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Abstract—3D-beamforming capabilities of multiantenna equip-
ments in fifth generation (5G) networks, operating in the mil-
limeter wave (mmW) band, allow for accurate positioning and
tracking of users. In this paper, we propose a method for 3D
positioning and tracking of moving user equipments (UEs) in 5G
mmW networks based on downlink (DL) reference signals (RSs)
and maximum ratio combining of subcarriers. In particular, we
consider a system where base stations (BSs) transmit beamformed
DL RSs in a periodic manner and UEs exploit such RSs for
estimating the BS-UE beam-pair gains by coherently combining
all of the available subcarriers. This is achieved by a novel
maximum likelihood (ML) estimator for the beam-pair gain.
These beam-pair gain estimates are then reported back to the
BSs, where they are used to estimate the direction of departure
(DoD) of the DL RSs by a novel extended Kalman filter (EKF).
The obtained DoD estimates from all available BSs are fused
into a UE position estimate in a central unit of the considered
network by a second stage EKF. Hence, the computational
burden is distributed among different network entities. The
proposed positioning algorithm may be implemented with minor
modifications to the signalling scheme currently specified for the
first phase (Rel. 15) of of 3GPP 5G New Radio (NR) systems. The
performance of this positioning scheme is evaluated in a realistic
ray-tracing based outdoor scenario mimicking an automated
truck platooning in a cargo port setting.

Index Terms—positioning, localization, tracking, 5G networks,
IoT, automatic platooning, beamforming, direction-of-departure,
location-awareness, extended Kalman filter, line-of-sight

I. INTRODUCTION

Fifth generation (5G) wireless networks are expected to
adopt millimeter wave (mmW) frequency bands, in which more
bandwidth is available, in order to cope with the ongoing growth
of mobile traffic. Exploiting mmW bands not only increases
capacity, but also allows for new opportunities for highly
accurate user equipment (UE) positioning. In fact, a recent
3GPP study item proposes a radio access technology (RAT)-
dependent solution for 5G positioning [1], [2]. In particular,
transmit and receive beamforming is expected to be employed in
5G base stations (BSs) and UEs operating at mmW frequencies
in order to counteract the considerable path loss at these bands
[3], [4]. Directional transmissions at the BSs can also be used
for determining the directions of departure (DoDs) of downlink
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(DL) signals, which in turn may be used for 3D positioning
of UEs.

In this paper, building on the premises of mmW 5G small
cell networks with directional transmission and reception, we
propose a scheme where the 3D positions of UEs are estimated
and tracked by means of sequential extended Kalman filters
(EKFs) and maximum ratio combining of available subcarriers.
This is an extension of our work in [5] in which a positioning
scheme based on a Gaussian approximation of reference
signal received power (RSRP) measurements was proposed.
Herein, such an approximation of the beam-pair gain is not
required, but this is achieved at the cost of increased complexity
at the UE and a calibrated transmitter (Tx)-receiver (Rx)
frequency-response. The latter can be avoided by employing a
narrowband frequency-flat system. In particular, we consider a
system in which each BS transmits beamformed DL reference
signals (RSs) that are measured by UEs, similarly employing
receive beamforming. In the proposed positioning algorithm,
UEs coherently combine the DL-RSs modulating multiple
subcarriers, and estimate the gain of each beam-pair using a
novel maximum likelihood estimator (MLE). The estimated
beam-pair gains for the strongest (or most reliable) UE beams
are then communicated back to the BSs. Then, a novel two-
stage EKF is employed to sequentially estimate the 3D position
of UEs. More precisely, the first-stage EKF estimates the DoDs
of DL RSs based on feedback beam-pair gain estimates. Finally,
the UE-specific DoD estimates from all the available BSs are
fused at a central entity by a second-stage EKF into a 3D
position estimate.

The proposed 3D positioning scheme is evaluated in a frame-
work resembling that of truck platooning. A (truck) platoon
is a string of vehicles driving along the same trajectory with
short gaps between each other, connected via vehicle to vehicle
(V2V) or vehicle to everything (V2X) data communication [6],
[7]. The leading truck may be either human-driven or driverless.
Platooning aims at energy saving due to reduced aerodynamic
drag, thus leading to minimization of the fuel consumption
and subsequent CO2 emission, as well as increase in the road
capacity without jeopardizing safety. Another advantage of
truck platooning is the mitigation of skilled drivers’ shortage
and future labour costs savings. Each platoon member is
equipped with various sensors to be able to keep lane, control
its speed, avoid collisions and keep a gap between each other,
with the latter being the crucial function for energy saving.



