
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An Explicitly Parallel Architecture for Packet

Parsing in Software Defined Networks

Hesam Zolfaghari

Laboratory of Electronics and

Communications Engineering

Tampere University of Technology

Tampere, Finland

hesam.zolfaghari@tut.fi

Davide Rossi

Department of Electrical, Electronic

and Information Engineering

University of Bologna

Bologna, Italy

davide.rossi@unibo.it

Jari Nurmi

Laboratory of Electronics and

Communications Engineering

Tampere University of Technology

Tampere, Finland

jari.nurmi@tut.fi

Abstract—Packet parsing is the first step in processing of

packets in devices such as network switches and routers. The

process of packet parsing has become more challenging due to

the increase in line rates and emergence of Software Defined

Networking which leads to new protocols being adopted. In

this paper, we present a novel architecture for parsing of

packets. The architecture is fully programmable and is not tied

to any specific protocol. It can be programmed to parse any

protocol making it suitable for Software Defined Networks.

Compared with the parser used in the Reconfigurable Match

Tables, our parser improves supported throughput by a factor

of 3.2. Moreover, to achieve the target throughput of 640 Gbps,

our parser needs only 2 percent of the number of gates used in

the parsers of Reconfigurable Match Tables.

Keywords— Packet Parsing, Software Defined Networking,

Explicit Parallelism, Very Long Instruction Word, Packet

Processing Pipeline

I. INTRODUCTION

Software Defined Networking (SDN) [1] is the solution
to the emergence of a plethora of communication protocols.
In recent years, numerous protocols have been proposed. For
instance, protocols such as GENEVE [2], NVGRE [3] and
VxLAN [4] are only a few of the protocols proposed for
network virtualization. With traditional networking
approach, the time between proposal of a new protocol and
market availability of switches and routers supporting the
proposed protocol is counter-productive. This elongated time
is due to the complexity in designing, implementing and
verifying the functionality of packet processing devices as
they need to support a large subset of all network protocols.
As a result of these pressures, vendors have shifted towards
SDN for simpler hardware and shorter time to market.

Reconfigurable Match Tables (RMT) is an architecture
proposed in [5]. The architecture is these days called
Protocol Independent Switch Architecture (PISA) and has
found its way into industry. Barefoot Network's Tofino is a
programmable switch based on the PISA architecture [6].
One of the key components of PISA and any other packet
processing system is the packet parser. The architecture of
the packet parser used in PISA is based on the parser
proposed in [7]. Packet Parsing is the process by which fields
within the current header are recognized and extracted to be
processed by the Packet Processing Pipeline. In a system
designed to be employed in SDN environments, the packet
parser must be protocol-independent and programmable. As
a result, fixed-function Application Specific Integrated
Circuits (ASICs) are not an option anymore. Instead, packet
processing architectures must be designed with both goals of
programmability and performance. In recent years, a number
of architectures have been proposed such as [8], [9] and [10].
However, they use Field Programmable Gate Arrays

(FPGAs) as the target device. FPGAs operate at considerably
lower frequencies compared to ASICs. Such architectures
have to operate on very wide input to achieve decent
throughput. For instance, in [9] the datapath width is 320
bits. In [8] the width of the datapath is as wide as 2048 bits.
FPGA-based packet parsers do not score well on the latency
side. In many real-time packet processing environments,
there is a strict ingress to egress latency constraint which
should not be violated. Our programmable solution can be
implemented on an ASIC and can replace the packet parser
used in PISA as it has the same output format. With only 2
percent of the total gates used in the parser in [5], it sustains
the same throughput and parses complex variable-length
headers in less than 10 nanoseconds.

