
Energy-Delay Trade-Offs in
Instruction Register File Design

Joonas Multanen, Heikki Kultala, Pekka Jääskeläinen
Tampere University of Technology, Finland

Email: {firstname.lastname}@tut.fi

Abstract—In order to decrease latency and energy con-
sumption, processors use hierarchical memory systems to store
temporally and spatially related instructions close to the core.
Instruction register file (IRF) is an energy-efficient solution for the
lowest level in the instruction memory hierarcy. Being compiler-
controlled, it removes the area and energy overheads involved in
cache tag checking and adds flexibility in the separation of the
instruction fetch and execution. In this paper, we systematically
evaluate for the first time the effect of three IRF design variations
on energy and delay against an unoptimized baseline IRF. Having
instruction fetch and decode with IRF in the same pipeline stage
allows minimal delay branching, but results in low operating
clock frequency and impaired energy delay product compared
to splitting them into two stages. Assuring instruction presence
in IRF before execution with software reduces the area and
increases maximum clock frequency compared to assurance
with hardware, but requires compiler analysis. With a proposed
compiler-analyzed instruction placement and co-designed hard-
ware implementation, energy consumption with the best IRF
variant is reduced by 9% on average with EEMBC Coremark
and CHStone benchmaks. The energy delay product is improved
by 23% when compared to the baseline IRF approach.

I. INTRODUCTION

The era of Internet-of-Things (IoT) increases demands for
the energy-efficiency and performance of devices. Battery-
dependent devices, such as surveillance cameras, drones and
sensor nodes operate on a limited energy budget. Their ap-
plications often require “burst style” execution: After idling
for long periods, they might be waken up to react to external
events and execute demanding data and control oriented tasks
with low response latency.

For maximal energy-efficiency, fixed function accelerators
are typically used. However, they offer poor flexibility as
tasks not known at design time cannot likely be executed
on the same fabricated hardware. Modern applications prefer
programmable solutions due to the complex, growing compu-
tational needs [1].

Application-specific instruction-set processors (ASIPs) can
deliver efficiency and flexibility, but the instruction supply can
be considered as an additional overhead; software instructions
just control the processor execution, but do not perform actual
data processing. The instructions are typically read from on-
chip caches or memories implemented with SRAMs, which
can consume up to half of the power consumption [2], [3] of
the processing. Ideally, a processor would be programmable,
but offer the performance and energy-efficiency of a fixed
function accelerator.

Processors include hierarchical instruction memory orga-
nizations to keep temporally related code close to the core,

in order to allow accessing instructions from faster and more
energy-efficient storages. For this purpose, various different
storage components have been developed. Dynamic caches
fetch instructions from the next hierarchy level upon a cache
miss. Their benefit is that they require no knowledge of the
cache details from software developers, but their unpredictable
timing can become an issue in timing-critical applications.
Locked caches address this by allowing fetching to be disabled
for the duration of a task with special locking instructions.
Loop buffers are dedicated to cache loops of the program,
exploiting the observation of them usually being the hot spots
in the program.

Instruction scratchpad memories (SPMs) are a more
generic structure; they can store also blocks with more com-
plex control flow while streamlining the caching hardware by
removing the cache tag checking, but require the programmer
or the compiler to add instructions to load their content and
usually need separate instructions to branch around inside the
SPM. Instruction register files (IRFs) [4] are like SPMs, but
typically smaller in size to enable implementation with small
register files instead of memories leading to even better energy
efficiency and latency. Efficient utilization of IRFs and SPMs
require careful compiler code analysis in order to determine
optimal instruction placement.

Previous work considers design alternatives only for the
distribution of IRFs among processor function units and
concentrates on evaluating the IRF as a means to reduce
energy consumption. However, as compute demands on low-
power devices increase with IoT and edge computing, energy-
efficiency has become at least as critical design aspect as
performance. This paper presents the first in-depth evaluation
about the implementation of three different fetch strategies
compared to a baseline IRF from our previous work [5] and
evaluates the energy and delay trade-offs of each strategy.

