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Abstract—In this study, we propose an observer design based
on inertial sensors and the finite element (FE) method to estimate
the flexural states of a long-reach and highly flexible manipulator
in a 3D plane of motion. Vertical and lateral dynamic bendings
are considered, along with deformation due to torsion. The
aim is to achieve accurate end-point positioning by using the
estimated flexural degrees-of-freedom, which are formulated
using an FE model. The states are reconstructed based on angular
velocity measurements, which are obtained from strap-on inertial
sensors placed along the flexible link. For validation, a motion-
capture setup consisting of three OptiTrack cameras is used.
The experiments are conducted on a hydraulic manipulator
that has a single 4.5-m long flexible link with a tip mass. The
validation is carried out by comparing the estimates to the
OptiTrack reference measurements. The results demonstrate that
this method provides satisfactory end-point positioning, while
also being convenient for use in heavy-duty mobile manipulators.

Index Terms—inertial sensors, state estimation, finite element
method

I. INTRODUCTION

Robotic systems are widely expected to dominate in the near
future with increasingly autonomous functions. For example,
significant efforts have been and are being made in the mass
consumer sector to establish self-driving cars. In this robotic
revolution, this self-maneuverability is expected to shift to
smaller industrial sectors involving heavy-duty working ma-
chines, such as excavators and forestry machines, which are
equipped with robotic manipulators. In mobile (off-highway)
machines, weight has a significant effect on fuel consumption
and productivity. Therefore, it is also expected that materials
such as high-strength steel alloys will become more common
as construction materials in mobile manipulators, because
lighter structures can be manufactured from these materials.
Although the strength of the material is augmented, its elastic
modulus does not typically change. This means that the
material can withstand higher loads with less weight, but
the elastic deformations caused by the higher loads are also
greater. Thus, to fully utilize these materials, it is necessary
to address the flexibility in the control design.

With rigid manipulators (e.g., industrial robots), which are
purposely constructed to be as stiff as possible, the end-point
position can be formulated utilizing joint angle measurements,
resulting in an accurate end-point position. With flexible
manipulators, however, the dynamic end-point formulation

becomes much more challenging due to the structural defor-
mations, such as bending and torsion. A measurement or an
estimate of the end-point position is required for successful
control implementations. Many state-of-the-art model-based
control methods (backstepping, virtual decomposition con-
trol, and integral resonant control) developed for flexible-link
robotics assume that the end-point position can be measured or
estimated to enable control feedback [1]–[5]. Moreover, many
of these studies present only simulation results, where the
lack of an accurate end-point position measurement is not a
real issue.

A wide variety of sensors have been employed in the task of
measuring the end-point position of a flexible link, as [6] and
a survey paper on the control and sensor systems of flexible
manipulators [7] presented. Some of the most studied methods
are vision- and strain-gauge-based systems. The most common
method of deformation sensing is a strain gauge. However,
it can measure only local deformations and is susceptible
to disturbances and biases from temperature variations and
electromagnetic interferences. Due to these practical difficul-
ties, strain gauges are mostly employed for vibration damping
(see, for example, [8], [9]) instead of deformation sensing.

As a result of the increase in raw computing power, in
the last few decades many research groups have focused on
vision-based estimation systems. Vision sensor data was used
to estimate the state variables of a flexible link robot in [10].
Two separate observers were used: one for fast dynamics using
strain gauges and another for slow dynamics using a camera.
In [11], a two-time scale controller was proposed for the
end-point control of a flexible beam. The tip position was
obtained directly from vision data, while the vision signal,
subject to delays, was compensated by a state estimator and
a predictor. The main drawback with visual sensing is the
time delay between capturing an image and processing it [7].
Visual measuring devices are also vulnerable to disruptions,
particularly outdoors. Furthermore, only a few studies, such
as [12] and [13], focused on long-reach flexible manipulators.
Typical robotic manipulators used in mobile machines are
large-scale and long reaching. It is also clear that there is a
lack of practical studies considering a 3D plane of motion.

