
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

An Explicitly Parallel Architecture for Packet 

Parsing in Software Defined Networks 
 

Hesam Zolfaghari 

Laboratory of Electronics and 

Communications Engineering 

Tampere University of Technology 

Tampere, Finland 

hesam.zolfaghari@tut.fi 

Davide Rossi 

Department of Electrical, Electronic 

and Information Engineering 

University of Bologna 

Bologna, Italy 

davide.rossi@unibo.it 

Jari Nurmi 

Laboratory of Electronics and 

Communications Engineering 

Tampere University of Technology  

Tampere, Finland 

jari.nurmi@tut.fi 

Abstract—Packet parsing is the first step in processing of 

packets in devices such as network switches and routers. The 

process of packet parsing has become more challenging due to 

the increase in line rates and emergence of Software Defined 

Networking which leads to new protocols being adopted. In 

this paper, we present a novel architecture for parsing of 

packets. The architecture is fully programmable and is not tied 

to any specific protocol. It can be programmed to parse any 

protocol making it suitable for Software Defined Networks. 

Compared with the parser used in the Reconfigurable Match 

Tables, our parser improves supported throughput by a factor 

of 3.2. Moreover, to achieve the target throughput of 640 Gbps, 

our parser needs only 2 percent of the number of gates used in 

the parsers of Reconfigurable Match Tables. 
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I. INTRODUCTION 

Software Defined Networking (SDN) [1] is the solution 
to the emergence of a plethora of communication protocols. 
In recent years, numerous protocols have been proposed. For 
instance, protocols such as GENEVE [2], NVGRE [3] and 
VxLAN [4] are only a few of the protocols proposed for 
network virtualization. With traditional networking 
approach, the time between proposal of a new protocol and 
market availability of switches and routers supporting the 
proposed protocol is counter-productive. This elongated time 
is due to the complexity in designing, implementing and 
verifying the functionality of packet processing devices as 
they need to support a large subset of all network protocols. 
As a result of these pressures, vendors have shifted towards 
SDN for simpler hardware and shorter time to market. 

Reconfigurable Match Tables (RMT) is an architecture 
proposed in [5]. The architecture is these days called 
Protocol Independent Switch Architecture (PISA) and has 
found its way into industry. Barefoot Network's Tofino is a 
programmable switch based on the PISA architecture [6]. 
One of the key components of PISA and any other packet 
processing system is the packet parser. The architecture of 
the packet parser used in PISA is based on the parser 
proposed in [7]. Packet Parsing is the process by which fields 
within the current header are recognized and extracted to be 
processed by the Packet Processing Pipeline. In a system 
designed to be employed in SDN environments, the packet 
parser must be protocol-independent and programmable. As 
a result, fixed-function Application Specific Integrated 
Circuits (ASICs) are not an option anymore. Instead, packet 
processing architectures must be designed with both goals of 
programmability and performance. In recent years, a number 
of architectures have been proposed such as [8], [9] and [10]. 
However, they use Field Programmable Gate Arrays 

(FPGAs) as the target device. FPGAs operate at considerably 
lower frequencies compared to ASICs. Such architectures 
have to operate on very wide input to achieve decent 
throughput. For instance, in [9] the datapath width is 320 
bits.  In [8] the width of the datapath is as wide as 2048 bits. 
FPGA-based packet parsers do not score well on the latency 
side. In many real-time packet processing environments, 
there is a strict ingress to egress latency constraint which 
should not be violated. Our programmable solution can be 
implemented on an ASIC and can replace the packet parser 
used in PISA as it has the same output format. With only 2 
percent of the total gates used in the parser in [5], it sustains 
the same throughput and parses complex variable-length 
headers in less than 10 nanoseconds. 

II. OUR TASK FORMULATION 

In [5] and [7], the process of Packet Parsing is illustrated 
by a parse graph in which each state represents an entire 
header such as Ethernet or IPv4 header. These graphs are at a 
high level of abstraction. Instead, we focus on a graph in 
which each state represents parsing of at most four header 
fields within a given protocol. We present a programmable 
architecture with datapath width of 64 bits. Each state of the 
new parsing state machine is represented by one and only 
one instruction. The motivation for this choice is minimizing 
parsing latency. We use Very Long Instruction Word 
(VLIW) kind of instructions because they can do quite a lot 
of work per cycle [11]. With multiple fields being present in 
the arrived packet data, each sub-instruction within the 
VLIW instruction operates on one of the fields. States in the 
parse graph are analogous to VLIW instructions and we shall 
refer to states and instructions interchangeably. In a similar 
manner, state transitions are analogous to branches within the 
parse program. The architecture also encompasses program 
control logic to avoid expensive lookups into associative 
memories at each clock cycle. To further reduce the cost of 
lookups, there are a finite number of comparators operating 
in parallel. The parallel comparators compare the header 
field of choice against members of a comparand set, thereby 
limiting comparisons only to relevant comparands. 

