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Abstract— We consider the robust output tracking problem
for an unstable one-dimensional heat equation. As the main con-
tribution we propose a new way of designing finite-dimensional
robust controllers based on Galerkin approximations of infinite-
dimensional observer-based controllers. The results are illus-
trated with a concrete example where the finite-dimensional
controllers are constructed using the Finite Element Method.
The results are extendable for more general parabolic control
systems.
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I. INTRODUCTION

In this paper we consider robust output tracking for
infinite-dimensional linear systems. Both the theoretical
properties of the problem and the design of robust controllers
has been studied extensively in the literature [1–9]. The
fundamental internal model principle [6], [10], [11] provides
a way of designing dynamic output feedback controllers
that solve this so-called “robust output regulation problem”.
However, many controller design procedures presented in the
recent articles [5], [9], [12] have the drawback that if the
original system is unstable (and cannot be pre-stabilized with
output or state feedback), then the controller requires a full
order observer of the original system. Because of this, these
controller designs lead to infinite-dimensional controllers for
unstable systems.

The main purpose of this paper is to present new methods
for the design of finite-dimensional robust controllers for a
controlled heat equation with a finite-dimensional unstable
part. The general approach is based on approximating the
infinite-dimensional controller designed with existing meth-
ods with a suitable numerical approximation scheme. In the
present paper we concentrate on studying a toy model —
one-dimensional heat equation with a single unstable eigen-
value. However, the general approach approach is applicable
for a more general class of parabolic systems, and these more
general results are presented in a later paper.

Throughout the paper we consider the one-dimensional
controlled heat equation on the domain Ω = (0, 1) with
homogeneous Neumann boundary conditions [13, Examples
4.3.11, 5.2.8]
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where ν > 0, 0 ≤ a < b ≤ 1, and 0 ≤ c < d ≤ 1. In the
robust output regulation problem our main goal is to design
a controller in such a way that the output y(t) of the system
converges asymptotically to a given reference signal yref (t)

‖y(t)− yref (t)‖ → 0, as t→∞

at an exponential rate. In addition, the control law is required
to function even under small variations of the parameters of
the system (1). We assume the reference signal is of the form

yref (t) =

q∑
k=1

ykref e
iωkt (2)

for known distinct frequencies (ωk)qk=1 ⊂ R and unknown
amplitudes (yk)qk=1 ⊂ C.

As our main result, we design a finite-dimensional dy-
namic error feedback controller that solves the robust output
regulation problem. The controller is based on designing an
infinite-dimensional internal model-based controller for the
system and subsequently approximating the observer part
using the Galerkin method. In particular, our approach uses
the theory presented in [14] to study the preservation of
the closed-loop stability under the approximations of the
controller. Once the closed-loop system is stabilized, the
internal model property of the controller will guarantee the
robust tracking of the reference signal.

An alternative to the controller design approach used in
this paper would be to first stabilize the system (1) using
a finite-dimensional feedback controller (for example using
the method presented in [13, Ch. 9]), and subsequently
to design a finite-dimensional low-gain controller for the
stabilized system. Compared to this procedure, the approx-
imation approach used in this paper has the advantage that
the controller does not require finding a suitable low-gain
parameter for the controller. In addition, the reference [7]
presents another alternative approach to design of finite-
dimensional controllers using “dual observers”.

The paper is organized as follows. In Section III we
design an infinite-dimensional dynamic stabilizing controller
for the heat equation. In Section IV we approximate the full
controller using the Galerkin method and verify that for a
sufficiently high order approximations the finite-dimensional
controllers achieve robust output regulation. In Section V we
demonstrate the results using a numerical simulation based
on Finite Element approximations of the system (1).

Notation: C+
0 is the right-half plan containing all complex

number s with Re s > 0. Through this paper we denote

H∞ = {G : C+
0 → C | G analytic and sup

s∈C+
0

|G(s)| <∞}.



Matrices whose entries are in H∞ are indicated by M(H∞).
Let R(H∞) indicate the transfer functions with both right
and left coprime factorizations over M(H∞).