II. INSTRUCTION REGISTER FILE CONCEPTS

IRFs are programmer visible, thus presenting different
design choices at the architecture and microarchitecture level.
At the architecture level, IRFs require the compiler to decide
and control when to execute from the IRF and when to load
instructions to it from the lower hierarchy level. For this, a
user-visible control interface such as control bits are added to
instructions, or special IRF control instructions are typically
used.

When considering the internal implementation details (mi-
croarchitecture), some sort of presence assurance is required
to ensure that the instructions to be executed from the IRF

978-1-5386-7656-1/18/$31.00 c©2018 IEEE

SRAM

coreinstruction
fetch

instr
reg

IRF

optional

Fig. 1. The core used as evaluation platform for IRF variants.

are present. An alternative is to use a software-based im-
plementation by prefilling all or some of the instructions in
the instruction window (IW) (a set of instructions that can
be placed simultaneously in the IRF) before their execution.
Another option is to include hardware logic, such as a presence
bit for each IRF entry and fetch the missing instructions on
demand.

In IRF bypassing, instructions are fed directly from the next
instruction hierarchy level to the core. As it is not beneficial to
execute instructions that are executed only once from the IRF,
and as the IRF allows isolation of instruction fetching from
their execution, some consideration is required for two aspects
of IRF instruction placement:

1) Which instructions to place in the IRF?
2) When should the instructions be fetched to the IRF?

A special design consideration results from how to handle
fallthroughs which occur when the program execution does not
branch at the last instruction of a basic block (BB), but con-
tinues from the next sequential instruction address. Alternative
solutions include hardware detection of IW boundaries, or by
inserting branches out of the IRF in software.

III. EVALUATED IRF DESIGN VARIANTS

We chose interesting IRF implementation variants for
closer inspection and integrated them into the instruction fetch
unit of a processor core as shown in Fig. 1. In all of the
variants, we used special header instructions as the control
mechanism. As there are unused bit combinations available
in the core immediate control field, we used them to indicate
header instructions. The instruction fetch unit pre-decodes the
immediate control field and reads the header upon the correct
pattern. The processor is stalled for one cycle during this time,
while the length of the instruction window is read from the

header
pre-decode

IRF

start_irf_fill

instr_in

 instr_out

pc_in

addr
reg

lock_core

+ IRF
pc
reg

instr
reg

1

addr reg

IRF depth

+
1

1

0

0

addr

IRF next pc

IW size
reg

fill_ctrl

fallthrough
logic

IRF
status irf_status

presence
check‘1’

Only in pipelined

Fig. 2. Simplified logic of the Baseline/pipelined instruction fetch unit.

header into the IW size register seen in Fig. 2. Then, execution
starts from the first index of the IRF.

In the baseline IRF [5], instructions are fed directly to
the core when bypassing and filling the IRF. This has the
advantage of minimal delay in branching, as the branch target
is available on the next cycle. However, this is detrimental
to maximum clock frequency as the critical path starts from
the next level instruction storage data read port, going through
both the instruction fetch and decode units and looping back
into the instruction address port.

For presence assurance in the baseline, a presence bit
register is read during each IRF execution. If the presence
bit for an entry to be executed next is not set, that instruction
is fetched and the presence bit is set.

In all of the evaluated alternatives, fallthroughs are detected
by hardware and cause the next instruction to be fetched from
the next level in hierarchy. At this point a new instruction
window can be loaded and started via a header instruction,
or the execution can start bypassing the IRF. At each IRF
execution cycle, the IW size register is compared to the IRF
next PC. Upon detection of a fallthrough to the next code
BB, execution is stalled and the next instruction address is
calculated as addr reg + IW size reg.

The differences in the evaluated variants are described in
the following.

A. Pipelined

To address the long critical path incurred from bypassing
instructions in the baseline IRF, we insert an instruction
register, where bypassed instructions are pipelined into, as
seen in Fig. 2. Increasing the maximum clock frequency in
this way presents a trade-off of increased clock cycles due to
the additional fetch stall cycles. Compared to the baseline, a
stall cycle is incurred when execution branches out of the IRF
or when an instruction is not present.

