logic that 

improves parsing time of variable length headers such as IPv4 

header by up to 48 percent and parsing time of typical header 

stacks used on the Internet by 16 to 21.42 percent. Our solution 

can sustain aggregate throughput of 640 Gbps while requiring 

only 30 percent of the number of gates used in the parser used 

in the Reconfigurable Match Tables architecture.  

Keywords—Software Defined Networking, Programmable 

data plane, Packet Parsing, Advanced Program Control 

I. INTRODUCTION  

Software Defined Networking (SDN) is the key to 
deployment and management of complex networks. New 
network protocols are being proposed and standardized by 
both the industry and academia. The internals of the packet 
processing devices such as switches and routers can no 
longer accommodate the logic for the aggregate of network 
protocols proposed and standardized so far. Instead, the data 
plane of the packet processing systems must be protocol-
independent and programmable, so that they can provide the 
functionality required for network protocols of present and 
future. This requires thorough analysis of the operations 
incurred in processing of packets. A common concern for 
programmable and protocol-independent data plane is that of 
performance. However, as we will see, such systems can be 
on par with the conventional systems due to simpler 
architecture which allows for further optimizations. 

Recently, there have been attempts to design 
programmable data planes. The most notable of these efforts 
are [1], [2] and [3]. [2] has also been commercialized and its 
architecture is now the basis of Barefoot Tofino [4]. In this 
paper we are interested in the problem of packet parsing. 
There are countless papers in which FPGA-based parsers are 
proposed. [5], [6] and [7] are just a few examples of such 
research efforts which achieve throughput on the scale of 
hundreds of Gigabits per second. However, it should be 
noted that these architectures achieve this throughput by 
means of operating on ultra-wide input due to their low 
frequencies. For instance, in [5], the input width is 2048 bits. 
Obviously, no transmission medium can transfer this amount 

of data at once. As a result, the actual throughput is far below 
the claimed figure. We are interested in parsing solutions that 
can sustain the line rate and that can parse the packets on the 
fly without having to buffer them. Moreover, we would like 
such a solution to be programmable and not tied to any 
specific set of protocols in order to be in line with the 
concept of SDN. 

II. AN EXPLICITLY PARALLEL ARCHITECTURE 

In [8], we presented a novel programmable packet parser 
which was an explicitly parallel architecture. Fig. 1 
illustrates a high-level view of the architecture. As we saw, 
explicitly parallel architectures suit packet parsing very well 
because with each segment of the packet header, there are 
tasks that can be performed in parallel.  

The arrived header segment, which could be 16, 32 or 64 
bits in width, is received by three programmable extraction 
engines. Each one of them can be instructed independently to 
extract the programmer-specified portion of the header 
segment. The extraction engines are meant to extract header 
fields containing size of payload, size of header and next 
header indicator. The extraction results are registered. One of 
the registers is the input to two counters, the second register 
provides input to one counter and the third register provides 
input to four comparators operating in parallel. The purpose 
of the counters is to maintain boundaries between headers 
and packets. They do so by counting down after being 
assigned value. When they reach zero, they signal it to the 
address generation unit (AGU) which provides the address of 
next instruction at each clock cycle. It should be noted that 
when a counter reaches zero, it does not automatically trigger 
an action, instead it should be checked manually by software. 
The parallel comparators compare the value of extracted 
field with four comparands. The comparands are stored in a 
memory unit and the programmer loads comparands of their 
choice whenever required. Therefore, the first input to all 
comparators is the extracted field but the second input varies 
from one comparator to the other. Associated with each 
comparand is a branch address. The outcome of the 
comparison is also registered and then provided to the AGU. 
The parallel comparators provide functionality similar to a 
Ternary Content Addressable Memory (TCAM). The output 
of the parser is a vector of header fields. The programmer 
specifies how the arrived header segment should fill the 
entries of the vector. For instance, with a 16-bit header 
segment, it is possible to fill two 8-bit entries or one 16-bit 
entry. The programmer makes the decision based on the 
structure of the header. 

As this parser was the first attempt to provide an 
architecture which does not require look-up into TCAM at  



 

Fig. 1. High-level view of the Packet Parser in [8] 

every clock cycle, the address generation unit was not 
designed for handling deep stacks of headers. Its small area 
footprint makes it ideal for switches and routers which need 
to parse a small number of headers stacked on each other. 
Therefore, when it comes to parsing packets with large 
number of stacked headers, the actual throughput deviates 
from the maximum achievable figure due to dead cycles 
which are caused by instructions which do nothing but check 
the intra- and inter- packet boundaries. It is essential to check 
these boundaries for correct operation of the parser. In the 
new architecture, we have shifted this boundary checking to 
hardware to relieve the programmer/compiler of this check 
and to eliminate the dead cycles. 