II. OUR TASK FORMULATION

In [5] and [7], the process of Packet Parsing is illustrated
by a parse graph in which each state represents an entire
header such as Ethernet or IPv4 header. These graphs are at a
high level of abstraction. Instead, we focus on a graph in
which each state represents parsing of at most four header
fields within a given protocol. We present a programmable
architecture with datapath width of 64 bits. Each state of the
new parsing state machine is represented by one and only
one instruction. The motivation for this choice is minimizing
parsing latency. We use Very Long Instruction Word
(VLIW) kind of instructions because they can do quite a lot
of work per cycle [11]. With multiple fields being present in
the arrived packet data, each sub-instruction within the
VLIW instruction operates on one of the fields. States in the
parse graph are analogous to VLIW instructions and we shall
refer to states and instructions interchangeably. In a similar
manner, state transitions are analogous to branches within the
parse program. The architecture also encompasses program
control logic to avoid expensive lookups into associative
memories at each clock cycle. To further reduce the cost of
lookups, there are a finite number of comparators operating
in parallel. The parallel comparators compare the header
field of choice against members of a comparand set, thereby
limiting comparisons only to relevant comparands.

Our parser operates in the streaming mode, meaning that
there is no need to buffer the incoming packets prior to
parsing. Instead, packets are parsed as they arrive. Streaming
parsers are superior in terms of performance and exhibit
lower packet processing latency. This parser provides the
input to the Match and Action Packet Processing Pipeline
such as the one presented in [5]. This means that the parser
extracts fields and attaches parsing metadata to them. Based
on the accompanying metadata, the required action takes
place upon the extracted fields. Metadata includes
information such as the port on which the packet arrived and
the identification number of the packet.

III. ARCHITECTURAL DETAILS

Being an explicitly parallel architecture, there are a number
of functional units operating in parallel [12]. Fig. 1 is a high-
level illustration of the internals of our parser which is part of
the Match and Action Packet Processing Pipeline. Only the
main functional units and connections are presented in this
figure for the sake of clarity. Each functional unit has its own
field within the VLIW instruction. The VLIW instructions
are 128 bits wide. The units perform the requested operation
in one clock cycle with the operating frequency being 2 GHz.

Fig. 1. Overall architecture

The main functional units are as follows:

A. Three Extraction Engines

Within the course of parsing headers, there are fields
whose values are of significance for correct parsing. Fields
containing the size of header, payload or entire packet are
examples of these fields. Moreover, fields signaling the
protocol used in the payload portion of the packet fit this
category. In order to extract the values of such fields, three
parallel Extraction Engines are required. Based on the
extracted value the correct state transition takes place in the
upcoming cycles. With these information, the parser is able
to keep track of intra- and inter-packet boundaries.
Moreover, it will perform the right state transitions in order
to correctly parse the incoming packet data.

B. Parallel Comparators

Parallel comparators compare a portion of a packet
extracted by one of the Extraction Engines against a set of
comparands in parallel. This kind of functionality is required
in variable-length headers in which the presence of some
fields is dependent on the values of some flags. Parallel
comparisons help perform the right state transition in a real-
time manner without falling behind the rate of packet arrival.

C. Header Segmentation

Similar to the Extraction Engines, this unit is also in
charge of extracting fields. Contrary to the fields extracted
by the Extraction Engines, fields extracted by this unit will
be the output of the parser and input to the Packet Processing
Pipeline. According to [13], the parser used in Tofino has a
container-based output format, meaning that extracted header
fields are placed in containers of 8, 16 and 32 bits of width.
These containers form a vector of fields which can be

processed in parallel. Our parser has similar output format.
We have added a 64-bit container as well which suits large
fields.

The parse program specifies how the arrived header
should be segmented and extracted. Attached to each set of
extracted fields is the parsing metadata which contains
information such as the port on which the corresponding
packet arrived, the offset from the beginning of the packet
and a user-specified tag.

D. Address Generation Unit

This unit provides address of the next instruction which
is the address of the next state in the parse state machine. It
does so based on the branch condition specified by the
current instruction and, if required, the result of parallel
comparisons. Branches are based on values of header fields
extracted by the Extraction Engines and the internal state of
the parser. For instance, when parsing IPv4 packets, if the
value of Internet Header Length (IHL) is 5 and the parser has
parsed five 32-bit words since the time IHL was received, the
parser will branch to an instruction which starts parsing the
next header.