B. iw-fill

A simplified logic diagram of the iw-fill variant is illus-
trated in Fig. 3. This variant of the IRF fetches an entire
instruction window into the IRF, when starting execution from
it. The whole instruction window is fetched in order to ensure,
that due to forward branching, IRF execution cannot reach an
instruction which has not been fetched. This variant removes

header
pre-decode

IRF

start_irf_fill

instr_in

 instr_out

pc_in

addr
reg

lock_core

+ IRF
pc
reg

instr
reg

1

addr reg

IRF
depth

+
1

1

0

0

addr

=

IRF next pc

IW size
reg

fill_ctrl

fallthrough
logic

Fig. 3. Simplified logic of the instruction fetch unit with iw-fill variant.

header
Pre-decode

IRF

start_irf_fill

instr_in

 instr_out

pc_in

addr
reg

 lock_core

+ IRF
pc
reg

instr
reg

1

addr reg

IRF depth

+
1

1

0

0

addr

=

IRF next pc

IW
size reg

fill_ctrl
prefill

amount reg

 fallthrough
logic

Fig. 4. Simplified logic of the instruction fetch unit with fw-jump-fill variant.

the need for a presence bit register, but incurs additional clock
cycles, as execution is stalled for the length of the instruction
window.

C. fw-jump-fill

Similar to iw-fill, this variant removes the presence bit
checking. Since the reason for prefilling instructions are for-
ward jumps, this variant stalls the execution for a compiler-
analyzed amount of cycles that guarantees that it is not possible
to execute an instruction that has not yet been fetched, if the
window contains forward jumps. The prefill amount is encoded
into the header instruction along with the instruction window
length. A logic diagram is presented in Fig. 4. Compared to the
iw-fill, prefill logic and the prefill amount register are added.
This is required, since the variant continues filling the IRF
while IRF execution starts.

IV. COMPILER SUPPORT

As a first step to the placement of more complicated control
structures, our implementation focuses on loops and nested
loops, as they are typically program hot spots. We implemented
an algorithm for allocating the instruction windows as a post-
pass after instruction scheduling as presented in Fig. 5 and
detailed in the following.

First, all program basic blocks are split into blocks whose
maximum size is the IRF size and assigned as individual
instruction windows. These windows are then merged with two
conditions:

1) Incoming jumps must target the first instruction in
the IW.

2) Function calls are not allowed inside an IW.

The IW, however, can end in an function call. Conforming
to the second condition, if a function call is encountered, the
instruction window is split to exclude it.

The algorithm starts allocation from inner loops and con-
tinues to outer loops if the IRF capacity allows them. As it
is only beneficial to write instructions to the IRF if they are
executed multiple times, blocks with no backward jumps into
itself are discarded. Instead, these blocks are bypassed into the
instruction register.

As a last step, branch target addresses are fixed, taking into
account the inserted header instructions. For jumps inside the
IW, we implemented a near jump instruction, whose target is

1: for all basicblocks in CFG do
2: if basicblock.size > irfsize then
3: split basicblock to irfsize
4: end if
5: create a new instructionwindow for basicblock
6: queue created instructionwindow
7: end for
8: for all instructionwindow in queue do
9: nextblock ← instructionwindow.successor
10: if instructionwindow does not end in a call and nextblock has no incoming jumps

from outside these two blocks and instructionwindow.size + nextblock.size <
irfsize then

11: merge current instructionwindow with next
12: requeue(instructionwindow.predecessor)
13: else
14: remove instructionwindow from queue
15: end if
16: end for
17: for all instructionwindow in instructionwindows do
18: if instructionwindow contains no backward jumps then
19: instructionwindow.setbypassblock
20: else
21: create instruction window header instruction for fetch and execute with IRF
22: end if
23: end for
24: for all instructionwindow in instructionwindows do
25: if not instructionwindow.isbypassblock then
26: for all jump in instructionwindow do
27: if jump destination is inside same instructionwindow then
28: convert jump to local irfjump
29: end if
30: end for
31: end if
32: end for

Fig. 5. The instruction window allocation routine.

an IRF index. For other jumps, a global jump is used, targeting
the actual memory address space.