More recently, inertial sensing schemes have generated a
considerable amount of interest in rigid body robotics. For
example, inertial sensors were used for estimating the joint



states of humanoid robots in [14] and [15]. In [16], inertial
sensors were used in a heavy-duty hydraulic manipulator for
motion feedback estimation. In [17], an inertial sensor-based
scheme was proposed for rotary joint angle estimation of rigid
body mobile manipulators. A gravity-referenced joint angle
estimation method for heavy-duty manipulators using three-
axis accelerometers and three-axis rate gyros was proposed in
[18].

In this paper, a state observer based on inertial sensor
measurements and the finite element (FE) method is proposed
to estimate the flexural degrees-of-freedom (DOF) of a flexible
link in a 3D plane of motion. It is shown that the system is
fully observable. The rigorous stiffness and inertia relations of
the FE method enable the estimation of deflections from veloc-
ity measurements, obtained from microelectromechanical sys-
tem (MEMS) inertial measuring units (IMUs). Reconstructing
the flexural states is based on the angular velocities measured
using triaxial IMUs placed along the flexible link. The IMU
type used is by Analog Devices and it includes a hermetic
seal with factory-calibrated characteristics for each sensor,
including sensitivity, bias, and alignment. The IMUs have
a 6◦/hr in-run bias stability and an operational temperature
range of -40◦ to +105◦ Celsius. The sensors themselves are
also enclosed in IP67 protected cases, which can easily be
retrofitted in mobile manipulators.

This work is an extension of our previous study [19],
in which we considered the inertial sensor-based FE state
estimation scheme for a simple case of a 1-DOF long-reach
flexible manipulator in a 2D plane of motion. In the present
work, we extend and experimentally verify the estimation
scheme for flexible links subject to bending and torsion in
a 3D plane of motion.

This paper is outlined as follows: The beam model is
presented in Section II, the observer design is described in
Section III, the end-point position is formulated in Section IV,
the experimental setup is presented in Section V, the results
are given in Section VI, and the conclusion is presented in
Section VII.

II. BEAM MODEL

A. Bending Deformation

The flexible link is modeled using the well-known Euler-
Bernoulli beam theory, which incorporates a number of as-
sumptions [20]: i) The cross-section of the beam is presumed
infinitely rigid in its local plane. ii) After deformation, the
cross-section remains plane. iii) After deformation, the cross-
section also remains normal to the deformed axis of the beam.
Due to the assumptions, the Euler-Bernoulli beam equation
holds in the case of small deformations. The gravitational
forces due to the beam’s own mass are also excluded. In
this study, vertical and lateral bendings of the beam are
considered. The infinite-dimensional flexible beam is then

truncated into finite dimensions using the FE method. First,
six shape functions are defined [21] for spatial interpolation:
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where l denotes the length of an element. The vertical and
lateral stiffness matrix components for an element are defined
as follows:

Ky
e =

∫ l

0

HT
y EIzHydx (4)

Kz
e =

∫ l

0

HT
z EIyHzdx (5)

where Iz and Iy denote the moments of inertia, and E denotes
the elastic modulus. The shape function vectors Hy and Hz

are given as:

Hy = [N ′′3 (x), N ′′4 (x), N ′′5 (x), N ′′6 (x)] (6)
Hz = [N ′′3 (x), −N ′′4 (x), N ′′5 (x), −N ′′6 (x)] (7)

where an apostrophe denotes differentiation with respect to the
spatial variable x. The element inertia matrices are defined as
follows:

My
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NT
y Nydx (8)

Mz
e = ρA

∫ l
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NT
z Nzdx (9)

where ρ denotes the mass per unit length, A denotes the cross-
sectional area, and Ny and Nz are vectors containing the shape
functions:

Ny = [N3(x), N4(x), N5(x), N6(x)] (10)
Nz = [N3(x), −N4(x), N5(x), −N6(x)]. (11)

B. Torsional Deformation

The element stiffness and inertia matrices due to torsion can
be written as follows [21]:

Kθx
e =

∫ l

0

BTGIxBdx, Mθx
e = It

∫ l

0

NT
x Nxdx (12)

where G denotes the shear modulus, Ix denotes the torsional
moment of inertia, and It denotes the mass moment of inertia
per unit length. The shape function vectors are formulated as
follows:

B = [N ′1(x), N ′2(x)], Nx = [N1(x) N2(x)]. (13)