Lateral control is performed with road marker sensors (typically
optical), whereas longitudinal control i.e., maintaining the speed
and the gap between trucks, is based on fusion from multiple
sensors (typically a radar, a lidar and/or a CMOS camera) as
well as V2V communication communication for the transfer
of necessary data between platoon members [6], [8]. Also,
V2X communication is often used as an additional sensor [7].
The truck separation in the platoon is a key parameter: small
gap yields large fuel reduction compared to conventional truck
operations. In most platooning tests the clearance gap was kept
in the range of 5− 10 m [6], which corresponds to the delay
of < 1 s between the trucks. However, it should be noted that
precise energy saving gains depend also on the speed and the
place of the truck within the platoon [6].

One application of above truck platooning is automated
hauling and docking of freight containers at maritime cargo
terminals. In fact, the Singapore Ministry of Transport and the
Port of Singapore Authority have already begun to develop
a track platooning system [9] to increase the productivity of
the port facilities and to address the shortage of highly-skilled
drivers. It should be noted that the aerodynamic drug reduction
is not a main objective in this low-speed application. However,
cargo terminals, alongside other places where goods are stored
and moved, are often envisioned as likely locations for the
deployment of industrial Internet-of-Things (IoT) based on
mmW wireless network that can be employed for the precise
user positioning. In case all platoon members are equipped
with 5G transceivers, the 5G wireless network could provide
a V2X communication channel, and highly accurate network
positioning can assist in the longitudinal control of the platoon.
We therefore evaluate the proposed positioning scheme in a
settings resembling a cargo terminal.

This paper may be understood as an extension of our
work in [5] by considering maximum ratio combining of
subcarriers. In particular, the positioning scheme in [5] is
based on a Gaussian approximation of (feedback) beam-RSRP
measurements whereas in this paper such an approximation of
the beam-pair gain is not required. This comes at the expense
of increased complexity at the UE and a calibrated Tx-Rx
frequency-response. The latter can be avoided by employing
a narrowband frequency-flat system in terms of the reference
symbol allocation for positioning.

The rest of the paper is organized as follows. First, the
considered system model is given in Section II. In Section III,
the maximum likelihood (ML) estimator of BS-UE beam-pair
gain is proposed. Section IV provides the considered two-stage
EKF solution, namely, the direction of departure (DoD) tracking
EKF running at BSs and UE positioning EKF operating at
a central entity. The considered deployment scenario as well
as results of the simulations and numerical evaluations are
presented in Section V. Finally, Section VI concludes the
paper.

II. SYSTEM MODEL

Let yi,j ∈ CMf denote the multicarrier observation in an
orthogonal frequency-division multiplexing (OFDM) system at

the UE side. The subscripts i, j refer to the ith UE Rx beam
and the jth BS Tx beam, and Mf denotes the number of
subcarriers. Assuming a single dominant line-of-sight (LoS)
path, the multicarrier observation at the UE is given by

yi,j = Sbf (τi,j)b
i
UE(ϑa, ϕa)bjBS(ϑd, ϕd)γi,j + ni,j , (1)

where S ∈ CMf×Mf is a diagonal matrix denoting the trans-
mitted symbols in frequency domain, and bf (τi,j) ∈ CMf de-
notes the combined frequency-response of the channel and Tx-
Rx radio frequency (RF)-chains. Moreover, bjBS(ϑd, ϕd) ∈ C
and biUE(ϑa, ϕa) ∈ C denote the complex-valued beampatterns
of the jth BS and ith UE beams, respectively. Note that Tx
and Rx are assumed to transmit and receive single-polarized
(e.g., vertically-polarized) signals, respectively. Throughout this
paper, the departure elevation and azimuth angles at the BS are
denoted as (ϑd, ϕd), whereas the arrival elevation and azimuth
angles at the UE are denoted as (ϑa, ϕa). The propagation delay
between the ith UE Rx beam and the jth BS Tx beam, including
clock-offsets, is denoted by τi,j . Finally, γi,j ∈ C denotes the
(vertically-polarized) channel’s path-weight between the ith UE
Rx beam and the jth BS Tx beam [10], [11], while ni,j ∈ CMf

denotes measurement noise. In particular, we assume that
ni,j ∼ NC(0, σ2

i,jI) as well as E{ni,jnHk,l} = 0 when i 6= k.
In other words, we assume a noise-limited system and a radio
channel with negligible diffuse scattering. The assumption of
uncorrelated measurement noise holds when the UE beams are
formed at different time-instants, employ different RF-chains,
or the beams are orthogonal. These assumptions typically hold
in mmW systems.