For presence assurance in the fw-jump-fill variant, analysis
of the prefill amount is required. First, for each BB in an in-
struction window, the compiler calculates the earliest possible
execution cycle. This cycle is relative to the execution cycle of
the first instruction in the IW. The earliest possible execution
cycle is calculated by traversing the control flow graph (CFG)
in top-down direction, with the first BB in the IW having a
minimum execution cycle of 0.

When encountered, the blocks are queued for processing.
When processed, a basic block inherits the minimum execution
cycle of its predecessor, to which its individual minimum
execution cycle is added, unless the successor has a smaller
minimum execution cycle count. When the minimum execution
cycle of a BB is updated, the block is queued again in order
to propagate the update to its successors. As backward control
flow edges from backwards jumps of loops always imply a
higher execution cycle than the first iteration of the loop, these
do not propagate and are discarded.

The compiler then compares the earliest possible execution
cycle of each basic block to the position of the BB inside the
IW. The largest individual count is selected as the prefill/stall
count for the IRF.

TABLE I. BENCHMARK INSTRUCTION TYPE DISTRIBUTION (%).

control mem ALU NOP data move & RF

coremark 4.7 9.9 17.1 38.7 29.5
adpcm 0.6 12.8 17.5 45.0 24.2
aes 1.7 11.1 20.8 37.8 28.7
blowfish 1.4 11.9 22.0 31.4 33.3
gsm 2.8 6.3 20.3 38.4 32.3
jpeg 2.6 9.6 15.3 30.3 42.2
mips 6.1 7.9 23.0 33.2 29.8
motion 1.9 13.0 18.4 37.8 28.9
sha 0.8 8.9 24.7 26.5 39.1

co
re

m
ar

k8
ad

pc
m

8
ae

s8
bl

ow
fis

h8
gs

m
8

jp
eg

8
m

ip
s8

m
ot

io
n8

sh
a8

co
re

m
ar

k1
6

ad
pc

m
16

ae
s1

6
bl

ow
fis

h1
6

gs
m

16
jp

eg
16

m
ip

s1
6

m
ot

io
n1

6
sh

a1
6

co
re

m
ar

k3
2

ad
pc

m
32

ae
s3

2
bl

ow
fis

h3
2

gs
m

32
jp

eg
32

m
ip

s3
2

m
ot

io
n3

2
sh

a3
2

co
re

m
ar

k6
4

ad
pc

m
64

ae
s6

4
bl

ow
fis

h6
4

gs
m

64
jp

eg
64

m
ip

s6
4

m
ot

io
n6

4
sh

a6
4

co
re

m
ar

k1
28

ad
pc

m
12

8
ae

s1
28

bl
ow

fis
h1

28
gs

m
12

8
jp

eg
12

8
m

ip
s1

28
m

ot
io

n1
28

sh
a1

28

co
re

m
ar

k2
56

ad
pc

m
25

6
ae

s2
56

bl
ow

fis
h2

56
gs

m
25

6
jp

eg
25

6
m

ip
s2

56
m

ot
io

n2
56

sh
a2

56

co
re

m
ar

k5
12

ad
pc

m
51

2
ae

s5
12

bl
ow

fis
h5

12
gs

m
51

2
jp

eg
51

2
m

ip
s5

12
m

ot
io

n5
12

sh
a5

12

0

10

20

30

40

50

pipelined iw-fill fw-jump-fill

Fig. 6. Cycle count increase (%) compared to baseline across IRF variants and IRF size.