C. Tip Mass

The kinetic energy for the tip mass can be expressed as
follows:

Ek =
1

2
mv2c +

1

1
ωTJcω (14)

where m denotes the tip mass, vc denotes the velocity vector
with respect to the center of mass of the tip mass, ω denotes
the vector of angular velocities at the tip, and Jc denotes an
inertia matrix, formulated as follows:
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2
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12 0
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2

 . (15)

Here, the tip mass is assumed to be cylindrical, with r denoting
the radius and h denoting the thickness. The velocity vector
of the center of mass of the tip mass is given as follows:

vc = [vx vy vz] + [ωx ωy ωz]× [sx sy sz] (16)

where sx, sy , and sz denote shifts from the center axis of the
beam, allowing an asymmetric tip mass with respect to the
beam’s symmetry axis. The linear and angular velocities (vx,
vy , vz , ωx, ωy , ωz) are measured from the neutral axis of the
link and at the tip. The full 6× 6 tip mass matrix can then be
written as follows:

Mpoint =
∂2Ek
∂q̇t∂q̇Tt

(17)

where
q̇t = [vx vy vz ωx ωy ωz]

T . (18)

As axial compressibility is not considered in this work, the
matrix is reduced to 5 × 5 by removing the first row and
column, and then summed to the inertia matrix of the last
finite element’s second node (located at the tip of the beam).

D. System Equation

Combining the bending and torsional deformations by using
standard FE method procedures, the dynamic equation for an
element can be written as follows:

Meq̈e + Keqe = Fe(t) (19)

qe = [ve1 we1 θex1 θey1 θez1 ve2 we2 θex2 θey2 θez2]T

(20)

where the element inertia matrix is denoted by Me, the
element stiffness matrix is denoted by Ke, and Fe(t) denotes
dynamic forces affecting a given element. The vector of the
nodal coordinates contains five DOF for the left-hand node of
an element and another five for the right-hand node, respec-
tively. Vertical deflection is denoted by ve, lateral deflection
is denoted by we, rotation about the X-axis of the beam is
denoted by θex, rotation about the Y-axis of the beam is
denoted by θey , and rotation about the Z-axis of the beam
is denoted by θez . Using typical FE analysis procedures, the
global matrices for the beam are built by combining the

element matrices. The global dynamic equation is expressed
as follows:

Mq̈ + Kq = Fū(t) (21)

where the global inertia matrix is denoted by M, and the
global stiffness matrix is denoted by K. The external force
vector is denoted by F and the input defining vector by ū(t).
The global nodal coordinate vector q is defined by (22). The
vertical force and the torsional moment are induced to the last
node by the tip mass, which is defined in (23). The bulk of
the force and the moment are placed in the input vector ū(t).

q = [v1 w1 θx1 θy1 θz1 · · · vi wi θxi θyi θzi]T (22)

F =

[
0 0 0 0 · · · 1 0 0 0 0
0 0 0 0 · · · 0 0 1 0 0

]T
(23)

Here 1, · · · , i denotes the node index. In order to realize the
mechanical boundary constraints of the system, the transla-
tional and torsional DOF of nodes 1 (the rotary joint axis) and
2 (the cylinder attachment point) are constrained to zero. For
computational efficiency, the second-order dynamic equation
(21) is reduced into a first-order form using a state-space
representation. For this purpose, the constrained nodes are
removed completely from the model. The first-order form is
formulated as follows:

ẋ =
d

dt

[
qr
q̇r

]
=

[
0 I

−M−1r Kr 0

] [
qr
q̇r

]
+

[
0

M−1r Fr

]
u (24)

where subscript r denotes a reduced matrix or vector, in which
the degrees of freedom of the two constrained nodes are
removed. The identity matrix is denoted by I. The expression
(24) is equivalent to the generic state-space representation:{

ẋ = Ax+ Bu

y = Cx+ Du
(25)

where x contains the system states, and u contains the system
inputs. Let n indicate the number of finite elements. The
dimensions of the matrices are: A is 10n × 10n, B is
10n×inputs, C is outputs×10n, and D is outputs×inputs.