II. THE ROBUST OUTPUT REGULATION PROBLEM

The system (1) can be rewritten in the abstract form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X
y(t) = Cx(t)

on the state space X = L2(0, 1) with operators
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Bu = gu with g(ξ) =
1

b− a
1[a, b](ξ), and

Cx = 〈x, h〉 with h(ξ) =
1

d− c
1[c, d](ξ).

The system operator A has the eigenvalues {−n2π2}∞n=0

and the corresponding eigenvectors φ0 ≡ 1 and φn =√
2 cos(nπ·) for n ≥ 1. Here B ∈ L(C, X) and C ∈
L(X,C).

Our goal is to design a dynamic error feedback controller
of the form

ż(t) = G1z(t) + G2e(t) (3a)
u(t) = Kz(t) (3b)

where e(t) = y(t) − yref (t) is the regulation error, G1 :
D(G1) ⊂ Z → Z generates a strongly continuous semigroup
on Z, G2 ∈ L(C, Z), and K ∈ L(Z,C). Letting xe(t) =
(x(t), z(t))>, the system and the controller can be written
together as a closed-loop system on Xe = X × Z (see [5],
[6] for details)

ẋe(t) = Aexe(t) +Beyref (t), xe(0) = xe0 = (x0, z0)>

e(t) = Cexe(t) +Deyref (t)

where

Ae =

[
A BK
G2C G1

]
, Be =

[
0
−G2

]
,

Ce =
[
C 0

]
, De = −I.

The Robust Output Regulation Problem. Choose
(G1,G2,K) in such a way that the following are satisfied:
(a) The semigroup Te(t) generated by Ae is exponentially

stable.
(b) There exists Me, ωe > 0 such that for all initial states

xe0 ∈ Xe and for all yref(t) of the form (2) the
regulation error satisfies

‖y(t)− yref(t)‖ ≤Mee
−ωet(‖xe0‖+ ‖(ykref)k‖). (4)

(c) If (A,B,C) are perturbed to (Ã, B̃, C̃) in such a way
that the perturbed closed-loop system is exponentially
stable, then for all xe0 ∈ Xe and for all (ykref)k ∈ Cq the
regulation error satisfies (4) for some modified constants
M̃e, ω̃e > 0.

The internal model principle [6, Thm. 6.9] implies that in
order to achieve robust output tracking of the reference signal
yref (t), it is both necessary and sufficient that the following
are satisfied.
• The controller (3) incorporates an internal model of the

frequencies (iωk)qk=1 of the signal yref (t).
• The semigroup Te(t) generated by Ae is exponentially

stable.
Since the plant is a single-input single-output system and
yref (t) is of the form (2), the internal model is defined as the
property that [6, Sec. 6]

iωk ∈ σp(G1) for all k ∈ {1, . . . , q}.

The system (1) is in general not stabilizable with static
output feeback, and therefore the controller designs proposed
in [5], [9] result in infinite-dimensional controllers. However,
as discussed in the introduction, the fact that the plant has a
finite-dimensional unstable part makes it reasonable to expect
that the robust output regulation problem is solvable with
a finite-dimensional controller. In this paper we show that
the robust output regulation problem for the system (1) can
be solved by constructing an infinite-dimensional controller
using the procedures presented in [5], [9], and subsequently
approximating the infinite-dimensional controller using the
Galerkin method. The result is a finite-dimensional internal-
model based controller (Gn1 ,Gn2 ,Kn) that solves the robust
output regulation problem for a sufficiently large n ∈ N. In
the construction we in particular use the results on preser-
vation of stability under approximations of the controller
presented by Morris [14], and Banks and Kunisch [15].

The main contribution of the paper is the construction
of the finite-dimensional robust controller (Gn1 , Gn2 , Kn)
based on a Galerkin approximation. The construction will
be completed in the following two sections. In particular,
the controller incorporates a suitable internal model and is
guaranteed to stabilize the closed-loop system provided that
the order of the approximation is sufficiently high.