V. EVALUATION

The processor core [5] used in the evaluation was designed
with the TTA-based Co-Design Environment (TCE) [6] tools.
The evaluation setup is illustrated in Fig. 1. The exposed
datapath processor architecture utilizes a long instruction word
control similar to very long instruction word (VLIW) archi-
tectures and thus benefits greatly from efficient low level
instruction caching. The processor design used in the evalua-
tion features a 50-bit instruction word with fields controlling
each data bus. However, as the measurements do not relate
to the datapath organization, the evaluation results can be
generalized to other statically scheduled processor paradigms
as well. The instruction memory cached by the IRF was
implemented as a 8192x50-bit (51.2 kB) onchip SRAM. An
overly large instruction memory would likely result in over-
optimistic energy comparison in favor of the IRF, so the
smallest 2n-entry memory able to fit all the benchmarks was
chosen.

To evaluate performance in control-oriented program code,
EEMBC Coremark [7] was used. To emphasize another appli-
cation domain of interest for IoT applications, we added eight
fixed-point signal processing benchmarks from CHStone [8].
The benchmarks are characterized according to different in-
struction types in Table I. Coremark and mips have more
program control instructions, whereas the other benchmarks
are more straightforward, typical to signal processing. The
benchmark programs were compiled using the compiler of the
TCE toolset with the described compiler support implemented
on top. Generation of the IRF instructions and hardware was
integrated into the TCE tools and performed automatically.
Hardware simulations were performed with Mentor Model-
Sim 10.4. Topographical synthesis results were obtained with
Synopsys Design Compiler using a 28 nm FD-SOI process
technology. SRAM timing, power and energy characteristics
were obtained from Cacti-P [9].

To take into account the instruction storage access timings,
conservative values of 0.40 ns access time for the data read port
and 0.15 ns address hold time were manually inserted to the
core’s corresponding ports in Design Compiler. These values
were obtained from Cacti-P for the 8192x50-bit memory.

A. Effect of IRF Fill Strategy on Cycle Count

Cycle counts normalized to the baseline are presented in
Fig. 6. As expected, all the IRF variants incur a cycle count
penalty compared to the baseline. In all but two cases, motion
with IRF sizes 256 and 512, the fw-jump-fill incurs the least
additional cycles. In these cases, as the IRF size is quite
large, the compiler-analyzed prefill amount grows compared to
those of smaller IRF sizes. As a result, the amount of prefill
cycles of total execution time increases, but a branch in the
benchmark causes the execution to exit from IRF, leaving most
of the fetched instructions unused. In this case, the hardware
presence assurance performs better, as the amount of stalls at
the beginning of every IW in fw-jump-fill is far larger than the
stalls incurred in the pipelined variant.

B. Area

Area comparison of the evaluation core with different IRF
sizes is depicted in Fig. 7. On small IRF sizes, there is no
notable differences in the core area. However, as the IRF
size increases, the baseline and pipelined designs incur more
area overhead, as the size of the presence bit status register
increases. At IRF size of 512, iw-fill and fw-jump-fill both
occupy 5% less area compared to the baseline.

C. Maximum Clock Frequency

In the baseline design, as the instruction fetch and decode
stages are executed in the same pipeline stage, the next level
instruction storage access timing becomes a part of the critical
path. When the access time (data valid relative to clock edge)
and the address setup time are large enough, the critical path

IRF8 IRF16 IRF32 IRF64 IRF128 IRF256 IRF512
0

20000

40000

60000

80000

100000

120000

baseline pipelined iw-fill fw-jump-fill

Fig. 7. Area (µm2) comparison of the evaluation core with IRF variants.