III. OBSERVER DESIGN

The observability of the system states was first confirmed by
using the Popov-Belevitch-Hautus test for observability [22]:

rank
[

C
λI−A

]
= 10n (26)

where λ ∈ C is a vector consisting of the eigenvalues of
the system. Clearly, the rank is full, meaning all the system
states can be reconstructed using a state observer. The observer
design is formulated as follows:{

˙̂x = Aobsx̂+ Bobsu
∗

ŷ = Cobsx̂+ Dobsu
∗ (27)

with u∗ = [yT | uT ]T . Here, (̂) denotes a vector of estimated
variables. The matrices are defined as follows:

Aobs = A− (GTC), Bobs = [GT | B] (28)
Cobs = I, Dobs = 0 (29)
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Fig. 1. The end-point position of the flexible link. Vertical and horizontal
bendings are accounted for.

where G is the observer gain matrix. The dimensions of the
observer matrices are: Aobs is 10n × 10n, Bobs is 10n ×
inputs, Cobs is outputs×10n, and Dobs is outputs×inputs.
Compared to (24), the amounts of the inputs and outputs
change.

The observer gain matrix G is obtained based on the
dualistic property [21] between a state observer and state
feedback. An algebraic Riccati equation (ARE) is solved using
the linear quadratic regulator algorithm, while considering the
dualism by replacing A with AT and B with CT . The Riccati
matrix S is solved from the following ARE:

SAT + AS− SCTR−1CS + Q = 0. (30)

The observer gain matrix G is finally obtained as follows:

G = R−1CS (31)

where two weighting factors are denoted by Q and R.

IV. CARTESIAN POSITION FORMULATION

The Cartesian coordinates of the flexible link are illustrated
in Fig. 1. First, the length of the flexible link in the XZ-plane,
denoted by X , is formulated as follows:

X = Licos(θ2)− visin(θ2) (32)

where Li denotes the length of an undeformed link, vi denotes
the estimated vertical deflection at a given point along the
link, and θ2 denotes the lift angle. Based on trigonometry, a
Cartesian position along the flexible link can then be derived
as follows:

Xc = X cos(θ1) + wisin(θ1) (33)
Yc = Lsin(θ2) + vicos(θ2) + h0 (34)
Zc = X cos(π/2− θ1)− wicos(θ1) (35)

where θ1 denotes the turn angle, wi denotes the estimated
lateral deflection at a given point along the link, and h0 denotes
the pillar height.

V. EXPERIMENTAL SETUP

Two experimental manipulators were used in the exper-
iments. A 1-DOF manipulator is presented in Fig. 2, and
a 2-DOF manipulator is presented in Fig. 3. Most of the
experiments were conducted on the 1-DOF system due to it

having considerably less backlash in the lateral plane. The 2-
DOF manipulator was used to test dynamic end-point tracking
in Cartesian (X,Y,Z) space using the estimated deformations.

Both manipulators have identical 4.5-m long flexible links
that are actuated by hydraulic cylinders. The material used
in the links is a high-strength steel with a yield strength of
700 MPa and an ultimate strength of 750–950 MPa. Thus,
the manipulators can withstand considerable elastic deforma-
tions without permanent structural changes. The angles of
the revolute joints are measured using Heidenhain ROD 480
5000 27S12-03 incremental encoders. The pair of cylinders
actuating the turn joint in the 2-DOF manipulator are sized
�40/20–150, whereas the lift cylinder is sized �40/20–
200. The lift cylinder of the 1-DOF manipulator is sized
�35/25–300. Three Bosch Rexroth 4WRPEH servo valves
with nominal flows of 40 dm3/min are used, along with a
supply pressure of 17 MPa. The inertial sensors were based
on an ADIS16485 iSensor R© chip, which measures angular
velocities (range ±450◦/sec) and accelerations (range ±5g)
with respect to three different axes. A dSPACE controller
board with ControlDesk software was used for the real-time
implementation.