In order to fully understand the issue of dead cycles, 
consider parsing of IPv4 header. This header contains a field 
called Internet Header Length (IHL) which specifies the size 
of the header in terms of number of 32-bit words. Once the 
word containing the Destination Address has arrived, the 
parser places it in a 32-bit container. At this point, the parser 
must check whether it should branch to the subroutine in 
charge of parsing the next header or it should continue with 
the IPv4 header and parse the available header options. This 

decision is made by means of a conditional branch 
instruction which checks whether the counter that was 
assigned the value of IHL has reached zero. The result is that 
on the subsequent clock cycle, the parser has to execute a no-
operation (NOP) instruction. This results in a dead cycle 
which causes deviation from maximum throughput. 
Moreover, after each header option, this check needs to be 
performed again, which further decreases throughput. Once 
the presence of header options is resolved, the header must 
check whether the payload size is non-zero before 
proceeding to parsing of next header or forwarding of 
payload. This is because IPv4 packets without payload are 
also valid. Therefore, in the best case, parsing of IPv4 header 
contains two dead cycles. In the worse cases, there will be 
one dead cycle per option in addition to the two dead cycles 
just mentioned. The same problem exists with other variable-
length headers such as TCP as well. We solve this issue by 
assigning the task of boundary checking to hardware and 
leaving the programmer or compiler with only the task of 
providing valid parse programs regardless of the size of 
header (in the case of variable-length headers) and size of the 
payload. The parse programs are written in such a way that 
they contain all the instructions required for parsing of 
optional header fields as well. Moreover, for protocols 
containing trailers, the instruction(s) in charge of parsing the 
trailer immediately follows the instructions which parse 
header. 

Moreover, we have modified the functional units of the 
parser in a way that it can operate in true 64-bit mode. In the 
initial design, extraction engines operated on the lower 32-bit 
portion of the arrived header. The primary motivation for this 
design choice was that of hardware simplicity. But as 
synthesis results revealed, we have a large silicon real-estate 
that can be utilized in a more efficient manner for better 
performance while still being minimal compared to the most 
prominent parsers for SDN such as [1] and [2]. 

The initial design required precise programming. For 
instance, if a counter that has just been assigned a value 
needs to be checked, NOP instructions have to be placed by 
the programmer or compiler because the counter has not yet 
received the value due to the pipelined nature of the 
functional units. Moreover, movement of data between the 
pipeline stages is also instructed by software. In the new 
architecture, however, the hardware automatically stalls 
program flow when necessary. Moreover, all dataflow is 
organized and handled by hardware. This eases the task of 
the compiler. 

III. PROGRAM FLOW IN PACKET PARSING 

In order to be able to design an efficient program 
sequencing logic, we must analyze the nature of program 
flow in packet parsing programs. A parse program is 
comprised of instructions, each of which is associated with 
one of the segments of packet header. An instruction 
specifies how its associated header segment must be placed 
into the containers within the PHV. Moreover, if the header 
segment in question contains fields indicating size of header, 
size of payload or next header, it instructs the extraction 
engines to extract these fields in order to update the internal 
state machine of the parser. Among the instructions 
comprising a parse program, there are different kinds of 
branches. One of the most common branches are the ones 
that jump to the code segment in charge of parsing the next 

Packet Header Segment (64 bits) 

          32                        32                        32 

Address 

 16                        16                         16 

Extraction 

Engine 

Extraction 

Engine 

Extraction 

Engine 

Address 

Generation 

Unit 

(AGU) 

Packet Header Vector (PHV) 

PHV 

Filler 

= 

= 

= 

= 

Mode 

M
em

o
ry

 

A
ss

o
ci

at
ed

 B
ra

n
ch

 A
d
d

re
ss

es
 

 