E. Arithmetic and Logic Units

The values of fields extracted by the extraction engines
may need to undergo some modifications by an Arithmetic
and Logic Unit (ALU). There are numerous cases in which
this kind of functionality may be desirable. For instance, in
IPv4 header, the size of header is encoded in terms of
number of 32-bit words while total length of the packet is
encoded in terms of number of bytes. Such values must be
normalized to a universal encoding so that the state of the
parser is updated automatically as contents of the packet
arrive without requiring the programmer to update the state
manually by means of software. As another example, there
are branch conditions that make use of ALUs to resolve the
branch result. For instance, in an Ethernet frame, if the value
of EtherType is greater than 1500, the field signals the next
protocol. Otherwise it indicates the size of payload in bytes.

There are architectural features that are unique to this
parser. The first one is that branches have no penalty. This
means that even if there are frequent jumps in the program
flow, the execution time is the same as for the case in which
there are no branches. This is partly due to the fact that
instructions require very little decoding. Moreover, there is
no program counter register in this architecture. Instead, each
instruction carries its own address, thereby, playing the role
of a virtual real-time program counter. The architecture uses
the so-called bundle instructions which are if-elsif-else
instructions, making use of the parallel comparators. In these
instructions, all conditions are evaluated in parallel and only
the one evaluating to true determines the program flow.
These instructions implicitly contain 64 bits of comparands
and 32 bits of addresses. Yet these instructions carry only 5
extra bits compared to ordinary instructions. Therefore, the
overhead is negligible.

Most parsers rely on Content Addressable Memories
(CAM) for matching. Our parser does not employ any form
of CAM and yet it does not suffer from any performance
penalty. For instance, the parser used in [5] and [6] uses a
Ternary CAM (TCAM) whose search key is comprised of an
8-bit value denoting state and 32 bits of header data. We do
not need a state index because when being in the set of

states/instructions pertaining to a specific protocol, the state
index is implicit. Moreover, in most cases, only few of the
TCAM entries need to be searched. For instance, when
parsing Ethernet header, in order to determine whether the
incoming frame contains Virtual LAN (VLAN) tags, the first
16 bits after the source MAC address must be compared with
hexadecimal values of 88A8 and 8100. In our architecture,
these two values are referred to as a comparand set. A
dedicated memory unit referred to as the comparand bank
holds the comparand sets. A comparand set can have an
arbitrary number of elements. When a comparand set's index
is presented to the comparand bank, the corresponding
comparands are loaded into the comparators in parallel. In
TCAM-based approach all entries will be searched for
matching value while in our solution, which is a lot simpler,
only relevant entries are searched which is a lot more
efficient. We only use a handful of comparators operating in
parallel. Therefore, the resulting area is negligible compared
to the 256 × 40 bit TCAM used in [5].

When parsing application-layer headers, the payload
section of the packet is not subject to parsing and should be
directed to a so-called common data buffer. In our
programmable architecture, parse programs for application-
layer headers are independent of the size of the packet. The
payload section is forwarded to the common data buffer
using only one instruction regardless of the size of the
payload. The instruction loops back to itself until payload is
fully forwarded. Meanwhile, all corresponding counters and
states are updated automatically.

