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Abstract—Various use cases in the era of Internet-of-Things
(IoT) demand processor devices to have low energy consumption
in order to maximize the battery life. In addition to energy
constraints, there is often a need to both swiftly execute control-
oriented code to provide low reaction times and to occasionally
perform real time signal processing tasks efficiently. As a re-
sponse to these requirements, we propose LoTTA, an extremely
energy-efficient exposed datapath core. Its transport-triggered
programming model helps in lowering the execution latency
via low cost data forwarding. Control efficiency is achieved by
an optimized control unit with zero delay slot branches and
predicated execution. An instruction register file is included for
frequently executed program hot spots to reduce the instruction
stream energy consumption. These features allow the processor
to execute CHStone and EEMBC CoreMark benchmarks on
average with 19% fewer cycles compared to a 6-stage LM32, a
traditional RISC core with similar datapath resources. The core
consumes 53% less energy on average compared to the RISC
core. When including the instruction stream overheads, in the
best case, LoTTA saves 79% energy, and on average 40%.

I. INTRODUCTION

Many Internet-of-Things (IoT) applications require energy-
efficient, high-performance compute devices in order to re-
spond to the limitations and demands of battery-powered
appliances. Always-on surveillance cameras, small drones, and
sensor nodes should use minimal amount of energy, while
being able to instantly perform demanding signal processing
tasks when required, and also reacting to external events
with a low control code execution latency. In addition to low
power and energy operation, this calls for devices to be highly
scalable.

Traditionally fixed-function accelerators are used for the
most energy-efficient operation. Compared to a typical pro-
grammable accelerator, the power, energy, and possible per-
formance gains result from the lack of instruction delivery
overhead to the compute elements and datapath tailoring.
However, fixed-function hardware development is time con-
suming, requiring extensive verification and manual effort. In
contrast, programmable processors can reuse hardware better
to speed up design and verification cycles. They can also
be reprogrammed to handle tasks that are not known or yet
implemented at hardware design time.

In this paper, we propose an extremely energy-efficient,
easy-to-program processor for always-on use cases. The
energy-efficiency is achieved with the combination of an
exposed datapath and fast execution of code control structures
by utilizing zero-delay slot branches and predicated execution.

In order to reduce the instruction stream energy overheads, the
processor incorporates a compiler-controlled Instruction Reg-
ister File (IRF). The processor is compared to a LatticeMico32
(LM32) [1] core with benchmarks consisting of both control
and signal processing code. Standby energy consumption is an
important aspect of IoT device design, but is left outside the
scope of this paper, as techniques such as power gating and
retention registers can be applied quite modularly to designs.

II. RELATED WORK

Several academic and commercial processors targeting IoT
applications, both generic and highly application-specific, have
been proposed [2]–[6]. Perhaps the closest recent one in terms
of capabilities is zero-riscy [2]. It is a 2-stage RISC-V [7] core
utilizing a prefetch buffer and compressed instructions.

Sleepwalker [3] is another related processor. It achieves low
power consumption with sub-threshold voltage operation and
adaptive voltage scaling. The proposed processor differs from
the previously mentioned ones in its use of transport triggered
programming model, which can provide the benefits of data
forwarding without its hardware logic overheads.

While the transport-triggered programming model used in
the proposed processor has been studied extensively for im-
proved VLIW processors since the 1990s [8], in fact, the
basic concept of transport programming was first published for
control processors already in the mid-1970s [9]. The described
processor included only one instruction: a data move between
memory mapped control registers. Even the ALU was attached
to the core like an I/O device. A very similar architecture was
commercialized in 2004 by Maxim Integrated. The microcon-
troller called MAXQ [10] is optimized for branch-heavy code,
and the transport programming model simplifies the processor
structure.

The proposed processor expands upon the early work on
transport programmed control processors. While MAXQ is
a 16-bit architecture, the proposed processor can perform
arithmetics and memory accesses with 32-bit words. It also
supports predicated execution for accelerating programs with
very small branches, and adds an IRF for alleviating the
instruction stream energy consumption.

III. TRANSPORT TRIGGERED ARCHITECTURE

Transport triggered architecture (TTA) is an “exposed dat-
apath architecture”, where the datapath interconnect is pro-
grammable. TTAs can exploit instruction-level parallelism in



programs statically by utilizing a long instruction word, similar
to Very Long Instruction Word (VLIW) processors. A major
advantage of TTA is its ability to software bypass values
between function units and additional programming freedoms.
They allow given performance to be reached with a simpler
register file with fewer physical ports, and latency-reducing
data forwarding can be supported without needing data hazard
detection in hardware.