CNTR0 

CNTR1 

CNTR2 

Branch 

Address 
Branch 

Condition 

Instruction 

Type 

Mode Mode Mode 



header. This branch is unconditional for fixed-size headers 
and conditional for variable-sized headers. Branches are 
sometimes required within a subroutine or code segment that 
parses a given header. For instance, presence of some header 
fields are signaled by flag fields which need to be evaluated 
for correct branches. If optional fields are not present, the 
instructions in charge of parsing them must be skipped. 
Branches are sometimes required based on the value of non-
flag header fields. For instance, in Ethernet frames, if the 
value of EtherType field is 1500 or below, it should be 
interpreted as the size of the payload in bytes. Otherwise, the 
value should be used as the basis for determining payload 
type. Some protocols have a trailer after the payload section. 
In these cases, after parsing the header and handling the 
payload, the program flow should return to the trailer parsing 
code segment. Based on these observations, we classify 
branches in packet parsing in two broad categories of 
hardware and software branches. Hardware branches take 
place automatically in a high-priority manner while software 
branches occur using branch instructions. Branches required 
for maintaining intra- and inter-packet boundaries are taken 
care of by hardware. Therefore, they do not consume any 
execution time. As such, dead cycles will be eliminated. 
Other branches are explicitly specified by the programmer. 

IV. A NEW PROGRAMMABLE PACKET PARSER 

In this section, we present the new architecture. Fig. 2 
illustrates a high-level view of the architecture. The main 
functional units are explained below: 

A. Packet Header Vector Filler 

Similar to the packet parser in [2], our programmer 
packet parser extracts header fields of the arrived header 
segment and places them in the Packet Header Vector (PHV) 
which contains 8-bit, 16-bit and 32-bit containers. We have 
also four 64-bit containers. 

The PHV is 4 kilobits wide and is in fact the output of the 
parser and the input to the packet processing subsystem in 
which header fields undergo modification. The unit that 
places header fields in the PHV is called PHV Filler. It is 
programmable and has various modes of operation. For 
instance, given a 64-bit header segment, it can place eight 8-
bit fields into the PHV at one clock cycle. Other 
combinations are possible as well. 

B. Resource Monitors 

The packet parser in [8] requires the compiler to precisely 
manage the counters within the parser. The compiler must 
keep track of internal counters that have been assigned a 
value and the ones that are idle. In this architecture, the 
programmer needs to just specify that a counter is needed for 
initialization. Resource Monitors, marked as RM in Fig. 2, 
keep track of all counters and automatically pick an idle 
counter for initialization. 

C. Counters 

Counters are the means by which inter-header and inter-
packet boundaries are detected. There is one counter reserved 
for headers, marked as CNTR0 in Fig. 2, because at any 
instance in time, one header is being parsed but there are 
multiple payload counters, marked as CNTR1-CNTR8, 
because each next header is the payload of its preceding 
header. After reset, expiry of counters has highest priority in 

the program control logic. When a counter is expired, the 
branch type and branch condition code are ignored. 
Moreover, upon expiry of a counter, its expiry signal remains 
asserted for one clock cycle only, after which the counter 
will become available for initialization. 

D. Extraction Engines 

The extraction engines used in this architecture are 
similar to the ones used in [8]. However, they operate on 64-
bit data rather than 32-bit data. Moreover, there are 5 
extraction engines rather than 3. All extraction engines are 
identical but each one of them is dedicated for a specific 
purpose and each one of them can be independently 
programmed. The information extracted by these extraction 
engines are necessary to parse each header correctly. The 
extraction engines are integrated into the unit that uses their 
output. These units are the Next Header Resolve Unit, The 
Branch Catalyst, The Branch Condition Evaluator, Counter 
C0 and the Resource Monitor. 

 

 

Fig. 2. High-level view of the new packet parser 

Packet Header Vector (PHV) 

Packet Header Segment (64 bits) 

PHV 

Filler 
Mode 

Stack 

  +     1 

Advanced 

Program 

Control 

(APC)  

Next Header 

Resolve Unit 

Branch  

Catalyst 

Branch  

Condition 

Evaluator 

CNTR0 

CNTR1 

CNTR2 

CNTR8 

Mode Mode Mode 

RM 

Mode Mode 

Reset 

Branch Type 

B
ran

ch
 C

o
n

d
. 

B
ran

ch
 A

d
d

r. 

. 

. 

. 

. 

. 

. 