IV. EXPERIMENTAL RESULTS

We have implemented the architecture in VHDL and
synthesized it on 28 nm UTBB FD-SOI technology in worst-
case operating conditions (1.0V, ss, 125°C) using Synopsys
Design Compiler J-2014.09-SP4, while power analysis was
performed in typical operating conditions at the supply
voltage of 1.1V (tt, 25°C). Architectures operating at higher
frequencies are more challenging to design due to the timing
constraints imposed by higher frequencies. We have verified
that the parser can operate at 2 GHz. Table I outlines the
synthesis results. In [5], 16 instances of 40 Gbps parsers are
used in parallel to achieve aggregate throughput of 640
Gbps. These parsers, which are also synthesized using 28 nm
process, have total gate count of 5.6 million. A single
instance of our parser supports throughput of 128 Gbps. For
achieving 640 Gbps aggregate throughput, we need only 5
instances of our parser. This translates to 114K gates which
is only 2 percent of the number of gates required for the
parsers used in [5] without causing any performance
degradation or limit in programmability. This substantial
reduction is to a great degree owing to the elimination of
TCAM. According to [5], the TCAM alone requires over 106
logic gates. Moreover, we are not employing any form of
speculation or prediction of next header. If the next header
arrives at the same time as its indicator, it cannot be parsed
until the address of the subroutine in charge of parsing it has
been resolved. However, with optimized scheduling of
instructions, even in this extreme case, the number of dead
cycles will be limited to two which equals one nanosecond.
Furthermore, very little state is maintained in this
architecture. Everything is instructed by software. The parse
program instructions which arrive in synchrony with the
header fields control the functionality of functional units
within the parser. Therefore, the logic is as simple as

executing simple instructions such as extraction, basic
arithmetic, comparison and condition checking in parallel.
Table II outlines the power consumption of a single instance
of our parser.

In [7], 64 instances of non-programmable 10 Gbps
parsers consume around 450 mW of power in total. As
mentioned earlier, for that throughput, we need only 5
instances of our parser. This results in power consumption of
221 mW, not to mention the fact that our parser is
programmable, as a result of which it consumes more power
than its non-programmable counterpart. Moreover, it
operates at 2 GHz frequency while the parsers used in [5]
and [7] operate at 1 GHz. Therefore, we have a reduction
factor of more than 50 percent compared to [7].

We have programmed the parser to parse a number of
headers. Parse programs for most headers have very few
instructions. For instance, parse program for IPv6 header
requires 8 instructions. Fig. 2 shows time required for
parsing a number of headers. The best case denotes the case
in which optional fields are not present while the worst case
indicates the presence of all optional fields. For fixed length
headers, best case and worst case are equal. In calculating
parsing time, we have also considered the execution time of
the instruction which passes program control to the
subroutine in charge of parsing the next header. Therefore,
the parsing times are realistic. As we can see, parsing
latencies are orders of magnitudes shorter than figures in
FPGA-based solutions. In [8], the average parsing latency
per header is between 58 and 108 nanoseconds while in our
solution headers are parsed in less than 10 nanoseconds. This
reflects that the ultra-wide datapath of FPGA-based solutions
does not help reach low latencies. Fig. 3 illustrates parsing
time for IPv4 packets of different sizes. For minimum-sized
IPv4 packet which comprises the header only and no header

TABLE I. AREA RESULTS FOR A SINGLE PARSER INSTANCE

Number of ports 591

Number of nets 1304

Number of cells 437

Number of combinational cells 364

Number of sequential cells 54

Number of buffers/inverters 91

Number of references 69

Combinational area 4577.596841 µm2

Buf/Inv area 909.840006 µm2

Noncombinational area 6585.664149 µm2

Total cell area 11163.260990 µm2

Total gate count 22800

TABLE II. POWER RESULTS FOR A SINGLE PARSER INSTANCE

Power group Internal

power

Switching

power

Leakage

power

Total

power

Clock

network

0.5928 0.8941 0.0021 1.4891

(3.37%)

Register 17.2796 0.1307 1.2178 18.6281

(42.20%)

Combinationa

l

2.9715 19.9672 1.0866 24.0244

(54.43%)

Total 20.8439

mW

20.9920

mW

2.3066

mW

44.1417

mW

Options nor payload, parsing takes 3 nanoseconds. This
equals to a throughput of 53.33 Gbps. For IPv4 packets of
maximum size, i.e 65535 bytes, parsing takes 4.1
milliseconds. This translates to throughput of almost 128
Gbps. As we can see, larger packets score better in terms of
throughput. This is because the 64-bit container can be
utilized. For minimum-sized IPv4 packet with the header
only, the 64-bit container remains empty. Although it is
possible to pack multiple header fields into a 64-bit
container, it is not recommended as it hurts parallelism in the
packet processing pipeline. Headers such as IPv6 which
contain large fields such as 128-bit source and destination
addresses can make better use of the 64-bit container,
thereby boosting throughput. For instance, as we can see in
Fig. 2, parsing 40-byte IPv6 fixed header takes equal time as
parsing 20-byte IPv4 header. On the whole, smaller packets
result in greater number of packets being parsed per second
while larger packets result in better throughput.