Our parser operates in the streaming mode, meaning that 
there is no need to buffer the incoming packets prior to 
parsing. Instead, packets are parsed as they arrive. Streaming 
parsers are superior in terms of performance and exhibit 
lower packet processing latency. This parser provides the 
input to the Match and Action Packet Processing Pipeline 
such as the one presented in [5]. This means that the parser 
extracts fields and attaches parsing metadata to them. Based 
on the accompanying metadata, the required action takes 
place upon the extracted fields. Metadata includes 
information such as the port on which the packet arrived and 
the identification number of the packet. 



III. ARCHITECTURAL DETAILS 

Being an explicitly parallel architecture, there are a number 
of functional units operating in parallel [12]. Fig. 1 is a high-
level illustration of the internals of our parser which is part of 
the Match and Action Packet Processing Pipeline. Only the 
main functional units and connections are presented in this 
figure for the sake of clarity. Each functional unit has its own 
field within the VLIW instruction. The VLIW instructions 
are 128 bits wide. The units perform the requested operation 
in one clock cycle with the operating frequency being 2 GHz. 

 

Fig. 1. Overall architecture 

The main functional units are as follows: 

A. Three Extraction Engines 

Within the course of parsing headers, there are fields 
whose values are of significance for correct parsing. Fields 
containing the size of header, payload or entire packet are 
examples of these fields. Moreover, fields signaling the 
protocol used in the payload portion of the packet fit this 
category. In order to extract the values of such fields, three 
parallel Extraction Engines are required.  Based on the 
extracted value the correct state transition takes place in the 
upcoming cycles. With these information, the parser is able 
to keep track of intra- and inter-packet boundaries. 
Moreover, it will perform the right state transitions in order 
to correctly parse the incoming packet data. 

B. Parallel Comparators 

Parallel comparators compare a portion of a packet 
extracted by one of the Extraction Engines against a set of 
comparands in parallel. This kind of functionality is required 
in variable-length headers in which the presence of some 
fields is dependent on the values of some flags. Parallel 
comparisons help perform the right state transition in a real-
time manner without falling behind the rate of packet arrival. 

C. Header Segmentation 

Similar to the Extraction Engines, this unit is also in 
charge of extracting fields. Contrary to the fields extracted 
by the Extraction Engines, fields extracted by this unit will 
be the output of the parser and input to the Packet Processing 
Pipeline. According to [13], the parser used in Tofino has a 
container-based output format, meaning that extracted header 
fields are placed in containers of 8, 16 and 32 bits of width. 
These containers form a vector of fields which can be 

processed in parallel. Our parser has similar output format. 
We have added a 64-bit container as well which suits large 
fields.  

The parse program specifies how the arrived header 
should be segmented and extracted. Attached to each set of 
extracted fields is the parsing metadata which contains 
information such as the port on which the corresponding 
packet arrived, the offset from the beginning of the packet 
and a user-specified tag. 

D. Address Generation Unit 

This unit provides address of the next instruction which 
is the address of the next state in the parse state machine. It 
does so based on the branch condition specified by the 
current instruction and, if required, the result of parallel 
comparisons. Branches are based on values of header fields 
extracted by the Extraction Engines and the internal state of 
the parser. For instance, when parsing IPv4 packets, if the 
value of Internet Header Length (IHL) is 5 and the parser has 
parsed five 32-bit words since the time IHL was received, the 
parser will branch to an instruction which starts parsing the 
next header. 

E. Arithmetic and Logic Units 

The values of fields extracted by the extraction engines 
may need to undergo some modifications by an Arithmetic 
and Logic Unit (ALU). There are numerous cases in which 
this kind of functionality may be desirable. For instance, in 
IPv4 header, the size of header is encoded in terms of 
number of 32-bit words while total length of the packet is 
encoded in terms of number of bytes. Such values must be 
normalized to a universal encoding so that the state of the 
parser is updated automatically as contents of the packet 
arrive without requiring the programmer to update the state 
manually by means of software. As another example, there 
are branch conditions that make use of ALUs to resolve the 
branch result. For instance, in an Ethernet frame, if the value 
of EtherType is greater than 1500, the field signals the next 
protocol. Otherwise it indicates the size of payload in bytes. 