III. DESIGNING AN INFINITE-DIMENSIONAL
CONTROLLER FOR SYSTEM (1)

In this section we design an infinite-dimensional robust
controller for the system (1) based on the method presented
in [9, Section 5]. This requires the following two properties.

• Assumption I1: The pair (A, B) is exponentially
stabilizable and the pair (A, C) is exponentially de-
tectable.
• Assumption I2: There exists L1 ∈ L(C, X) such
that A + L1C is exponentially stable and for every
k ∈ {1, . . . , q} we have PL(iwk) 6= 0 where PL(λ) =
CR(λ,A+ L1C)B.



The stabilizability and detectability of (A,B,C) of the
system (1) hold for our system by [13, Ex. 5.2.8]. More-
over, the condition PL(iωk) 6= 0 for all k ∈ {1, . . . , q}
can often be checked directly, or with using the transfer
function P (λ) of (A,B,C) and the relation PL(λ) = (I −
CR(λ,A)L1)−1P (λ) for λ ∈ ρ(A)∩ρ(A+L1C). Moreover,
if PL(iωk) 6= 0 for some L1 for which A + L1C is stable,
then the same holds for all such L1.

The following construction was presented in [9, Section
5], and it guarantees that the controller has an internal model
and that the closed-loop system is exponentially stable.

• Step 1: We choose the state space of controller as
Z = Z0 ×X , and the general control structure of the
operators (G1, G2, K) as

G1 =

[
G1 G2C
0 A+BK2 + LC

]
,

G2 =

[
G2

L

]
, K =

[
K1, −K2

]
.

We choose Z0 = Cq and G1 = diag(iω1, . . . , iωq) ∈
Cq×q . Since σ(G1) = σp(G1) = {iωk}qk=1, the
triangular structure implies that iωk ∈ σp(G1) for all
k ∈ {1, . . . , q}, and thus the controller incorporates
an internal model, as required. We choose the operator
K1 = [K1

1 , . . . , K
q
1 ] ∈ L(Y q, U) so that Kk

1 6= 0 for
all k ∈ {1, . . . , q}.
• Step 2: We choose L1 ∈ L(C, X) in such a way that
A+L1C generates an exponentially stable semigroup.
Then PL(iωk) 6= 0 for all k. We also choose K2 ∈
L(X,C) in such a way that A + BK2 generates an
exponentially stable semigroup.
• Step 3: We define H = [H1, H2, . . . , Hq] ∈
L(Z0, X) where

Hk = R(iwk, A+ L1C)BKk
1 .

Then, we define C1 = CH ∈ L(Z0,C).
• Step 4: We choose G2 ∈ L(C, Z0) in such a way
that G1 +G2C1 ∈ Cq×q is Hurwitz. Finally, we define
L = L1 +HG2.

For our system, the following suitable choices of operators
L1 and K2 are given in [13, Example 5.2.8].

Lemma 3.1: If we choose K2 and L1 so that K2z =
−3〈z, φ0〉 = −3〈z, 1〉 and L1y = −3yφ0 = −3y, then
A + BK2 and A + L1C generate exponentially stable
semigroups.

IV. APPROXIMATING THE CONTROLLER WITH THE
GALERKIN METHOD

We use the results of Morris [14] based on convergence
of infinite-dimensional systems to approximate the infinite-
dimensional controller in the previous section with a finite-
dimensional one. We begin by recalling general assumptions
A1–A5 that guarantee the convergence of the approximate
controllers to the original on in the graph topology. Subse-
quently, we collect more concrete sufficient conditions B1–
B2 that are more easily checkable for parabolic systems.

A. The general assumptions

Consider a general single-input single-output system

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

on a Hilbert space X . Let (Xn)n∈N be a sequence of finite-
dimensional subspaces of X and define Pn : X → Xn to be
the orthogonal projections onto Xn. For each n, we define
the approximating system (An, Bn, Cn) where Bn := PnB,
and Cn is the restriction of C onto Xn . The following
assumptions were introduced in [14].