The combined frequency-response of the channel and Tx-Rx
RF-chains, denoted by bf (τi,j), is modeled as [11, Ch.2]

bf (τi,j) = Gf [e−j2π
Mf−1

2 f0τi,j , . . . , ej2π
Mf−1

2 f0τi,j ]T , (2)

where f0 ∈ R and Gf ∈ CMf×Mf denote the subcarrier
spacing and the combined frequency-response of the Tx-Rx
RF-chains, respectively. We assume that Gf has either been
acquired by e.g., over-the-air calibration, or is essentially
constant (i.e., frequency-flat RF-chains) over the operating
bandwidth of the reference symbols.

We now consider two limitations typically found in practice.
Firstly, the UE’s Rx beam characteristics are either not available
at the network side or the capacity of the feedback channel does
not allow for reporting allMBS×MUE channels, whereMBS

and MUE denote the number of beams at a given BS and UE,
respectively. Hence, we focus on estimating the DoD of the DL
LoS path. Note that both DoD and direction of arrival (DoA)
may be estimated given that all of the MBS ×MUE channels
are available at the BS. Secondly, the relative phases among the
BS Tx beams are unknown (e.g., uncalibrated system). Hence,
we focus on acquiring the gains of BSs’ DL beams for DoD
estimation and subsequent UE positioning.

In particular, the UE positioning task proposed in this paper
consists in the following three main steps (see also Fig. 1):
• UEs estimate the gains of BSs’ DL beams using known

RSs by coherently combining the measured subcarriers.
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Fig. 1: Illustration of the UE positioning approach proposed in this paper. In
particular, UEs estimate and feedback beams’ gains of multiple BSs obtained
from DL RSs by coherently combining the measured subcarriers. Only angles
are used for positioning purposes. A single BS suffices in determining the 2D
position of a UE given that its height is known. For 3D positioning at least
two BSs are needed.

• BSs estimate and track the DoDs using reported gains from
UEs. Optionally, UEs may also feedback the estimated
variance of the reported gains.

• A central entity estimates and tracks the 3D positions of
UEs.

III. PROPOSED MAXIMUM LIKELIHOOD ESTIMATION OF
BEAM-PAIR GAIN

Let us first rewrite (1) in a more compact form:

yi,j = b̃f (τi,j)βi,j + ni,j , (3)

where b̃f (τi,j) ∈ CMf and βi,j ∈ C are given by

b̃f (τi,j) = Sbf (τi,j), (4)

βi,j = biUE(ϑa, ϕa)bjBS(ϑd, ϕd)γi,j . (5)

Let also the unknown parameter vector be given by Θi,j =
[τi,j , gi,j , φi,j , σ

2
i,j ]

T , where gi,j ∈ R and φi,j ∈ [0, 2π) denote
the magnitude (or gain) and phase of βi,j , respectively. Note
that gi,j and φi,j are related to the magnitudes and phases of
biUE(ϑa, ϕa), bjBS(ϑd, ϕd), and γi,j by

gi,j = giUE(ϑa, ϕa) gjBS(ϑd, ϕd) gγi,j , (6)

φi,j = φiUE + φjBS + φγi,j . (7)

To find the MLE of the beam-pair gi,j , and more generally
that of Θi,j , we start by writing the log-likelihood function of
Θi,j given yi,j , as

`(Θi,j |yi,j) = −Mf lnπ −Mf lnσ2
i,j

− 1

σ2
i,j

‖yi,j − µ(Θi,j)‖2, (8)

where µ(Θi,j) = b̃f (τi,j)βi,j . A general and convenient
expression for the derivative of a complex-circular Gaussian
probability density function (pdf) can be found in [12, Ch.15].
It follows that