The flexible link was divided into six finite elements so
that the first node was located at the rotating joint axis and
the second node was located at the cylinder attachment point
(see Fig. 3). The remaining five nodes (3–7) were placed
equally along the rest of the link, and each was assigned
an IMU. Our previous study [19], which considered a planar
flexible manipulator with vertical bending only, indicated that
the location of the sensor, or the number of sensors, does not
have a significant effect on the estimation accuracy. Thus, in
this study we used a constant number of two IMUs, located at
nodes 3 and 6, to provide inputs to the observer. The observer
input vector u∗ consisted of three angular velocities from each
IMU, along with the force and moment induced by the tip
mass. The alignment of the load force was formulated based
on the measured lift angle and estimated rotation around the
Z-axis at the tip of the flexible link.

To validate the estimation accuracy, a motion capture system
was set up to record the bending profile of the flexible
manipulator in Cartesian space. Three OptiTrack Prime 17W
cameras were calibrated to capture reflective markers placed
along the link. Specifically, markers were attached to nodes
3, 5, and 7. The cameras were placed in different positions
and angles with respect to the manipulator in order to gain
a more accurate capture result. For the camera setup, the
world coordinate frame was set to be that of the manipulator
(situated at the bottom of the pillar). The cameras sent data at
120 frames per second to a laptop running OptiTrack Motive
and Matlab software. The data was preprocessed and then
forwarded to a dSPACE controller board using UDP to record
the end-point position in real-time.

For torsional measurements, a different setup was used:
A marker was placed directly at the tip of the link (per-
pendicularly with respect to the link’s symmetry axis), and
the OptiTrack cameras were used to capture the rotation



angle of the tip due to torsion. First, a zero tip mass was
used to calibrate the measured angle to zero, after which an
asymmetric tip mass was added.

VI. RESULTS

In order to verify the observer’s capability to estimate
the flexural DOF along the link, a series of experiments
was conducted by setting the flexible link of the 1-DOF
manipulator to vibrate freely in different directions. The es-
timated deformations were compared to the OptiTrack refer-
ence measurements, whereas the estimated angular velocities
were compared to the respective IMU measurements. Actual
material parameters were used when formulating the observer
equations.

Free vibration using a 20 kg tip mass was first experimented
with. The results are illustrated in Fig. 4 and in Fig. 5. The
left columns in the figures demonstrate vertical free vibration,
whereas the right columns represent lateral free vibration.
The black lines denote the OptiTrack reference measurements
in Cartesian space, and the red lines denote the estimated
Cartesian coordinates, formulated according to (34) and (35).
The phases of the signals match perfectly, while the amplitudes
are also closely matched. The increased difference in the
amplitudes of the lateral vibration is mostly explained by the
backlash in the experimental system in the lateral direction,
meaning all the motion registered by the OptiTrack cameras
is not due to elastic deformation of the link. The estimated and
measured angular velocities also correspond to each other very
well. Note that the estimated and measured angular velocities
at nodes 3 and 6 (not illustrated) are identical because the
velocities are used as input measurements to the observer.

Similar measurements were then conducted using a 40 kg
tip mass, and the results are illustrated in Fig. 6 and in Fig.
7. The only parameter changed in the observer model was the
tip mass, which was set to 40 kg instead of 20 kg. The results
verify that the observer performs well using actual system
parameters and with varying tip mass. The results also show
that the amplitude of the vertical deflection at the tip is nearly
30 cm with a 40 kg tip mass.

An asymmetric tip mass was used to induce a torsional
moment to the flexible link, after which the estimated and
measured rotational angles due to torsion were compared. The
results for 20 kg and 40 kg load masses are illustrated in Fig.
8. The results are in line with the previous bending estimation
measurements: The phases match well, but the amplitudes of
the estimates are decreased in comparison to the OptiTrack
references. Note that the initial estimated (and measured) angle
is nonzero due to the asymmetric tip mass. The OptiTrack
reference measurement with a 40 kg tip mass also lost tracking
of the marker at times. However, the wave form is still visible
and clearly corresponds to the results using a 20 kg tip mass.

Finally, the 2-DOF manipulator was used for an end-point
position tracking experiment to demonstrate that the estimated
tip position, formulated using (33)-(35), matches the OptiTrack
reference measurements in a 3D plane of motion. The results
for three different tip masses are presented in Fig. 9, whereas

in Fig. 10 a sine reference is added. The figure shows the
estimated Cartesian positions match well with their respective
OptiTrack reference measurements. A simple proportional-
integral (PI) controller and a slow reference trajectory were
used in the implementation.