In comparison to traditional multi-stage RISC-processors,
TTA simplifies the execution pipeline; as with RISC, TTAs
typically include instruction fetch and decode stages in their
pipeline. However, unlike RISC, TTAs are not limited to per-
forming only register reads in the decode stage. In TTAs, after
the decode stage, an instruction can perform any operation typ-
ically fixed in a stage of a RISC pipeline: memory read/write,
register file read/write or an ALU or custom operation. Thanks
to the explicit data transport programming, the function units
can be independently pipelined in a simple fashion.

A key aspect of TTAs that we exploited in the processor
proposed is that due to their pipeline flexibility, the capability
to simplify register files and the omission of data forwarding
logic, TTAs can combine the instruction fetch and decode
stages into a single stage while still reaching high clock
frequencies. This allows the proposed processor to perform
both single-cycle jumps and predicated execution in high
frequency for efficient execution of control-oriented code,
while retaining good signal processing performance with the
long instruction word.

IV. INSTRUCTION REGISTER FILE

A clear drawback of exposed datapath architectures that
add programming freedoms is the increased code size which
results in instruction stream energy overheads. Instruction
memory hierarchies commonly consist of large storages farther
away from the core, while smaller storage components store
temporally and spatially related code near the core. Hardware-
controlled caches have been traditionally used to exploit the
temporal and spatial locality. An instruction cache checks
whether the instruction requested is located in the cache and
if it is not, a miss occurs, halting the execution.

Unlike an instruction cache, an instruction register file does
not independently decide when to fetch instructions. Instead,
the control is given to the program compiler. This allows
separating the fetching of instructions from their execution.
For fetching, separate IRF load instructions are used. Since
these instructions can be placed arbitrarily, blocks of code can
be prefetched ahead of their execution, leading to a form of
speculative fetching. Compared to a dynamic cache, an IRF
is by design simpler due to the absence of tag bits. IRFs
are especially well suited for statically scheduled low power
architectures. [11]

If execution happens directly from a larger instruction mem-
ory, bypassing the IRF, its access time is likely to contribute
to the critical path of the design. However, if code is executed
only from a smaller instruction storage such as IRF, the access
time is much smaller and the larger memory storage’s access

IRF

IRF
status

block
start
addr

          start_irf_fill

instr_in

 

instr_out      

     

‘1’               

mem_en

irf_status             
    fill_irf                   
    

addresspc_in

addr

lock_core

+
irf_pc_reg

1

1
irf_next_pc irf_status

+

irf_to_mem_addr

IRF 
pc 
reg

 

Fig. 1. Instruction fetch implementation with IRF.

time is removed from the critical path. However, executing all
instructions from the IRF is not optimal in every situation. If
an instruction is executed only once from the IRF, it increases
the overall energy consumption, as the instruction is first read
from the next level in instruction memory hierarchy, written
into the IRF, and then read from it when executing. In this
case, executing directly from the next level in the hierarchy
would be more energy-efficient.

A. Implementation

Our proposed IRF is illustrated in Fig. 1. At compile time,
the instruction scheduler decides sequences of instructions to
be placed in the IRF. However, depending on the control flow,
all instructions placed in the IRF might not be executed. In
order to eliminate unnecessary fetching, we added a separate
presence bit register. The presence bits indicate if an IRF entry
has already been fetched from memory after the start of the
current IRF instruction block, that is, a set of instructions that
can be placed in the IRF concurrently. The presence bits are
reset at the start of each new IRF block. The IRF is accessed
with its own program counter, which is also used to access
the presence bits. This differs from the state-of-the-art work
[11], where no presence bits are used.

Another motivation for the presence bits are forward jumps.
We considered fetching each IRF block completely when IRF
execution starts without using the presence bits. However, this
would lead to the compiler discarding each candidate IRF
block containing forward jumps. In our preliminary evaluation,
this reduced the IRF utilization. This could also be handled
with prefetching at least a part of the block into the IRF.

In order to avoid writing instructions to the IRF that are only
executed once, our implementation supports IRF bypassing.
That is, executing code directly from the next level of instruc-
tion memory hierarchy. Due to the implemented bypassing, in
order to avoid degrading the performance, checking the pres-
ence of instructions in our IRF requires the access time of the
next memory hierarchy level to be low. Otherwise the access
time of the memory can limit the maximum clock frequency
of the processor. In previous work [11], all instructions are
written to the IRF and executed from it.