• Assumption A1: For all x ∈ X , lim
n→∞

‖Pnx−x‖ = 0.
• Assumption A2: For some s ∈ ρ(A) and for all
x ∈ X ,

lim
n→∞

‖PnR(s,A)x−R(s,An)Pnx‖ = 0.

• Assumption A3: The semigroup Tn(t) generated
by An are uniformly bounded. That is, there exists
M, ω ∈ R and N ∈ N such that

‖Tn(t)‖ ≤Meωt, for all n ≥ N.

• Assumption A4: If the original system is stabilizable,
then the approximations are uniformly stabilizable.
That is, there exists a sequence of operators Kn with
Kn ∈ L(Xn,C) and some K ∈ L(X ,C) such that
for all x ∈ X , limn→∞KnPnx = Kx. Furthermore,
for sufficiently large N the semigroups generated by
An − BnKn are uniformly bounded by Me−ωt for
some M > 0, ω > 0, and all n > N .
• Assumption A5: If the original system is detectable,
then the approximations are uniformly detectable. That
is, there exists a sequence of operators Ln with
Ln ∈ L(C,Xn) and some L ∈ L(C,X ) such that
limn→∞‖Ln−PnL‖ = 0. Furthermore, for sufficiently
large N the semigroups generated by An − LnCn are
uniformly bounded by Me−ωt for some M > 0, ω >
0, and all n > N .

The following theorems from [14] play an important role
later in showing that the closed-loop system is stabilized by
an approximated controller.

Theorem 4.1 ( [14, Thm. 4.2–4.3]): Let (A, B, C) be
a stabilizable/detectable control system, and assume
(An, Bn, Cn) is a sequence of approximations satisfying
assumptions A1–A3, and either A4 or A5. Then
the approximating systems with transfer functions
Gn(s) = CnR(s, An)Bn converge to the original system in
the graph topology on M(H∞).

B. Assumptions for parabolic systems

Banks and Kunisch [15] showed that assumptions A1–
A4 hold for general Galerkin approximations of symmetric
parabolic equations. These sufficient conditions were also
generalized to a larger class of systems by Morris in [14,
Section 5].

Let V be a Hilbert space, densely and continuously embed-
ded in X . We denote the the inner products on X and V with



〈·, ·〉 and 〈·, ·〉V , respectively. Analogously, denote by ‖ · ‖
and ‖ · ‖V the norms on X and V . Let A : D(A) ⊂ X → X
be a closed operator such that

〈−Aφ, ψ〉 = a(φ, ψ), ∀ψ ∈ V

where D(A) = {φ ∈ V | a(φ, ·) ∈ X}.
• Assumption B1: a : V × V → C is a continuous
sesquilinear form, i.e. there exists M > 0 such that

|a(φ, ψ)| ≤M‖φ‖V ‖ψ‖V (5)

for all φ, ψ ∈ V .
• Assumption B2: a(·, ·) satisfies Garding’s inequality,
i.e. there exists γ ≥ 0 and δ > 0 such that for all φ ∈ V

Re a(φ, φ) + γ〈φ, φ〉 ≥ δ‖φ‖2V . (6)

Let Xn ⊂ V be a sequence of finite-dimensional sub-
spaces. When the operator A satisfies the two inequalities
(5) and (6), it is only required that the subspaces Xn satisfy
a V -approximation property. That is, for each x ∈ V , there
exists a sequence (xn)n with xn ∈ Xn such that

lim
n→∞

‖xn − x‖V = 0. (7)

This condition is fulfilled, e.g., for several Finite Element
approximation schemes (see [16, Sec. 3.2, Ch. 5] and [15]).

The finite-dimensional approximations An of the operator
A are defined via

〈−Anxn, vn〉 = a(xn, vn), ∀xn, vn ∈ Xn. (8)

The V -approximation property (7) and two assumptions of
operator A imply all assumptions A1–A5. The proof can be
found in [14, Section 5.2].