E. Next Header Resolve Unit 

The parser needs to know the next header and the address 
of the subroutine in charge of parsing the next header. For 
instance, in IPv4 the Protocol field indicates the next header. 
This unit determines the next header and provides the 
starting address of the subroutine in charge of parsing the 
next header. Fig. 3 illustrates a high-level view of this unit. 
As we can see, it has a built-in extraction engine that extracts 
the field containing the ID of the next header. After 
extraction, it will be compared against a set of expected 
values in parallel to resolve the next header. There are eight 
comparators operating in parallel. Associated with each 
comparand is its corresponding subroutine address. 
Comparands and associated memories are hosted on two 
distinct memory units. Each memory access provides eight 
comparands and their associated subroutine addresses. The 
number of comparands required for determining the next 
header may be larger than a memory word can 
accommodate. For this reason, the memory interface 
submodule is initialized with the number of times it is 
allowed to access the two memory units. To avoid wasted 
cycles, the entries should be filled in decreasing order of 
prevalence. There is also a default address that is provided to 
Next Header Resolve Unit in case none of the comparands 
results in a match. The Next Header Resolve Unit has status 
signals in-progress and ready to guide the Advanced 
Program Control in determining the address of the next 
instruction. 

 

 

Fig. 3. The Next Header Resolve Unit 

F. Branch Catalyst 

Some headers have optional fields whose presence is 
indicated by flag bits. A very good example of such a header 
is that of Generic Routing Encapsulation (GRE). This header 
has three flag bits, each signaling the presence of its 
corresponding field. Therefore, there are 8 possibilities that 
need to be evaluated without hurting throughput. The 
purpose of the Branch Catalyst is to speed up branching by 
extracting the flag bits using a built-in extraction engine and 
comparing the extracted flag(s) against all valid values at 
once to resolve the branch in a real-time manner. 

G. Branch Condition Evaluator 

This unit extracts the programmer-specified segment of 
header using its built-in extraction engine and checks 
whether it evaluates to true according to the programmer-
specified condition and reference value. The evaluation 
result is provided to the advanced program control unit to 
provide the address of next instruction. 

V. THE ADVANCED PROGRAM CONTROL UNIT 

At each clock cycle, the advanced program control 
(APC) unit provides the address of the instruction to be 
executed on the upcoming cycle. It does so according to the 
control signals that it constantly monitors as well as branch 
type specified in the current instruction. Among the control 
signals, reset has the highest priority and it causes the APC 
to jump to the initial subroutine. After that, expiry of 
counters that have been assigned the value of payload or total 
packet size have the highest priority. They cause the APC to 
jump to the subroutine which parses the trailer or the initial 
subroutine if no trailer is present. Next high-priority signal is 
expiry of the counter holding header size. It causes branch to 
the next header. If no next header is present, the payload 
should be forwarded to a buffer for recombination with 
header fields that will undergo processing. If there is no 
payload, presence of trailers is checked. If none of the 
aforementioned signals are active, the branch type is 
considered. We support the following branch types: 

A. Branch Catalyst 

This branch type indicates that the address of the next 
instruction must be provided by the Branch Catalyst. This 
branch type is typically used when the header contains 
optional fields whose presence is signaled by flags. 

B. Next Header 

This branch type signals that at the upcoming cycle, the 
first instruction in the subroutine in charge of parsing the 
next header should be executed. 

C. Next Header Function Call 

This branch type is similar to the previous one except that 
address of the next instruction which starts parsing the trailer 
will be saved in a stack so that a return can be made later on. 
It suits protocols which contain a trailer. 

D. Payload Forwarding 

This branch type signals that there are no headers 
anymore and the payload of the packet must be forwarded to 
the common data buffer for recombination with headers that 
will undergo processing. Payload is not subject to parsing but 

= = = 

Resolve 

Logic 

Default 

Address 

Extraction 

Engine 
Mode 

CLK 

C
o

m
p

ar
an

d
 

S
to

re
 

A
ss

o
ci

at
ed

 

A
d

d
re

ss
 S

to
re

 

Memory 

Interface 

Packet Header Segment (64 bits) 

Enable 

Starting 

Address 

Iterations 

Resolved 

Address 

Ready In-progress 

.  .  .  



its size should be known to the parser to maintain the 
boundaries between packets. From the perspective of a 
parser, payload is anything that is not subject to parsing. For 
instance, in an Ethernet switch, the layer-3 header is already 
considered payload unless the switch is capable of 
performing layer-3 functionality.  

E. End of Trailer 

This branch type signals that parsing of current trailer is 
over. At this point the APC must check whether there are 
more trailers waiting for parsing. 

F. Conditional Branch 

This branch type specifies conditional branch based on 
the value of a programmer-specified field within packet 
header. The condition is specified by a three-bit field within 
the instruction. 