co
re

m
ar

k8
ad

pc
m

8
ae

s8
bl

ow
fis

h8
gs

m
8

jp
eg

8
m

ip
s8

m
ot

io
n8

sh
a8

co
re

m
ar

k1
6

ad
pc

m
16

ae
s1

6
bl

ow
fis

h1
6

gs
m

16
jp

eg
16

m
ip

s1
6

m
ot

io
n1

6
sh

a1
6

co
re

m
ar

k3
2

ad
pc

m
32

ae
s3

2
bl

ow
fis

h3
2

gs
m

32
jp

eg
32

m
ip

s3
2

m
ot

io
n3

2
sh

a3
2

co
re

m
ar

k6
4

ad
pc

m
64

ae
s6

4
bl

ow
fis

h6
4

gs
m

64
jp

eg
64

m
ip

s6
4

sh
a6

4

co
re

m
ar

k1
28

ad
pc

m
12

8
ae

s1
28

bl
ow

fis
h1

28
gs

m
12

8
jp

eg
12

8
m

ip
s1

28
m

ot
io

n1
28

sh
a1

28

co
re

m
ar

k2
56

ad
pc

m
25

6
ae

s2
56

bl
ow

fis
h2

56
gs

m
25

6
jp

eg
25

6
m

ip
s2

56
m

ot
io

n2
56

sh
a2

56

co
re

m
ar

k5
12

ad
pc

m
51

2
ae

s5
12

bl
ow

fis
h5

12
gs

m
51

2
jp

eg
51

2
m

ip
s5

12
m

ot
io

n5
12

sh
a5

12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

core mem

Fig. 8. Energy consumption compared to baseline across IRF sizes with instruction memory size of 51.2 kB. IRF variants per benchmark from left to right:
baseline, pipelined, iw-fill, fw-jump-fill.

forms from the data read port through the instruction fetch and
decode, looping back to the instruction address.

In the IRF variants with hardware presence assurance,
with small next level storage access timings, the critical path
goes through the data read port and the presence inspection
logic to the global lock port. The global lock is connected
to each function unit and is used to stall their execution in
case of dynamic external events. Thus here the drawback of
using a hardware presence assurance mechanism is clearly in
decreased maximum operating clock frequency.

D. Energy-Delay Trade-Offs

Maximum clock frequencies after synthesis are listed in
Table II. As the differences between the three variants were
not large, the maximum critical path between the three variants
at each IRF size (bold) was chosen as the operating frequency
for evaluation. For the baseline, the differences were larger,
so each IRF size for the baseline was evaluated with its own
maximum clock frequency.

As indicated by Table II, the timing critical path of the
baseline design is on average 33% compared to the IRF
variants, due to the instruction registers added to the variants
to cut the critical path. As seen in Fig. 8, although the baseline
design executes all benchmarks in the least clock cycles, the
energy consumption of the IRF variants is not significantly
larger, 3-7%, on small IRF sizes. With IRF size of 512, the
fw-jump-fill variant consumes 9% less energy compared to
the baseline. This is due to not having the presence assur-
ance logic. With coremark and motion, the variants consume

TABLE II. TIMING CRITICAL PATH (NS) AFTER SYNTHESIS. LONGEST
CRITICAL PATH BETWEEN VARIANTS PER IRF SIZE IN BOLD.

IRF size baseline pipelined iw-fill fw-jump-fill

8 1.00 0.73 0.71 0.72
16 1.09 0.76 0.76 0.78
32 1.09 0.80 0.82 0.80
64 1.10 0.83 0.82 0.82
128 1.19 0.87 0.87 0.86
256 1.16 0.96 0.90 0.94
512 1.23 1.07 0.90 0.99

more energy compared to the baseline because of preloaded
instructions that do not get executed increasing the energy
consumption. The best case with an IRF size of 512, mips,
consumed 40% less energy compared to the baseline.

As the average energy consumption of the benchmarks at
each IRF size is quite similar, it is interesting to calculate the
energy delay product (EDP) to add weight to execution time of
each benchmark in conjunction with the energy consumption.
The EDP per benchmark for each IRF size is presented in
Fig. 9. The cases with a higher EDP value compared to the
baseline correspond to the relatively high energy consumption
cases in Fig. 8. In almost all cases, the fw-jump-fill variant has
the best EDP value. The best reduction, 47%, was achieved
in mips with an IRF size of 512. The geometric mean over
benchmarks is presented in Table III. The fw-jump-fill variant
is the only one to achieve lower EDP value on each IRF size
when averaged over the benchmark set.