C. Approximation of controller

We will now approximate the infinite-dimensional con-
troller by a finite-dimensional one in such a way that for a
sufficiently large approximation order also the approximate
controller stabilizes the closed-loop system. We consider an
approximation of dynamic feedback controller

żn(t) = Gn1 zn(t) + Gn2 e(t) (9a)
un(t) = Knz(t). (9b)

For a fixed n ∈ N we choose the finite-dimensional state
space as Zn = Z0 ×Xn, and choose the operators as

Gn1 =

[
G1 G2C

n

0 An +BnKn
2 + LnCn

]
,

Gn2 =

[
G2

Ln

]
, Kn =

[
K1, −Kn

2

]
,

where (An, Bn, Cn) is an approximation of (A, B, C)
in Xn. The rest of the parameters are chosen using the
following modified version of the algorithm in Section III.
• Step 1: G1 and K1 are chosen as in Section III. For

these choices the controller incorporates an internal
model.

• Step 2: We choose L1 ∈ L(C, X) and K2 ∈ L(X,C)
in such a way that A + L1C and A + BK2 generate

exponentially stable semigroups, and define Ln1 :=
PnL1 ∈ L(C, Xn) and Kn

2 := K2Pn ∈ L(Xn,C).
• Step 3: The operator Hn = (Hn

1 , H
n
2 , . . . , H

n
q ) ∈

L(Z0, Xn) is computed based on (An, Bn, Cn) instead
of (A, B, C), and we define Cn1 = CnHn

1 ∈ L(Z0,C).
• Step 4: We choose G2 ∈ L(C, Z0) such that G1 +
G2C

n
1 ∈ Cq×q is Hurwitz. Finally, we define Ln =

Ln1 +HnG2.
Lemma 4.2: Suppose (A,B) is a stabilizable pair and A

satisfies assumptions B1 and B2. Let K2 ∈ L(X,C) be
such that A + BK2 generates a stable semigroup. If V -
approximation property (7) is true, there exists N1 such
that for all n > N1, the semigroup Sn(t) generated by
An +BnK2Pn are uniformly stable.

Lemma 4.3: Suppose (A,C) is a detectable pair and A
satisfies assumptions B1 and B2. Let L1 ∈ L(C, X) be
such that A + L1C generates a stable semigroup. If V -
approximation property (7) is true, there exists N2 such
that for all n > N2, the semigroup Sn(t) generated by
An + PnL1Cn are uniformly stable.

In the following lemma we consider extended output
operators

K =

[
K1 −K2

0 C

]
and Kn =

[
K1 −Kn

2

0 Cn

]
(10)

for the controller and its approximation, respectively.
With these choices the extended systems (G1, G2, K) and
(Gn1 , Gn2 , Kn) are exponentially stabilizable and detectable.

Lemma 4.4: The approximating controllers with transfer
functions Pnc (s) = KnR(s, Gn1 )Gn2 converge to the original
system with Pc(s) = KR(s, G1)G2 in the graph topology on
M(H∞).

Proof: For brevity, we denote An1 = An+BnKn
2 +LnCn.

For s ∈ σ(G1) ∩ σ(An1 ) and for all n ∈ N, we compute the
transfer function Pnc of the extended system (Gn1 , Gn2 , Kn)
as follows

Pnc (s) = KnR(s, Gn1 )Gn2

=

[
K1 −Kn

2

0 Cn

] [
sI −G1 −G2C

n

0 sI −An1

]−1 [
G2

Ln

]
=

[
Pn1 (s)
Pn2 (s)

]
where

Pn1 (s) = K1R(s,G1)G2 (I + Pn2 (s))−Kn
2R(s,An1 )Ln,

Pn2 (s) = CnR(s,An1 )Ln.

By Theorem 4.1, Lemmas 4.2 and 4.3 we have that
CnR(s,An1 )Ln converges to CR(s,A+BK2 + LC)L and
Kn

2R(s,An1 )Ln also converges to K2R(s,A+BK2+LC)L.
Because of this, also Pnc (s) = KnR(s, Gn1 )Gn2 converges to
Pc(s) = KR(s, G1)G2 in the graph topology on M(H∞).