∂`(Θi,j |yi,j)
∂[Θi,j ]n

= −tr

{
C−1y (Θi,j)

∂Cy(Θi,j)

∂[Θi,j ]n

}
+ (yi,j − µ(Θi,j))

H
C−1y (Θi,j)

∂Cy(Θi,j

∂[Θi,j ]n

×C−1y (Θi,j) (yi,j − µ(Θi,j))

+ 2<
{

(yi,j − µ(Θi,j))
H
C−1y (Θi,j)

∂µ(Θi,j)

∂[Θi,j ]n

}
, (9)

where Cy(Θi,j) = σ2
i,jI due to the independent and identically

distributed (iid) assumption on the measurement noise ni,j .
Equating the above derivative to zero yields the following
expression for the MLE of the beam-pair gain:

ĝi,j =
1

‖b̃f (τ̂i,j)‖2
<
{
yHi,j b̃f (τ̂i,j)e

jφ̂i,j

}
. (10)

Here, τ̂i,j and φ̂i,j denote the MLEs of the delay and beam-pair
phase. They are found by equating (9) to zero and solving for
τi,j and φi,j , yielding:

τ̂i,j = arg max
τi,j

b̃Hf (τi,j)Ryb̃f (τi,j)

‖b̃f (τi,j)‖2
, (11)

φ̂i,j = arctan

−=
{
yHi,j b̃f (τ̂i,j)

}
<
{
yHi,j b̃f (τ̂i,j)

}
 . (12)

Here,Ry ∈ CMf×Mf denotes the sample correlation matrix of
yi,j , i.e. Ry = yi,jy

H
i,j . Finally, the MLE of the measurement

noise variance can be shown to be given by

σ̂2
i,j =

1

Mf
‖yi,j − µ(Θ̂i,j)‖2. (13)

The MLE of the beam-pair gain in (10) may be understood as
a maximum ratio combining (MRC) since the phase introduced
by the channel (and RF-chains) on each subcarrier is corrected,
thus leading to a coherent combination of each subcarrier’s
gain.

It follows from (10)-(11) as well as (8) that ĝi,j is Gaussian
distributed, asymptotically unbiased and statistically efficient.
The (asymptotic) mean and variance of ĝi,j now follow from
the Cramér-Rao bound (CRB) results in [11, Ch.4] expressed
as

µ(ĝi,j) = gi,j (14)

var(ĝi,j) =
σ2
i,j

2‖b̃f (τi,j)‖2
. (15)

In the next section, the MLEs of a set of beam-pairs, and
corresponding estimation variances, are employed for tracking
the DoDs between a UE and multiple BSs, and for subsequent
3D UE position estimation.



IV. PROPOSED EXTENDED KALMAN FILTER

A. EKF for DoD Estimation and Tracking

Let ĝi∗,j∗ ∈ R denote the largest estimated beam-
pair gain, i.e. (i∗, j∗) = arg maxi,j ĝi,j . Let also ĝ =
[ĝi∗,1, . . . , ĝi∗,MBS

]T denote the estimated beam-pairs for a
fixed UE beam andMBS BS beams. From the results in Section
III it follows that vector ĝ ∈ RMBS is Gaussian distributed
with the following (asymptotic) mean and covariance matrix

µĝ = gBS(ϑd, ϕd)α, (16)

Cĝ = diag

{
σ2
i∗,1

2‖b̃f (τi∗,1)‖2
, . . . ,

σ2
i∗,MBS

2‖b̃f (τi∗,MBS)‖2

}
. (17)

Here, α ∈ R is an unknown scaling, and is given by α =
gi
∗

UE(ϑa, ϕa) gγi∗ (see also (6)). In particular, the magnitude
of the channels’ path-weight corresponding to the beam-pair
(i∗, j), and denoted by gγi∗,j , is assumed to be independent
of the BS’ beams. More precisely, the proposed DoD-EKF
assumes that gγi∗,1 = gγi∗,2 = . . . gγi∗,MBS

. In practice, such
an assumption means that the radio channels between a fixed
UE beam and all BS beams are identical. Typically, this holds
true in practice.