VI. RELATED WORK

Various IRF designs have been proposed in the past. In
our work we picked various design choices we believe are
interesting for a closer study and systematically evaluated
them. Here we list the considered IRFs and their features.

IRFs were first proposed by Hines et al. [4]. They used
a 32-entry IRF that was updated at the beginning of program
execution and used in a dictionary fashion. Instructions ref-
erencing the IRF, containing 2 to 5 packed instructions, were
fetched from cache and were used to address the IRF. From

TABLE III. GEOMETRIC MEAN OF ENERGY CONSUMPTION/ENERGY
DELAY PRODUCT COMPARED TO BASELINE.

IRF size pipelined (%) iw-fill (%) fw-jump-fill (%)

8 104/79 103/78 103/78
16 105/79 103/77 104/77
32 104/83 103/83 102/80
64 106/89 107/91 102/80
128 109/94 105/89 99/77
256 104/103 104/102 99/88
512 97/100 97/100 91/86

co
re

m
ar

k8
ad

pc
m

8
ae

s8
bl

ow
fis

h8
gs

m
8

jp
eg

8
m

ip
s8

m
ot

io
n8

sh
a8

co
re

m
ar

k1
6

ad
pc

m
16

ae
s1

6
bl

ow
fis

h1
6

gs
m

16
jp

eg
16

m
ip

s1
6

m
ot

io
n1

6
sh

a1
6

co
re

m
ar

k3
2

ad
pc

m
32

ae
s3

2
bl

ow
fis

h3
2

gs
m

32
jp

eg
32

m
ip

s3
2

m
ot

io
n3

2
sh

a3
2

co
re

m
ar

k6
4

ad
pc

m
64

ae
s6

4
bl

ow
fis

h6
4

gs
m

64
jp

eg
64

m
ip

s6
4

m
ot

io
n6

4
sh

a6
4

co
re

m
ar

k1
28

ad
pc

m
12

8
ae

s1
28

bl
ow

fis
h1

28
gs

m
12

8
jp

eg
12

8
m

ip
s1

28
m

ot
io

n1
28

sh
a1

28

co
re

m
ar

k2
56

ad
pc

m
25

6
ae

s2
56

bl
ow

fis
h2

56
gs

m
25

6
jp

eg
25

6
m

ip
s2

56
m

ot
io

n2
56

sh
a2

56

co
re

m
ar

k5
12

ad
pc

m
51

2
ae

s5
12

bl
ow

fis
h5

12
gs

m
51

2
jp

eg
51

2
m

ip
s5

12
m

ot
io

n5
12

sh
a5

12

-60

-40

-20

0

20

40

60

80

pipelined iw-fill fw-jump-fill

Fig. 9. Energy delay product compared to baseline across IRF sizes with instruction memory size of 51.2 kB.

this design, we evaluated executing instructions directly from
the IRF or from the next level in hierarchy (bypassing).

Hines et al. later added compiler support to dynamically
update the instruction register contents [10]. Also this approach
is evaluated in this paper. The authors used dynamic program
profiling to determine the instructions to be placed into reg-
isters and used register windows to indicate instructions that
could simultaneously exist in the IRF. In our evaluation we
used static (compiler-based) analysis of instructions without
dynamic profiling.

Black-Schaffer et al. [11] added indirection in addressing
the instruction register file in a VLIW processor. Each subfield
of the instruction had an IRF, with a size customized to the
instruction field. Each control & index memory (CIM) entry
contained a complete VLIW instruction in the form of indices
addressing the IRFs. All instructions were executed from the
IRFs via the CIM and could not be bypassed. Simultaneous
loading and execution of instruction was enabled with presence
bits, an approach evaluated in the IRF variants of this paper.

VII. CONCLUSIONS

In this paper, we designed, implemented and systematically
evaluated four instruction register files to evaluate the effect of
fetch strategy and implementation to processor performance,
energy consumption and area. Minimal branch delay and the
least cycle counts in all benchmarks were achieved by having
instruction fetch and decode in the same pipeline stage, at the
expense of a low maximum clock frequency. Separating them
into two stages increases the cycle counts, but allows for a
1.5x increase in clock frequency and results in better energy
delay product.