Switching to IRF execution is performed with special
header instructions. Our implementation utilizes the immedi-
ate control field of the TTA instruction, as there were unused
bit combinations available in that field. In the instruction fetch
stage, a single comparator pre-decodes the immediate control
field and, if a header pattern is found, stalls the core execution
for one cycle while the header is read. The header instruction
conveys the length of the IRF code block to the instruction
fetch. The instruction immediately following the header is the
first instruction of the IRF block and is written to the IRF,
while simultaneously being passed on to instruction decoding.

Branching inside the IRF is implemented as a separate irf-
jump instruction, that works similarly to a regular jump, but
continues execution inside the IRF. Encountering a regular
jump during IRF execution starts execution from the next level
in memory hierarchy. When program execution reaches the last
index of the IRF and does not branch, execution falls through
to the instruction following the IRF code block in the next
level instruction storage.

B. Compiler Support

A crucial factor in the IRF efficiency is deciding which
instructions to store in the IRF. Another factor is deciding
when to fill the IRF, as the software control allows fetching
arbitrary instructions long before they are accessed. Program
control analysis has been previously studied extensively [12].
As loops and nested loops are typically program hot spots, we
first focused the compiler support for them. The algorithm is
executed after instruction scheduling in the compiler.

The IRF block allocation algorithm is illustrated in Fig. 2.
First, all program basic blocks are split into lengths equal to
the IRF size. Then, each of the split blocks are assigned to an
individual IRF block and merged with following constraints:

1) All incoming jumps to the IRF block must target the
first instruction, and

2) function calls cannot exist inside IRF blocks.
In other words, a function call always splits an IRF block. The
allocation algorithm first assigns inner loops as IRF blocks
and if the capacity allows, outer loops are also included. An
instruction block bypasses the IRF if there are no backward
jumps in it. These are executed directly from the next level
in memory hierarchy. As a final step, branch targets are fixed
taking into account the inserted header instructions.

V. EVALUATION

The proposed ultra-low power processor core, Low-power
Transport Triggered Architecture (LoTTA), was designed us-
ing the TTA-based Co-Design Environment (TCE) [13] tools.
A block-level representation of the designed core is presented
in Fig. 3. To compare the TTA programming model with a
traditional multistage RISC architecture, a LatticeMico32 core
was used as a reference point. The proposed core intends
to combine the qualities from both of these areas. For fair
comparison, operations available on hardware, their latencies,
and the amount and size of register files were matched. Both
cores had similar arithmetic and logic operations, a hardware

1: for all basicblocks in CFG do
2: if basicblock.size > irfsize then
3: split BB to irfsize
4: end if
5: create a new irf block for bb
6: queue created irfblock
7: end for
8: for all irfblock in queue do
9: nextblock ← irfblock.successor
10: if irfblock does not end in a call and nextblock has no incoming jumps from outside these

two blocks and irfblock.size + nextblock.size < irfsize then
11: merge current irf block with next
12: requeue(irfblock.predecessor)
13: else
14: remove irfblock from queue
15: end if
16: end for
17: for all irfblock in irfblocks do
18: if irfblock has no backwards jump inside the block then
19: irfblock.setbypassblock
20: else
21: create irf block header instruction for fetch and execute with IRF
22: end if
23: end for
24: for all irfblock in irfblocks do
25: if not irfblock.isbypassblock then
26: for all jump in irfblock do
27: if jump destination is inside same irf block then
28: convert jump to local irfjump
29: end if
30: end for
31: end if
32: end for

Fig. 2. The IRF Block allocation routine.

Fig. 3. Overview of LoTTA.

multiplier, and a barrel shifter. The register file contained 32
x 32-bit registers and had two read ports and one write port.
Although implementation of the cores was different, a rough
similarity of the two was ensured via ASIC synthesis, where
the area occupied by each component was roughly the same
between the two cores. Adding the IRF support in this specific
design increased the instruction size from 49 bits to 50 bits.

LoTTA was evaluated with benchmarks from two different
use cases typical to always-on microcontrollers. All bench-
marks were compiled with tcecc, the program compiler of
TCE. Coremark [14] was used to evaluate the performance
in control-oriented code. Competence in the other area of
interest, Digital Signal Processing (DSP), was evaluated with
eight fixed-point benchmarks from CHStone [15].

To verify the correct functionality of the C language
benchmark programs, they were compiled for the processor
and simulated using ttasim, TCE’s instruction cycle-accurate
simulator. Hardware level correctness was ensured by gener-
ating memory images from the compiled programs and then



TABLE I
AREA AND TIMING RESULTS FOR BASELINE TTA (NO IRF) AND LM32.

architecture TTA TTA LM32 LM32
target 100 MHz max. 100 MHz max.
max. clock frequency (MHz) 311 1333 351 1667
area (µm2) 7426 7542 8904 11456

simulating them at Register Transfer Level (RTL) with Mentor
Graphics ModelSim 10.5.