�

We denote by P (λ) = CR(λ,A)B the transfer function
of the original system (1). We then recall a result in [14],



[17] concerning the convergence of closed-loop ∆(Pnc , P )
to ∆(Pc, P ).

Theorem 4.5: Let {Pnc } be a sequence in R(H∞), and
Pc, P ∈ R(H∞). Then ∆(Pnc , P )→ ∆(Pc, P ) if and only
if Pnc → Pc in the graph topology.
The above convergence results allow us to prove that the
approximated controller solves the robust output regulation
problem provided that the accuracy of the approximation is
sufficiently high. It should be noted that we are interested
in closed-loop stability in the sense of the stability of the
semigroup generated by Ae, but for achieving these we can
use the analysis of the closed-loop transfer function and
the well-known connection between internal and external
stability, see e.g. [14, Theorem 2.1].

Theorem 4.6: There exists N ∈ N such that the finite-
dimensional controller (Gn1 , Gn2 , Kn) solves the Robust Out-
put Regulation Problem for all n > N .

Proof: The block-triangular structure and the property
σ(G1) = σp(G1) = {iωk}qk=1 imply that iωk ∈ σp(Gn1 )
for all k ∈ {1, . . . , q}, and thus the controller incorporates
an internal model for every n ∈ N. Thus it remains to show
that the closed-loop system Ane is exponentially stable for all
sufficiently large n.

To show closed-loop stability, we first consider a compos-
ite system (A,B, C) with operators

A =

[
A 0
0 G1

]
, B =

[
B 0
0 G2

]
, C =

C 0
0 K
0 [0, C]


and we similarly define (An,Bn, Cn) using (Gn1 ,Gn2 ,Kn).
Since (A,B,C), (G1,G2,K), and (Gn1 ,Gn2 ,Kn) are expo-
nentially stabilizable and detectable, the same properties hold
for the systems (A,B, C) and (An,Bn, Cn). In addition, by
Theorem 4.1 and Lemma 4.4 we have that transfer function
Pn(λ) of (An,Bn, Cn) converges to the transfer function
P(λ) of (A,B, C) in the graph topology.

If we define Q = [ 0 1 0
1 0 0 ], then the semigroup associated

to the closed-loop system (A + BQC,B, C) coincides with
Ae, and therefore (A + BQC,B, C) is input-output stable.
Moreover, the closed-loop systems (An + BnQCn,Bn, Cn)
converge to (A + BQC,B, C) in the graph topology (see
[18, Section 7.2]). Because of this, for all large enough
n ∈ N the systems (An + BnQCn,Bn, Cn) are input-
output stable (see [14], [19]), and since there systems are
exponentially stablizable and detectable, also the semigroups
generated byAn+BnQCn are exponentially stable. But since
An + BnQCn = Ane , the proof is complete.

�

V. DISCRETIZATION AND A NUMERICAL EXAMPLE

Both the systems and the dynamic controllers must be
discretized in simulation. To understand the concept that the
approximating controllers also stabilizes the original system,
we use two distinct discretizations of the heat equation (1).
By using Finite Element Method, we firstly discretized
the system with a finer mesh with N hat functions. The
approximation of operators (A, B, C) are (AN , BN , CN ).

We then define a coarse mesh with a considerably smaller
number of hat functions n� N . In this mesh, the operators
(A, B, C) are approximated as (AnBn, Cn). The controller
(9) is computed based on operators (An, Bn, Cn).

A. Discretization of operators (A, B, C)

To use a finite-element-based approach, we firstly intro-
duce a uniform space mesh

ΩND =

(
1

N
,

2

N
, . . . ,

N − 1

N

)
containing interior points of Ω. We define the space step
∆ξ = 1

N with 2 ≤ N ∈ N. We use the classical hat functions
as basis functions φi(ξ) ∈ V with i ∈ {1, 2, . . . , N − 1}
defined for all ξ ∈ Ω as follows

φi(ξ) =


1− i+ ξ

∆ξ if ξ ∈ [(i− 1)∆ξ, i∆ξ],

1 + i− ξ
∆ξ if ξ ∈ [i∆ξ, (i+ 1)∆ξ],

0 if ξ /∈ [(i− 1)∆ξ, (i+ 1)∆ξ].