In ensuring that instructions are fetched before their execu-
tion, hardware presence assurance limits the clock frequency
at relatively large IRF sizes. Software presence validation
mitigates the issue and consumes less overall area, but requires
additional compiler analysis.

In the best case, careful compiler analysis along with
optimized hardware implementation and software presence
assurance achieved a total core energy saving of 9% on
average with EEMBC Coremark and CHStone benchmarks
when compared to the baseline instruction register file. Best

individual benchmark reduction was 40%. Energy delay prod-
uct on average was 23% better and in the best case 47% better
compared to the baseline.

Future work involves studying further variations of IRF
designs with, e.g., capabilities to prefetch code blocks ahead
of time.

ACKNOWLEDGMENT

The authors thank the following sources of finan-
cial support: Tampere University of Technology Graduate
School, Business Finland (FiDiPro Program funding decision
40142/14), HSA Foundation, the Academy of Finland (funding
decision 297548) and ECSEL JU project FitOptiVis (project
number 783162).

REFERENCES

[1] O. Silven and K. Jyrkkä, “Observations on power-efficiency trends
in mobile communication devices,” EURASIP Journal on Embedded
Systems, vol. 2007, no. 1, p. 056976, Mar. 2007.

[2] D. Bol, J. De Vos, C. Hocquet, F. Botman, F. Durvaux, S. Boyd,
D. Flandre, and J. Legat, “SleepWalker: A 25-MHz 0.4-V Sub-mm2

7- µm2 µW/MHz microcontroller in 65-nm LP/GP CMOS for low-
carbon wireless sensor nodes,” Journal of Solid-State Circuits, vol. 48,
no. 1, pp. 20–32, Jan. 2013.

[3] A. Carroll and G. Heiser, “An analysis of power consumption in a smart-
phone,” in Proceedings of the USENIX Annual Technical Conference,
Boston, MA, June 23-25 2010, pp. 21–21.

[4] S. Hines, J. Green, G. Tyson, and D. Whalley, “Improving program
efficiency by packing instructions into registers,” in Proceedings of the
Annual International Symposium on Computer Architecture, Washing-
ton, DC, June 19-23 2005, pp. 260–271.

[5] J. Multanen, H. Kultala, P. Jääskeläinen, T. Viitanen, A. Tervo, and
J. Takala, “Lotta: Energy-efficient processor for always-on applica-
tions,” in Proceedings of the International Workshop on Signal Pro-
cessing Systems, Cape Town, South Africa, Oct. 21-24 2018.

[6] P. Jääskeläinen, T. Viitanen, J. Takala, and H. Berg, HW/SW Co-design
Toolset for Customization of Exposed Datapath Processors. Springer
International Publishing, 2017, pp. 147–164.

[7] EEMBC – The Embedded Microprocessor Benchmark Consortium.
(2018, Aug.) Coremark benchmark. Http://www.eembc.org/coremark.

[8] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quanti-
tative analysis of the CHStone benchmark program suite for practical C-
based high-level synthesis,” Journal of Information Processing, vol. 17,
pp. 242–254, Oct. 2009.

[9] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-p:
Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in Proceedings of the International
Conference on Computer-Aided Design, San Jose, CA, Nov. 6-10 2011,
pp. 694–701.

[10] S. Hines, G. Tyson, and D. Whalley, “Reducing instruction fetch cost
by packing instructions into registerwindows,” in Proceedings of the
International Symposium on Microarchitecture, Barcelona, Spain, Nov.
12-16 2005, pp. 19–29.

[11] D. Black-Schaffer, J. Balfour, W. Dally, V. Parikh, and J. Park, “Hierar-
chical instruction register organization,” Computer Architecture Letters,
vol. 7, no. 2, pp. 41–44, July 2008.

