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Abstract—The expected fifth generation (5G) networks allow
for highly accurate direction of arrival and time of arrival
(ToA) estimation, thus providing a convenient environment for
device positioning, if designed properly. However, utilizing ToA
measurements for positioning requires a tight synchronization
not only between the target devices but also among the network
elements. In this paper, we propose a joint positioning and syn-
chronization solution building on the premises of the envisioned
cmWave-based 5G ultra-dense networks and time-varying clock
models. In addition to device location estimates, also relative
clock offsets and skews are estimated and tracked within the
proposed extended Kalman filter based solutions, which can
be further used by a network operator in synchronizing the
active network elements and devices within the network. Based
on extensive simulations and numerical evaluations, accurate
positioning performance can be achieved while tracking the clock
parameters under time-varying clock errors.

Index Terms—5G networks, extended Kalman filter, position-
ing, synchronization, tracking, ultra dense networks

I. INTRODUCTION

In contrast to the earlier and existing mobile generations
where positioning has only been an add-on feature, future fifth
generation (5G) radio networks are expected to be able to
provide 1 m positioning accuracy in 80% of the time in both
outdoor and indoor environments [1], or even better accuracy
for the most demanding use cases like autonomous vehicles,
for instance [2]. Such an envisioned positioning accuracy
substantially outperforms existing positioning techniques such
as global navigation satellite system (GNSS)-based solutions
where the accuracy is typically around 5 m [3, Chapter 8.5],
observed time difference of arrival (OTDoA)-based positioning
in LTE, where the positioning accuracy is usually tens of
meters [4], and WLAN or Bluetooth-based positioning solutions
where an accuracy of around 2-5 m can be usually reached [5].

In order to meet the expected and demanding requirements
of future 5G communication networks, e.g., in terms of peak
data-rate, capacity and latency, it is widely expected that
networks will be deployed with a high spatial density of
transmission and reception points (TRPs) [6], [7]. Such a
property together with a large bandwidth, which in turn enables
highly accurate time of arrival (ToA) estimation from the
received signal, are convenient properties for not only future
demanding communications but also positioning purposes.
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Moreover, large antenna arrays and smart antenna solutions
are able to estimate direction of arrival (DoA) angles from the
received signals with a very high accuracy [8], [9]. Building
on the premises of the expected ultra-dense cmWave-based
5G networks, we propose an efficient joint positioning and
network synchronization approach where we take advantage of
the expected 5G properties including high density of mobile
devices. In addition to the acquired valuable synchronization
information which can be utilized by a network operator
for even improved communications, the obtained location
information can be further used in radio resource management
and to assist mmWave-based communications by designing the
necessary beamformers [10], for instance.

Joint positioning and synchronization is a relatively widely
explored theme in the existing literature. Solutions for joint
positioning and synchronization are proposed in a cooperative
or non-cooperative manner, e.g., in [11]–[13]. However, in
these approaches, static networks are assumed which may not
be a practical assumption in multiuser networks with rather
dynamic target objects. In addition, these solutions as well
as the 5G positioning and synchronization related work, e.g.,
in [8], consider at least one reference node with a synchronous
clock. Selecting a feasible reference node may, in turn, be
challenging or impractical in dynamic multiuser networks.
Hence, in this paper, we propose a joint extended Kalman
filter (EKF)-based positioning and synchronization solution
which is able to estimate and track not only the location of the
user equipments (UEs) but also the relative clock parameters
between the active UEs and TRPs as well as between the TRPs
without assuming a reference-time from a reference TRP.

The rest of the paper is organized as follows. First, we
present the considered network structure together with the
assumed channel and clock models in Section II. In Section III,
general equations of the maximum likelihood (ML) and EKF
estimation solutions are shortly presented before revising and
applying them in the actual positioning and synchronization
solution in Section IV. Thereafter, the simulation environment
and the assumed numerology are presented in Section V before
the results from simulations, and numerical evaluations, are
presented and discussed in Section VI. Finally, we conclude
the paper in Section VII.

II. SYSTEM MODEL

In the considered multiuser ultra-dense network (UDN),
we denote the set of TRP and active UE indices as R and
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Fig. 1: A simplified visualization of the proposed positioning and synchro-
nization method consisting of cascaded tracking solutions. In the first step,
the DoAs and ToAs are estimated for each active UE [8], and the obtained
estimates are then fused into location and clock parameter estimates. Finally,
the clock offset and skew estimates between the UE and LoS-TRPs are used
in estimating the relative clock parameters between the TRP-pair.

U , respectively. Each UE is assumed to be equipped with
a dipole antenna and located at an unknown position pi =
[xi, yi, zi]

T, ∀i ∈ U , whereas each TRP, at a known location
pj = [xj , yj , zj ]

T, ∀j ∈ R, are assumed to be equipped
with an antenna array and certain baseband unit (BBU). In
general, each UE transmits periodic uplink pilot signals in the
form of orthogonal frequency division multiplexing (OFDM)
waveforms in an orthogonal frequency division multiple access
(OFDMA) manner. These uplink pilot signals, which are
anyway exchanged between the UEs and TRPs in order to
acquire the necessary channel information, are then received by
the line of sight (LoS)-TRPs. In particular, the LoS-probability
in such UDNs is relatively high and therefore, it is likely that
a given UE is in LoS-condition towards one or several TRPs
most of the time. In this paper, we assume that each TRP is
able to determine whether it is in LoS-condition towards the
transmitting UE or not.