VI. EVALUATION 

The architecture is implemented in VHDL. We have 
synthesized it on 28 nm UTBB FD-SOI technology in worst-
case operating conditions (1.0V, ss, 125°C) using Synopsys 
Design Compiler J-2014.09-SP4. Power analysis was also 
performed in worst-case operating conditions at the supply 
voltage of 1.1V (tt, 125°C). We have verified that all timing 
constraints are met for operation at the frequency of 1.0 
GHz. In order to make the comparison between this 
architecture and its predecessor more accurate, we have 
slightly modified the architecture in [8]. For instance, the 
original architecture used in [8] only had 2 counters to be 
assigned the payload or packet size. We have increased this 
number to 8. Moreover, we have increased the number of 
parallel comparators to 8. These modifications are mandatory 
for running the workloads that we will specify here. 

Table I compares the two architectures from the 
perspective of power dissipation. As we can see, the 
enhancements come at the cost of a 36 percent increase in 
total power consumption. Table II contains synthesis results 
of this architecture and modified [8]. As we can see, the extra 
cost is a 42 percent increase in area. It should be noted that 
the increase in area and power dissipation is not only due to 
the APC but as a result of enhancements that ease the task of 
compiler as well. 

Fig. 4 compares the total gate count required for 
sustaining aggregate throughput of 640 Gbps using current 
parser, the modified version of [8] and the parser in [2]. All 
of these parsers have been synthesized on 28 nm technology. 
We have derived the equivalent gate count by dividing the 
total area by the area of the smallest NAND2 gate which is 
0.3264 µm2 in the adopted technology. As we can see, 
despite the extra hardware, we still manage to provide 
substantial savings in area. While the parser in [2] requires 
5.6 million gates, we can achieve the same throughput using 
only 1.6 million gates. This translates to a 71 percent 
reduction in area. Although modified version of [8] has the 
least number of gates, it should be noted that its extraction 
engines operate on the lower 32-bits of the incoming header. 
Therefore, its throughput is not always 64 Gbps. As a result, 
more instances of it are required for supporting aggregate 
throughput of 640 Gbps. More instances result in more gates. 

As we have made architectural modifications for 
reducing latency when parsing variable-length headers, we 

TABLE I.  POWER DISSIPATION COMPARISON OF ARCHITECTURE 

VARIANTS 

 Modified [8] Current 
Architecture 

Internal Power 17.4 mW 23.3 mW 

Switching Power 9.6 mW 14.2 mW 

Leakage Power 8.2 mW 10.5 mW 

Total Power 35.2 mW 48.0 mW 

TABLE II.  AREA COMPARISON OF ARCHITECTURE VARIANTS 

 Modified [8] Current 
Architecture 

Number of ports 4491 4500 

Number of nets 14423 7860 

Number of 
references 

878 529 

Combinational 
area (µm2) 

17230 24089 

Buf/Inv area 
(µm2) 

10757 12136 

Noncombinational 
area (µm2) 

21114 30601 

Total cell area 
(µm2) 

38344 54690 

1.1
1.6

5.6

0

1

2

3

4

5

6

Modified

[8]

Current

Parser

Parser in

[2]

Parser instance

Millions 

of gates

 

Fig. 4. Total Gate count Required for aggregate throughput of 640 Gbps  

would like to consider the case of parsing IPv4 header. Fig. 5 
compares time required for parsing of IPv4 headers of 
different sizes using the two parsers. As we can see, with 
larger IPv4 headers, the original architecture lags behind 
considerably. In the case of largest possible IPv4 header 
which is 60 Bytes long, the speedup is 48 percent. 
Interestingly, in the new architecture, parsing IPv4 headers 
with sizes of 20, 24 and 28 bytes takes equal amount of time. 
The reason for this is the pipelined architecture of the Next 
Header Resolve Unit. It takes a number of cycles until the 
result is ready. The parser must stall while it could keep 
parsing the header if more fields were present.  