VII. CONCLUSION

In this study, an inertial sensor-based state estimation
scheme using the FE method was proposed for estimating
the flexural states of a long-reach flexible link in a 3D plane
of motion. Vertical and lateral dynamic bendings, along with
torsion, were considered, whereas the lengthwise compress-
ibility was excluded. The system was shown to be fully
observable, and due to the nature of the FE method, the
positions were estimated from the velocity measurements. The
proposed estimation scheme was based on the angular veloc-
ity measurements by strap-on MEMS IMU sensors that are
suitable to be used in heavy-duty mobile machines. However,
the force and moment due to the load are also required as
inputs to the observer model, which may prove challenging
to achieve for complex dynamic systems. Nonetheless, the FE
model can relatively easily be adapted to cover more complex
structures, and the handling of the load forces and moments
(and flexural DOF) is simple within the model itself.

The Cartesian coordinates along the flexible link were
formulated based on rigid body forward kinematics and the
estimated deflections. In order to validate the observer’s per-
formance, an OptiTrack motion capture system was used as
a ground-truth reference to track the respective points along
the link in Cartesian space. To validate the torsional angle,
the pose of the tip was captured while using an asymmetric
tip mass. Actual material parameters were used in the FE
equations, which was not achieved in [19]. The initial val-
ues of the estimated positions and their respective reference
measurements were fully matched for the best comparison of
the dynamic behavior.

The experimental results clearly demonstrate that the pro-
posed method can capture the dynamic behavior of the flexural
DOF relatively accurately due to model input signals from the
IMUs, while the force and moment inputs mostly affect the
initial (static) values. Future studies will focus on extending
the state estimation for n-DOF flexible-link manipulators and
on their environmental contact force control. It may also be
interesting to test this method with soft robotics.
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Fig. 5. Free vibration of the flexible link using a 20 kg tip mass. The plots in
the left column demonstrate the angular velocities measured from the link’s
Z-axis (vertical free vibration) at three points along the link, whereas the
plots in the right column demonstrate the angular velocities measured from
the link’s Y-axis (lateral free vibration) at the three respective points along
the link. Separate measurements were conducted for both bending directions.
The green lines represent the estimated angular velocities, and the black lines
denote the IMU measurements.

Fig. 6. Free vibration of the flexible link using a 40 kg tip mass. The
plots in the left column demonstrate vertical free vibration at three points
along the link, whereas the plots in the right column demonstrate lateral free
vibration at the three respective points along the link. Separate measurements
were conducted for both bending directions. The black lines represent the
OptiTrack reference measurements, and the red lines denote the estimates.
The measurements are expressed in Cartesian space.



Fig. 7. Free vibration of the flexible link using a 40 kg tip mass. The plots in
the left column demonstrate the angular velocities measured from the link’s
Z-axis (vertical free vibration) at three points along the link, whereas the
plots in the right column demonstrate the angular velocities measured from
the link’s Y-axis (lateral free vibration) at the three respective points along
the link. Separate measurements were conducted for both bending directions.
The green lines represent the estimated angular velocities, and the black lines
denote the IMU measurements.

Fig. 8. Rotational angle of the flexible link resulting from torsion. (a) A tip
mass of 20 kg was used, and (b) a 40 kg tip mass in the lower. The tip masses
were offset by 30 cm with respect to the link’s X-axis.

Fig. 9. The end-point coordinates of the 2-DOF manipulator. The blue line
denotes the X-coordinate, the red line denotes the Y-coordinate, and the green
line denotes the Z-coordinate. Respective OptiTrack reference measurements
are all black lines. (a) Tip mass of 20 kg. (b) Tip mass of 40 kg. (c) Tip mass
of 60 kg.

Fig. 10. The end-point coordinates of the 2-DOF manipulator using a 40 kg
tip mass. The blue line denotes the X-coordinate, the red line denotes the Y-
coordinate, and the green line denotes the Z-coordinate. Respective OptiTrack
reference measurements are all black lines. (a) Added a sine wave to the Y-
coordinate. (b) Added a sine wave to the Z-coordinate.