All the cores evaluated were synthesized with Synopsys De-
sign Compiler I-2013.12. The process technology was 28 nm
FD-SOI with 0.95 V voltage, with typical process corner and
25◦C temperature. Switching Activity Interchange Format files
were produced with ModelSim 10.5 and used to estimate
power for the synthesized designs.

The baseline TTA core was synthesized with two timing
constraints: a relaxed constraint to obtain a low-power design
point and a tight constraint for a high-performance design
point. Since the 28 nm technology library includes body-biased
variations of the standard cells, a 10 ns timing constraint was
chosen in order to mostly utilize the less energy consuming but
slower standard cells. Area and timing results after synthesis
are presented in Table I. With the 10 ns constraint, the
TTA core reached a maximum clock frequency of 311 MHz
after synthesis. With the same configuration, LM32 reached
a maximum clock frequency of 351 MHz, with the critical
path in the multiplier unit. LoTTA including an IRF with 256
entries reached a maximum clock frequency of 221 MHz. To
compare energy consumptions and minimize the amount of
leakage power, an operating clock frequency of 200 MHz was
chosen, as all the IRF variants of the LoTTA could reach this.

To evaluate the potential for maximizing serial performance,
the LoTTA and LM32 were synthesized with target clock
frequencies at intervals of 0.05 ns in order to find the
maximum clock frequency allowed by the ASIC technology.
LoTTA reached a maximum clock frequency of 1333 MHz
and LM32 reached 1667 MHz. The ALU output port in
LoTTA can be used for predicated execution and because of
this, the critical timing path ended up between the ALU and
the instruction fetch unit. LM32 utilizes a six-stage pipeline
without predication support, allowing a short critical path and
higher clock frequency in this case.

Compiled code sizes are listed in Table II. On average,
LoTTA program size is 1.84x larger than the LM32 code.
Coremark has the largest difference, where LoTTA instruction
bit amount is 3.5x larger. When long instruction word proces-
sors cannot fill all of their instruction slots for each cycle,
No-Operations (NOPs) are inserted into the code, bloating the
code size. However, in aes, blowfish, mips and motion , TTA
code size is smaller than that of LM32. This is due to loop
unrolling and function inlining. These allow the wide TTA
instructions to be efficiently utilized. LM32 requires 32 bits
for each instruction, whereas in TTA custom instruction set
depending on the operation, 1-3 instructions can fit into the
49 instruction bits.
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Fig. 4. Area comparison of the evaluated cores.

Area comparison for the evaluated cores after synthesis
is presented in Fig. 4. LoTTA without IRF is roughly the
same size as the LM32. The increment in area is quite
linear in relation to the number of IRF entries. The entries
are implemented as flip-flops in the RTL description. In the
baseline LoTTA, the RF occupies more than half of the silicon
area. This is undesirable, as RF is only a storage for data and
not an actual compute element. Ideally, the amount of logic
contributing to computation should be maximized. The TTA
programming model typically allows the core to have smaller
register files and fewer register file ports compared to VLIWs,
as the datapath is controlled explicitly and (intermediate)
results might not need to be written to the RF [8], but can be
temporarily stored in output port registers in function units.
To evaluate this aspect, the nine benchmarks used here were
also executed on an alternative design where the RF size was
reduced to 16 entries, showing only a minimal performance
hit. However, the RF size was set to 32 entries to match the
LM32 resources.

Benchmark execution cycle counts for LoTTA core are
presented in Table II. Except for jpeg and motion the TTA
core executes the benchmarks in fewer clock cycles. A large
fraction of execution time in jpeg consists of manually written
memcpy operations, which do not optimize well currently in
the TCE compiler, unlike normal memcpy operations. The best
speedup (2.9x) was obtained in aes. Here, the TTA compiler
exploited very efficiently the instruction-level parallelism in
the benchmark. All the benchmarks benefit from the fast

TABLE II
PERFORMANCE AND CODE SIZE RESULTS. VALUES FOR TTA WITHOUT

IRF.

benchmark TTA cycle LM32 cycle TTA code LM32 code
count count size (B) size (B)

adpcm 81683 88355 16445 9396
aes 25690 75184 16372 17052
blowfish 673151 798794 6100 6820
gsm 12745 26798 11851 6000
jpeg 8097755 3018543 50500 17520
mips 23649 27348 2597 3328
motion 7797 7757 6161 8620
sha 543428 677708 4269 4148
coremark 403416 582818 42979 12400
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Fig. 5. Distribution of executed instructions between memory and IRF.

branching, which is helpful when executing control-oriented
code. This is not only due to the simple instruction fetch
and decode logic, but also the guarded execution directly
from ALU output port. In the control-oriented Coremark, the
guarded ALU execution improved the cycle count by 10%.