Let us now consider the expressions for the DoD-EKF. We
employ the so-called information-form EKF, which is known
to be computationally more efficient than the corresponding
Kalman-gain formulation when the dimension of the state-
vector is larger than that of the measurement vector. This
follows from the relationship between EKF and Gauss-Newton
iteration of the maximum a posteriori (MAP) estimator [13,
Ch.A3], [14]. In particular, let the state vector for the DoD-
EKF be s = [ϑ, ϕ,∆ϑ,∆ϕ]T, where ∆ϑ and ∆ϕ denote the
rate-of-change of ϑ and ϕ, respectively. The prediction step of
the DoD-EKF is then

s−[n] = Fs+[n− 1] (18)

C−[n] = FC+[n− 1]F T +Q, (19)

where F ∈ R4×4, C ∈ R4×4, and Q ∈ R4×4 denote the
state-transition matrix, state covariance matrix, and state-noise
covariance matrix, respectively. Matrices F andQ can be found
from [15, Ch.2] by noting that we have employed a continuous
white-noise acceleration model for the state-dynamics. The
update step of the DoD-EKF is

C+[n] =
(
C−[n]−1 + I(s−[n])

)−1
(20)

∆s[n] = C+[n] q(s−[n]) (21)

s+[n] = s−[n] + ∆s[n], (22)

where I(s−[n]) ∈ R4×4 and q(s−[n]) ∈ R4 denote the
observed Fisher information matrix (FIM) and score-function
of the likelihood function of (ϑd, ϕd) given ĝ evaluated at
s−[n], respectively.

Under so-called regularity conditions of the likelihood
function [16, Ch.6], the MLE is asymptotically unbiased and
its (asymptotic) error covariance matrix equals the inverse of
the FIM. Hence, one may employ the error covariance matrix,

and gradient, of the MLE of (ϑd, ϕd) in place of I(s−[n])
and q(s−[n]), respectively [13, Ch.A3], [14].

In particular, the log-likelihood function of Θ given ĝ is
given by

`(Θ|ĝ) = −MBS

2
ln 2π − MBS

2
ln σ̃2 − ln detCĝ (23)

− 1

2σ̃2
(ĝ − gBS(ϑd, ϕd))

TC−1ĝ (ĝ − gBS(ϑd, ϕd)). (24)

Solving for σ̃2 and replacing the resulting MLE in (23) yields:

`c(ϑd, ϕd|ĝ) = −MBS

2
ln 2π +

MBS

2
lnMBS − ln detCĝ

− MBS

2
ln (ĝ − gBS(ϑd, ϕd))

TC−1ĝ (ĝ − gBS(ϑd, ϕd)).

(25)

Taking exp{`c(ϑd, ϕd|ĝ)}, since it does not change the maxi-
mum of (25), allows us to find the following expressions for
the gradient and Hessian of the MLE of (ϑd, ϕd):

[q(ϑd, ϕd)]1 =

(
∂gBS(ϑd, ϕd)

∂ϑd

)T
C−1ĝ (ĝ − gBS(ϑd, ϕd))

(26)

[q(ϑd, ϕd)]2 =

(
∂gBS(ϑd, ϕd)

∂ϕd

)T
C−1ĝ (ĝ − gBS(ϑd, ϕd))

(27)

[I(ϑd, ϕd)]1,2 =

(
∂gBS(ϑd, ϕd)

∂ϑd

)T
C−1ĝ

∂gBS(ϑd, ϕd)

∂ϕd
.

(28)

Note that we have used a first-order approximation of the
Hessian since it equals, up to a scaling due to noise variance,
the FIM for (ϑd, ϕd). It should also be noted that in practice
an estimate of Cĝ is used. Such an estimate is found by using
(11) and (13) in (17), but requires reporting such estimates to
the BSs, in addition to the beam-pair gains.

B. EKF for UE Positioning

The DoD estimates tracked by the DoD-EKF can be assumed
to be given by [

ϑ̂k
ϕ̂k

]
∼ N

([
ϑk
ϕk

]
,Ck

)
, (29)

where the subscript k denotes the BS index. We note that
the covariance Ck ∈ R2×2 equals the upper-left (2 × 2)
block of C+[n] in the DoD-EKF, and it is assumed to be
angle-independent. Such an assumption greatly simplifies the
proposed Pos-EKF. In particular, let the state vector be given by
sUE = [xUE, yUE, zUE, vx, vy, vz]