In order to see the effect of architectural enhancements 
for better throughput when parsing header stacks, we 
consider the following workloads for evaluating the 
performance of our parser and comparing it with its 
predecessor: 



0
2
4
6
8

10
12
14
16

Cycles 

required for 

parsing 

20 24 28 32 36

IPv4 header size (Bytes)
Modified [8]

New Parser

 

Fig. 5. Comparsion of cycle counts required for parsing IPv4 headers of 

different sizes 

• 1-Ethernet-IPv4-TCP 

• 2-Ethernet-IPv4(with two extensions)-TCP 

• 3-Ethernet-MPLS-IPv6(with two extensions)-TCP 

• 4-Ethernet-2xVLAN-2xMPLS-IPv6 (with two 
extensions)-TCP 

We have written the parse programs for each of the 
headers present in the stacks above. Table III outlines 
number of clock cycles required for parsing of the workloads 
in both [8] and current architecture. We do not consider the 
payload in the evaluation. Therefore, cycle times reflect only 
the time required for parsing of headers. As we will see, with 
increase in the number of stacked headers, the number of 
dead cycles in [8] will be increased. Most savings come from 
workloads which contain variable-length headers. This is 
because the instruction can not place the arrived header into 
containers of suitable sizes until it makes sure that header or 
payload counter still has non-zero value. In parsing Ethernet 
there is one dead cycle, in IPv4 there are two dead cycles. In 
addition, each IPv4 option also adds one dead cycle because 
at the end of each extension, the check for header size needs 
to be done again. Parsing of IPv6 is more straightforward. 
There will be one dead cycle. However, parsing of IPv6 
extension headers incur two dead cycles. Parsing of TCP also 
incurs two dead cycles. 

TABLE III.  COMPARISON OF TIME REQUIRED FOR PARSING THE 

WORKLOADS 

Workload Cycles 
required in 
modified [8] 

Cycles 
required in 
current 
architecture 

Improvement 

1 25 21 16 % 

2 28 22 21.42 % 

3 44 35 20.45 % 

4 50 40 20 % 

 

 

 

VII. CONCLUSION 

In this paper we presented a totally new program control 
logic for a recently-designed packet parser. We thoroughly 
studied the nature of packet parsing. We saw the required 
functional units and program control logic required for 
efficient parsing of variable-length headers and deep stacks 
of headers. We have also seen the cost of such 
enhancements. Once again, we have proved that the use of 
TCAM is not necessary for parsing and when TCAM-like 
functionality is desired, similar functionality can be provided 
by a small number of parallel comparators.  

As for future work, we would like to work on some of the 
shortcomings we came across the new architecture. For 
instance, the pattern of many headers is such that within a 
64-bit segment of the header, there are two 8-bit fields, one 
16-bit field and one 32-bit field. The PHV Filler currently 
cannot fill the containers in one clock cycle if such a pattern 
is encountered. Providing it with such functionality helps in 
ultralow-latency environments. 

REFERENCES 

[1] G. Gibb, G. Varghese, M. Horowitz and N. McKeown, "Design 
principles for packet parsers," in ACM/IEEE symposium on 
Architectures for networking and communications systems, San Jose, 
2013. 

[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. 
Izzard, F. Mujica and M. Horowitz, "Forwarding metamorphosis: fast 
programmable match-action processing in hardware for SDN," in 
ACM SIGCOMM, Hong Kong, 2013. 

[3] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. 
Balakrishnan, G. Varghese, N. McKeown and S. Licking, "Packet 
Transactions: High-Level Programming for Line-Rate Switches," in 
Proceedings of the 2016 ACM SIGCOMM Conference, Florianopolis, 
Brazil, 2016. 

[4] Barefoot Networks, "The world's fastest and most programmable 
networks," [Online]. Available: 
https://barefootnetworks.com/resources/worlds-fastest-most-
programmable-networks/. 

[5] M. Attig and G. Brebner, "400 Gb/s programmable packet parsing on 
a single FPGA," in ACM/IEEE Seventh Symposium on Architectures 
for Networking and Communications Systems, 2011. 

[6] J. S. d. Silva, F.-R. Boyer and J. P. Langlois, "P4-Compatible High-
Level Synthesis of Low Latency 100 Gb/s Streaming Packet Parsers 
in FPGAs," in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Monterey, 2018. 

[7] P. Benáček, V. Puš, H. Kubátová and T. Čejka, "P4-To-VHDL: 
Automatic generation of high-speed input and output network 
blocks," Microprocessors and Microsystems, vol. Volume 56, pp. 22-
33, February 2018. 

[8] H. Zolfaghari, D. Rossi and J. Nurmi, "An Explicitly Parallel 
Architecture for Packet Parsing in Software Defined Networks," in 
2018 IEEE 29th International Conference on Application-specific 
Systems, Architectures and Processors (ASAP), Milan, 2018. 

 

 

 