The IRF control header instructions affect the execution
times of programs as each header execution incurs a stall
of one clock cycle. However, the cycle count increase in all
benchmarks was less than 0.8% and thus had no significant
impact on overall performance.

The proportion of instructions executed from IRF and
memory per benchmark are presented in Fig. 5. Due to the
nature of the benchmark programs, utilization of the IRF is
quite low, when IRF size is less than 128. In mips, the IRF
is not used at any size, due to a large while loop containing
all the code in the benchmark. The compiler cannot split this
loop to fit into the IRF. In adpcm, there is an encoding and a
decoding function, that are executed within a for loop. Similar
to mips, this code structure does not fit into the IRFs evaluated.
An optimization that would benefit the utilization and reduce
energy consumption, would be to allow execution of code
sequences such as loops from both the IRF and the next level
of memory hierarchy consequently. Currently, if there is a loop
that does not fit fully into the IRF, the compiler does not utilize
the IRF at all. Executing a loop even partly from IRF would
reduce the energy consumption.

With the smallest IRF configuration, eight entries, only jpeg
utilizes the IRF efficiently. This is due to the heavily executed
loop in the code containing exactly eight instructions. IRF is
mostly used in the benchmark set, when it has 128 entries.
At this point, in jpeg and motion nearly all code structures fit
into the IRF. Doubling the IRF size to 512 entries does not
notably increase the IRF utilization.

To evaluate the effect of different IRF sizes on the in-
struction stream overall, we evaluated a processor, where the
instruction stream consists of an on-chip SRAM instruction
memory and and IRF in the core. For the instruction memory,
we estimated access energy numbers with Cacti-P [16]. Four
SRAM sizes were chosen to represent different design points,
using ITRS-LSTP SRAMs.

As previous work [11] has extensively studied the energy
benefits of the instruction register files compared to small
filter caches, we do not make comparisons to caches in this

work. In Fig. 6, the four design points are compared. Based
on the IRF utilization, we calculate the energy consumption
normalized to that of LM32. For a fair comparison, as LoTTA
has a 49-bit instruction word (50 bits with IRF) and LM32 has
only 32-bit instructions, the cores are evaluated with SRAMs
equalized not according to the byte amount, but to the number
of entries. This way we take into account the wider instruction
width of LoTTA. As the ITRS-LSTP SRAMs have a low
standby power, their energy consumption consists mainly of
the number of accesses to them. Thus, naturally the energy
benefits of the IRF increase, when the SRAM size increases.
However, very large SRAMs are not realistic since they would
be accessed through a smaller low-level cache to reduce access
latency and energy.

Taking into closer inspection the design point with a 32 k-
entry SRAM, the 128-entry IRF saves the most energy with
an average of 40% across all benchmarks. The most energy
is saved in aes, 79% and the average saving is 53%. This
configuration uses the most energy in adpcm, where the
consumption is 1.45x more than that of LM32. Comparing
this IRF + SRAM configuration to the TTA core without an
IRF, the IRF saves a geometric average of 43% of energy
across all benchmarks.

VI. CONCLUSIONS

In this paper, we compared a transport triggered architecture
based processor to an open-source LatticeMico32 core when
targeting mixed control and data processing. With matching
hardware resources, the TTA core used 19% fewer clock cycles
on average (geometric). The benchmarks consisted of control-
oriented code and code modeling signal processing tasks, in
order to evaluate suitability for IoT applications.

A drawback of TTAs is their larger program size. With
the evaluated benchmarks, the programs were 1.84x larger
compared to LM32 on average. To mitigate the increased
code size and improve the otherwise good energy-efficiency
of the TTA approach, an instruction register file with bypass
support was designed and integrated to the core. The TTA
programming model alone saved on average 53% of energy
(geometric), when comparing the two cores without memories.
With the help of IRF, a 128-entry IRF in a processor with a
32 k-entry on-chip memory saved 40% of the combined core
and instruction memory system energy. For future work, we
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Fig. 6. Energy comparison of the cores with four instruction memory sizes.

plan to transfer control of the IRF more to the compiler, rather
than hardware and create a design optimized for high clock
frequency burst mode execution.
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