T, where (vx, vy, vz) denote
the components of the velocity vector along the Cartesian unit
vectors. The prediction step of the Pos-EKF is then

s−UE[n] = FUEs
+
UE[n− 1] (30)

C−UE[n] = FUEC
+
UE[n− 1]F T

UE +QUE, (31)



where FUE ∈ R6×6, CUE ∈ R6×6, and QUE ∈ R6×6 denote
the state-transition matrix, state covariance matrix, and state-
noise covariance matrix, respectively; see [15, Ch.2] for details.
The update step of the Pos-EKF is now

C+
UE[n] =

(
C−UE[n]−1 + IUE(s−UE[n])

)−1
(32)

∆sUE[n] = C+
UE[n] qUE(s−UE[n]) (33)

s+UE[n] = s−UE[n] + ∆sUE[n], (34)

where IUE(s−UE[n]) ∈ R6×6 and qUE(s−UE[n]) ∈ R6 denote
the observed FIM and gradient of the log-likelihood function
of UE position given DoD estimates from multiple BSs.

Let m ∈ R2K denote the estimated DoDs of K BSs for a
given UE. It follows from (29) that m ∼ N (µ(p),C), where

µ(p) = [ϑ1(p), ϕ1(p), . . . , ϑK(p), ϕK(p)]
T (35)

C = blkdiag {C1, . . . ,CK} . (36)

Here, p ∈ R3 denotes the 3D Cartesian coordinate of a UE’s
position and blkdiag{·} denotes a block-diagonal matrix. The
DoDs are related to the UE’s position through:

ϑk(p) = arctan

(
−∆zk
d2Dk

)
+ π/2 (37)

ϕk(p) = arctan 2 (∆yk,∆xk) , (38)

where d2Dk
=
√

∆x2k + ∆y2k, ∆xk = xUE − xBSk
, ∆yk =

yUE − yBSk
, and ∆zk = zUE − zBSk

. The gradient of the
log-likelihood function of p given m, and respective observed
FIM, now follow from [12, Ch.3]

[qUE(p)]m =

(
∂µ(p)

∂[p]m

)T

C−1 (m− µ(p)) (39)

[IUE(p)]m,n ≈
(
∂µ(p)

∂[p]m

)T

C−1
∂µ(p)

∂[p]n
. (40)

V. NUMERICAL RESULTS

A. Deployment Scenario

We consider a scenario where two BSs and a UE are
deployed in an environment resembling a maritime port. This
is a common envisioned deployment for industrial IoT appli-
cations based on mmW cellular networks. The UE represents
a container-hauling truck. Fig. 2 illustrates the considered
environment as well as the locations of BSs and UE. In
particular, BSs are deployed at a height of 50 m while that of
the UE is 1.5 m.

In this numerical study a mmW system operating at 39 GHz
and with a reference signal bandwidth of 10 MHz is considered.
The subcarrier spacing is 120 kHz and the resulting number of
subcarriers available for transmitting DL-RSs is 80. The power
budget at each BS is 21 dBm. Each BS transmits DL-RSs
through 64 beams towards different directions. In particular,
such BS beams span 40◦ both in elevation and azimuth, and
the 3 dB beamwidth is ≈ 3◦. DL-RSs for different beams and
BSs are assumed to be scheduled in orthogonal radio resources
(TDM or CDM). The UE receives DL-RSs from 52 beams
spanning 360◦ in azimuth and a fixed direction (≈ 75◦) in

Fig. 2: Illustration of the simulation environment for assessing the performance
of the proposed two-stage EKF in a maritime port area. The considered port
area consists of two buildings (gray rectangles) and blocks of piled metallic
containers (coloured rectangles). The radio channels between a UE (red cross)
and BSs (black dots) are modeled according to the METIS ray-tracing channel
model [17].

co-elevation. The 3 dB beamwidth is ≈ 6◦ in azimuth and
≈ 40◦ in elevation. The maximum gains of the BS and UE
beams are ≈30 dBi and ≈17 dBi, respectively. It is assumed
that the UE estimates the gains for all 64 × 52 beam-pairs,
for both BSs, in 160 ms, after which it feedbacks the highest
beam-pair gains.

The radio channel between UE and BSs follows that of
METIS ray-tracing channel model [17]. Hence, all multipath
components between UE and BSs are taken into account in the
DL-RS measurements, and re-calculated for every UE position.
In particular, buildings and containers are modeled as metal
structures. Their heights are 52 m and 10 m, respectively. For
ground reflections, a medium-dry model is used; see [17] for
details.