There are architectural features that are unique to this 
parser. The first one is that branches have no penalty. This 
means that even if there are frequent jumps in the program 
flow, the execution time is the same as for the case in which 
there are no branches. This is partly due to the fact that 
instructions require very little decoding. Moreover, there is 
no program counter register in this architecture. Instead, each 
instruction carries its own address, thereby, playing the role 
of a virtual real-time program counter. The architecture uses 
the so-called bundle instructions which are if-elsif-else 
instructions, making use of the parallel comparators. In these 
instructions, all conditions are evaluated in parallel and only 
the one evaluating to true determines the program flow. 
These instructions implicitly contain 64 bits of comparands 
and 32 bits of addresses. Yet these instructions carry only 5 
extra bits compared to ordinary instructions. Therefore, the 
overhead is negligible. 

Most parsers rely on Content Addressable Memories 
(CAM) for matching. Our parser does not employ any form 
of CAM and yet it does not suffer from any performance 
penalty. For instance, the parser used in [5] and [6] uses a 
Ternary CAM (TCAM) whose search key is comprised of an 
8-bit value denoting state and 32 bits of header data. We do 
not need a state index because when being in the set of 



states/instructions pertaining to a specific protocol, the state 
index is implicit. Moreover, in most cases, only few of the 
TCAM entries need to be searched. For instance, when 
parsing Ethernet header, in order to determine whether the 
incoming frame contains Virtual LAN (VLAN) tags, the first 
16 bits after the source MAC address must be compared with 
hexadecimal values of 88A8 and 8100. In our architecture, 
these two values are referred to as a comparand set. A 
dedicated memory unit referred to as the comparand bank 
holds the comparand sets. A comparand set can have an 
arbitrary number of elements. When a comparand set's index 
is presented to the comparand bank, the corresponding 
comparands are loaded into the comparators in parallel. In 
TCAM-based approach all entries will be searched for 
matching value while in our solution, which is a lot simpler, 
only relevant entries are searched which is a lot more 
efficient. We only use a handful of comparators operating in 
parallel. Therefore, the resulting area is negligible compared 
to the 256 × 40 bit TCAM used in [5]. 

When parsing application-layer headers, the payload 
section of the packet is not subject to parsing and should be 
directed to a so-called common data buffer. In our 
programmable architecture, parse programs for application-
layer headers are independent of the size of the packet. The 
payload section is forwarded to the common data buffer 
using only one instruction regardless of the size of the 
payload. The instruction loops back to itself until payload is 
fully forwarded. Meanwhile, all corresponding counters and 
states are updated automatically. 

IV. EXPERIMENTAL RESULTS 

We have implemented the architecture in VHDL and 
synthesized it on 28 nm UTBB FD-SOI technology in worst-
case operating conditions (1.0V, ss, 125°C) using Synopsys 
Design Compiler J-2014.09-SP4, while power analysis was 
performed in typical operating conditions at the supply 
voltage of 1.1V (tt, 25°C). Architectures operating at higher 
frequencies are more challenging to design due to the timing 
constraints imposed by higher frequencies. We have verified 
that the parser can operate at 2 GHz. Table I outlines the 
synthesis results. In [5], 16 instances of 40 Gbps parsers are 
used in parallel to achieve aggregate throughput of 640 
Gbps. These parsers, which are also synthesized using 28 nm 
process, have total gate count of 5.6 million. A single 
instance of our parser supports throughput of 128 Gbps. For 
achieving 640 Gbps aggregate throughput, we need only 5 
instances of our parser. This translates to 114K gates which 
is only 2 percent of the number of gates required for the 
parsers used in [5] without causing any performance 
degradation or limit in programmability. This substantial 
reduction is to a great degree owing to the elimination of 
TCAM. According to [5], the TCAM alone requires over 106 
logic gates. Moreover, we are not employing any form of 
speculation or prediction of next header. If the next header 
arrives at the same time as its indicator, it cannot be parsed 
until the address of the subroutine in charge of parsing it has 
been resolved. However, with optimized scheduling of 
instructions, even in this extreme case, the number of dead 
cycles will be limited to two which equals one nanosecond. 
Furthermore, very little state is maintained in this 
architecture. Everything is instructed by software. The parse 
program instructions which arrive in synchrony with the 
header fields control the functionality of functional units 
within the parser. Therefore, the logic is as simple as 

executing simple instructions such as extraction, basic 
arithmetic, comparison and condition checking in parallel. 
Table II outlines the power consumption of a single instance 
of our parser. 