A function f ∈ V can be approximated by the values
taking on ΩD. Particularly, we approximate f by the function
f̃ defined as

f̃ :=

N−1∑
i=1

f(i∆ξ)φi.

We define the evaluation vector at each points of the mesh
ΩD

f̄ =
[
f(1∆ξ) f(2∆ξ) . . . f((N − 1)∆ξ)

]>
where A> stands for the transpose matrix of A.

Two important matrices are so-called mass matrix M :=
[〈φj , φi〉] and stiffness matrix S := [〈∂xφj , ∂xφi〉]. We can
compute both matrices explicitly as tridiagonal matrices

MN =
∆ξ

6



4 1 0 0 . . . 0
1 4 1 0 . . . 0

0 1 4 1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 1 4 1
0 . . . 0 0 1 4


,

and

SN =
1

∆ξ



2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0 −1 2 −1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2


,

Then we get the approximating operators (AN , BN , CN )
as follows: AN = −ν(MN )−1SN , BN = ḡN , and
CN = ∆ξ(h̄N )> where ḡN and h̄N is the evaluation vectors
of functions g(ξ) = 1

b−a1[a, b](ξ) and h(ξ) = 1
d−c1[c, d](ξ)

respectively.



B. Discretization of operators (G1, G2, K) in controller

To design the feedback controller, firstly, we define another
uniform coarser mesh with n interior points

ΩnD =

(
1

n
,

2

n
, . . . ,

n− 1

n

)
.

We then discretize operators (A, B, C) in this mesh as
(An, Bn, Cn). Under the choice in Lemma 3.1 we can anal-
ogously approximate two operators K2 and L1. Following
Section IV-C, we can construct a discretization version of
operators (G1, G2, K) as (Gn1 , Gn2 , Kn).

C. Discretization in time

Finally, when we get the discretization of all operators,
we will solve the coupled system of extended state xe =
(xN , zn)>

ẋe =

[
ẋN

żn

]
=

[
AN BNKn

Gn2CN Gn1

] [
xN

zn

]
+

[
0
−Gn2

]
yref

using the function ode23 in MATLAB.

D. A numerical example

We consider a particular example of the system (1) with
ν = 1, a = 1

4 , b = 1
2 , c = 1

2 , d = 3
4 , and x0(ξ) = cos(5ξ).

To test the simulation, we choose a given reference signal
yref (t) = 3 cos t+ sin(2t)− 2 cos(3t), and the time interval
[0, 10].

We use two meshes: a fine mesh to discterize system with
N = 1000 and a coarse one to design the dynamic feedback
controller. We choose a sequence of n ∈ {5, 20, 100, 1000}.
The controllers based on all coarse meshes stabilizes the
output regulation problem even if in some cases we use an
extremely small n.

Fig. 1. Output under the finite-dimensional controllers.

VI. CONCLUSION

In this paper we have designed a finite-dimensional
controller for robust output tracking of an unstable one-
dimensional heat equation with bounded input and output
operators. The controller design is based on constructing
an infinite-dimensional observer-based controller and sub-
sequently replacing it with a finite-dimensional Galerkin
approximation. The approximation of controller here can also
be completed for the type of controllers considered in [5].
The general approach is extendable for parabolic systems
with a finite-dimensional unstable parts.

REFERENCES

[1] J. M. Schumacher, “A direct approach to compensator design for
distributed parameter systems,” SIAM Journal on Control and Op-
timization, vol. 21, pp. 823–836, 1983.

[2] H. Logemann and S. Townley, “Low-gain control of uncertain regular
linear systems,” SIAM Journal on Control and Optimization, vol. 35,
no. 1, pp. 78–116, 1997.
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