B. Performance of the Proposed Positioning Scheme

The performance of the proposed two-stage EKF is assessed
by considering a UE moving with a velocity of 2 m s−1. The
UE moves along a 100 m-long straight trajectory from south
to north. The starting position of the UE is illustrated in Fig. 2.
The southernmost BS is north-facing while the northernmost
BS has a 50◦ orientation clockwise from East-side. The UE
feedbacks estimates for the beam-pair gains every 160 ms.
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Fig. 3: Empirical CDF of 3D positioning error obtained using the proposed
method for a varying number of feedback beam-pair gain estimates. Sub-meter
accuracy is achieved in 90% of the user’s trajectory given that 32 beam-pair
gain estimates are feedback. Attaining an identical accuracy and reducing the
amount of feedback beam-pair gain estimates requires increasing the bandwidth
of DL RS from the current 10MHz.
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Fig. 4: Empirical CDF of elevation-angle error obtained using the proposed
method for a varying number of feedback beam-pair gain estimates.

Initialization of the DoD-EKF and Pos-EKF follows that in
[18].

In particular, we consider the case when the number of
feedback beam-pairs is 32, 16, 8, and 4. Note that the
performance of the proposed positioning scheme with respect to
(wrt) the number of feedback beam-pairs is heavily dependent
on the shape of the BSs’ transmit beams as well as relative
BSs-UE location. Fig. 3 illustrates the cumulative distribution
function (CDF) of the 3D positioning error while that of
elevation-angle and azimuth-angle are given in Fig. 4 and
Fig. 5, respectively. Results show that sub-meter positioning
accuracy is achieved in 90% of user’s trajectory given that 32
beam-pair gain estimates are reported. For 16 beam-pair gain
estimates sub-meter accuracy is attained in 60% of the route.
Reporting 8 or 4 beams-pair gains does not suffice in reaching
sub-meter 3D positioning accuracy with the proposed scheme.

VI. CONCLUSION

We have proposed a 5G mmW user positioning method that
consists in reporting maximum likelihood estimates of beam-
pair gains acquired by means of beamformed DL RSs. Such
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Fig. 5: Empirical CDF of azimuth-angle error obtained using the proposed
method for a varying number of feedback beam-pair gain estimates.

estimates may be understood as a maximum ratio combining
of the subcarriers modulated by the RSs. A parametric model
for the radio channel was employed, and the combined fre-
quency response of Tx-Rx RF-chains was assumed calibrated,
or frequency-flat. A two-stage EKF was also proposed for
estimating and tracking the 3D position of users based on
feedback beam-pair gain estimates. In particular, each BS
tracks the DoD of the LoS path to a given user by means of a
first-stage EKF. Subsequently, DoD estimates from multiple
BSs are fused into 3D position estimates of the users’ locations.
We have assessed the performance of the proposed positioning
scheme on a realistic ray-tracing based environment resembling
a maritime port with metal containers. The focus was in
industrial IoT applications operating at 39 GHz and with a
10 MHz RS bandwidth. Results show that sub-meter positioning
accuracy is achieved in 60% of the user’s trajectory given that
16 beam-pair gain estimates are reported. Increasing the number
of reported gain estimates to 32 leads to sub-meter accuracy for
90% of the route. Our results allow one to design the capacity
of the feedback channel for a given positioning accuracy.
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Kalman filters and smoothers,” 2011. [Online]. Available: http:
//becs.aalto.fi/en/research/bayes/ekfukf/documentation.pdf

[16] G. Casella and R. Berger, Statistical Inference, 2nd ed. Duxbury, 2002.
[17] METIS, “D1.4 Channel models,” Feb. 2015. [Online]. Available:

https://www.metis2020.com/wp-content/uploads/METIS D1.4 v3.pdf
[18] M. Koivisto, M. Costa, J. Werner, K. Heiska, J. Talvitie, K. Leppänen,

V. Koivunen, and M. Valkama, “Joint Device Positioning and Clock
Synchronization in 5G Ultra-Dense Networks,” IEEE Trans. Wireless
Comm., vol. 16, no. 5, pp. 2866–2881, May 2017.