Fig. 2. Time required for parsing various headers

Fig. 3. Time required for parsing IPv4 packets of varying sizes

 For links with multiple channels of incoming packets,
multiple instances of the parser can be placed per channel to
support a higher aggregate throughput.

V. CONCLUSION AND FUTURE WORK

In this paper we presented the architecture of a fully-
programmable protocol-independent packet parser for
Software Defined Networks. As we have seen, the
architecture is a lot simpler and yet superior in throughput
compared to the parser with similar output format. This
proves that SDN, while requiring programmable packet
processing, does not require complex hardware. We have
also seen that an explicitly parallel architecture suits packet
parsing applications very well.

We would like to enhance the architecture of this parser
so that it supports even higher throughputs. Moreover, we
would like to fully automate the process of packet parsing so
that the required instructions are generated after the parsing
requirements are described in a high level of abstraction.

REFERENCES

[1] Open Networking Foundation, "Software-Defined Networking: The
New Norm for Networks," Whitepaper 2012.

[2] Jesse Gross, Ilango Ganga, and T. Sridhar. (2018, March) Geneve:
Generic Network Virtualization Encapsulation. [Online].
https://www.ietf.org/id/draft-ietf-nvo3-geneve-06.txt

[3] Pankaj Garg and Yu-Shun Wang. (2015, September) NVGRE:
Network Virtualization Using Generic Routing Encapsulation.
[Online]. https://tools.ietf.org/html/rfc7637

[4] Mallik Mahalingam et al. (2014, August) Virtual eXtensible Local
Area Network (VXLAN): A Framework. [Online].
https://tools.ietf.org/html/rfc7348

[5] Pat Bosshart et al., "Forwarding metamorphosis: fast programmable
match-action processing in hardware for SDN," in ACM SIGCOMM,
Hong Kong, 2013, pp. 99-110.

[6] Barefoot Networks, "The world's fastest and most programmable
networks," Whitepaper. [Online].
https://barefootnetworks.com/resources/worlds-fastest-most-
programmable-networks/

[7] Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown,
"Design principles for packet parsers," in ACM/IEEE symposium on
Architectures for networking and communications systems, San Jose,
2013, pp. 13-24.

[8] Michael Attig and Gordon Brebner, "400 Gb/s programmable packet
parsing on a single FPGA," in ACM/IEEE Seventh Symposium on
Architectures for Networking and Communications Systems, 2011,
pp. 12-23.

[9] Jeferson Santiago da Silva, François-Raymond Boyer, and J.M. Pierre
Langlois, "P4-Compatible High-Level Synthesis of Low Latency 100
Gb/s Streaming Packet Parsers in FPGAs," in ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
Monterey, 2018, pp. 147-152.

[10] Pavel Benáček, Viktor Puš, Hana Kubátová, and Tomáš Čejka, "P4-
To-VHDL: Automatic generation of high-speed input and output
network blocks," Microprocessors and Microsystems, vol. Volume
56, pp. 22-33, February 2018.

[11] Joseph A. Fisher, Paolo Faraboschi, and Cliff Young, "VLIW
processors: once blue sky, now commonplace," IEEE Solid-State
Circuits Magazine, vol. 1, no. 2, June 2009.

[12] Mark Smotherman, "Understanding EPIC Architectures and
Implementations," in 40th Annual Southeast ACM Conference, 2002.

[13] Vladimir Gurevich. (2017, May) Programmable Data Plane at Terabit
Speeds. [Online].
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terab
it_speeds.pdf