In [7], 64 instances of non-programmable 10 Gbps 
parsers consume around 450 mW of power in total. As 
mentioned earlier, for that throughput, we need only 5 
instances of our parser. This results in power consumption of 
221 mW, not to mention the fact that our parser is 
programmable, as a result of which it consumes more power 
than its non-programmable counterpart. Moreover, it 
operates at 2 GHz frequency while the parsers used in [5] 
and [7] operate at 1 GHz. Therefore, we have a reduction 
factor of more than 50 percent compared to [7]. 

We have programmed the parser to parse a number of 
headers. Parse programs for most headers have very few 
instructions. For instance, parse program for IPv6 header 
requires 8 instructions. Fig. 2 shows time required for 
parsing a number of headers. The best case denotes the case 
in which optional fields are not present while the worst case 
indicates the presence of all optional fields. For fixed length 
headers, best case and worst case are equal. In calculating 
parsing time, we have also considered the execution time of 
the instruction which passes program control to the 
subroutine in charge of parsing the next header. Therefore, 
the parsing times are realistic. As we can see, parsing 
latencies are orders of magnitudes shorter than figures in 
FPGA-based solutions. In [8], the average parsing latency 
per header is between 58 and 108 nanoseconds while in our 
solution headers are parsed in less than 10 nanoseconds. This 
reflects that the ultra-wide datapath of FPGA-based solutions 
does not help reach low latencies. Fig. 3 illustrates parsing 
time for IPv4 packets of different sizes. For minimum-sized 
IPv4 packet which comprises the header only and no header 

TABLE I.  AREA RESULTS FOR A SINGLE PARSER INSTANCE  

Number of ports 591 

Number of nets 1304 

Number of cells 437 

Number of combinational cells 364 

Number of sequential cells 54 

Number of buffers/inverters 91 

Number of references 69 

Combinational area 4577.596841 µm2 

Buf/Inv area 909.840006 µm2 

Noncombinational area 6585.664149 µm2 

Total cell area 11163.260990 µm2 

Total gate count 22800 

TABLE II.  POWER RESULTS FOR A SINGLE PARSER INSTANCE 

Power group Internal 

power 

Switching 

power 

Leakage 

power 

Total 

power 

Clock 

network 

0.5928 0.8941 0.0021 1.4891 

(3.37%) 

Register 17.2796 0.1307 1.2178 18.6281  

(42.20%) 

Combinationa

l 

2.9715 19.9672 1.0866 24.0244  

(54.43%) 

Total 20.8439 

mW 

20.9920 

mW 

2.3066 

mW 

44.1417 

mW 

 



Options nor payload, parsing takes 3 nanoseconds. This 
equals to a throughput of 53.33 Gbps. For IPv4 packets of 
maximum size, i.e 65535 bytes, parsing takes 4.1 
milliseconds. This translates to throughput of almost 128 
Gbps. As we can see, larger packets score better in terms of 
throughput. This is because the 64-bit container can be 
utilized. For minimum-sized IPv4 packet with the header 
only, the 64-bit container remains empty. Although it is 
possible to pack multiple header fields into a 64-bit 
container, it is not recommended as it hurts parallelism in the 
packet processing pipeline. Headers such as IPv6 which 
contain large fields such as 128-bit source and destination 
addresses can make better use of the 64-bit container, 
thereby boosting throughput. For instance, as we can see in 
Fig. 2, parsing 40-byte IPv6 fixed header takes equal time as 
parsing 20-byte IPv4 header. On the whole, smaller packets 
result in greater number of packets being parsed per second 
while larger packets result in better throughput. 

 

Fig. 2. Time required for parsing various headers 

 

Fig. 3. Time required for parsing IPv4 packets of varying sizes 

 For links with multiple channels of incoming packets, 
multiple instances of the parser can be placed per channel to 
support a higher aggregate throughput. 

V. CONCLUSION AND FUTURE WORK 

In this paper we presented the architecture of a fully-
programmable protocol-independent packet parser for 
Software Defined Networks. As we have seen, the 
architecture is a lot simpler and yet superior in throughput 
compared to the parser with similar output format. This 
proves that SDN, while requiring programmable packet 
processing, does not require complex hardware. We have 
also seen that an explicitly parallel architecture suits packet 
parsing applications very well. 

We would like to enhance the architecture of this parser 
so that it supports even higher throughputs. Moreover, we 
would like to fully automate the process of packet parsing so 
that the required instructions are generated after the parsing 
requirements are described in a high level of abstraction. 
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