Thereafter, each LoS-TRP estimates the DoAs and ToAs
from the received pilot signals individually for all active UEs
as proposed in [8], and these estimates are then gathered and
fused from all the LoS-TRPs into UE location estimates and
corresponding clock parameter estimates at a central entity of
the network. In contrast to, e.g., [8] where the absolute clock
offsets and skews are tracked assuming a reference TRP, we
seek to estimate the relative offsets and skews between UEs
and active LoS-TRPs, thus allowing us to relax the assumption
about having a reference time from a reference TRP. In the
proposed positioning and synchronization solution the obtained
relative clock variables are further used for estimating and
tracking the relative clock errors between the active TRPs
which can then be used to synchronize the corresponding
TRPs within a network by a network operator. The different
phases of the proposed solution are depicted in Fig. 1.

A. Channel model

In this paper, we utilize the estimated uplink single-input
multiple-output (SIMO) channel response information in es-
timating and tracking the directional and temporal channel
parameters of the LoS-path in a similar manner as in [8]. We
exploit the following model for the multiantenna-multicarrier
uplink SIMO channel response ĝi,j ∈ CMRxMf×1 between the
ith UE and jth LoS-TRP [14]

ĝi,j = Bj(ϑi,j , ϕi,j , τi,j)γ + w (1)

where τi,j , and ϕi,j and ϑi,j denote the ToA1, azimuth and
elevation DoA angles between a given UE and LoS-TRP,
respectively. Furthermore,MRx denotes the number of antenna
elements at TRP, Mf denotes the number of subcarriers, and
Bj(ϑi,j , ϕi,j , τi,j) ∈ CMRxMf×2 is the polarimetric antenna
array response and it is given in terms of effective aperture
distribution functions (EADFs) [14]. Finally, γ ∈ C2×1 denotes
the unknown complex path-weights of the LoS-path and w
is complex-circular zero-mean Gaussian noise with variance
σ2
w. We exploit the model in (1) for highly accurate DoA and

ToA estimation at the LoS-TRPs using the EKF-based solution
proposed in [8].

B. Clock model

In order to model clocks at UEs and TRPs as realistically
as possible, we consider time-varying clock offsets in both
transmitting UEs and receiving LoS-TRPs. In this paper, we
denote the clock offset and skew of the ith UE or TRP at
time-instant n as ρi[n] and αi[n], respectively. As shown, e.g.,
in [15], the evolution of a given time-varying clock offset can
be described by a first-order auto-regressive model

ρi[n] = ρi[n− 1] + ∆tαi[n− 1]

αi[n] = βαi[n− 1] + u[n],
(2)

where |β| < 1, ∆t is the time-interval between the consecutive
time-instants n − 1 and n, and u[n] ∼ N (0, σ2

u) denotes a
zero-mean Gaussian noise in the clock skew. In particular, the
standard deviation of the noise term can be interpreted as a
measure of the oscillator stability of a given clock.

In order to synchronize the considered network without using
a reference time from a reference TRP, we define variables
ξi,j [n] and ζi,j [n] which describe the relative clock offset and
skew between the ith transmitting UE and jth receiving LoS-
TRP, respectively. Using the clock offset evolution model in (2)
and the definitions above, we can write a model for the time-
varying relative clock offset ξi,j [n] as

ξi,j [n] , ρj [nj ]− ρi[ni]
≈ ξi,j [n− 1] + ∆tζi,j [n− 1]

ζi,j [n] , αj [nj ]− αi[ni]
= βζi,j [n− 1] + u′[n]

(3)

where nj and ni denote the reception and transmission time-
instances of the jth LoS-TRP and ith UE, respectively. Here, a

1Actually, τ denotes a time-delay, whereas the actual ToA can be obtained
from the delay by taking into account the clock of the receiving TRP.



small approximation is required, since we can actually only
measure the relative offset between the UE at its transmission
time and the TRP when it receives the signal. However, such
an approximation does not have a significant impact in the
result and is used more due to the notational consistency. Using
the definition in (3) and the model in (2), we can express the
relative offset between the jth and lth LoS-TRP ξj,l[n] as

ξj,l[n] , ρl[nl]− ρj [nj ] = ξi,l[n]− ξi,j [n]

ζj,l[n] , αl[nl]− αj [nj ] = ζi,l[n]− ζi,j [n],
(4)

which can be then used to measure the relative clock offsets
and skews between a given TRP-pair and further synchronize
the TRPs within the considered network.

III. ESTIMATION AND BAYESIAN FILTERING

In the proposed positioning and synchronization solution we
utilize an EKF based estimation and tracking method which
further employs an ML estimate in initializing the actual EKF.
Therefore, we shortly present in this section the general ML
and EKF equations which are then applied in Section IV.
Throughout this paper, we denote the state vector of the system
and the obtained measurements at a time-instant n as x[n]
and y[n], respectively. We further assume that the transition
between two consecutive states obeys a linear state model and
the state of the system is related to the measurements through
a non-linear measurement model, which can be written as

x[n] = F[n]x[n− 1] + v[n] (5)
y[n] = h(x[n]) + u[n], (6)

where v[n] ∼ N (0,Q[n]) is a zero-mean Gaussian process
noise and u[n] ∼ N (0,R[n]) is a Gaussian measurement
model noise term.

A. Maximum likelihood (ML) estimation

One widely used estimation technique is the ML estimation
that consists in maximizing the assumed likelihood function
of the measurements. Considering the measurement model
in (6), and assuming a deterministic parameter x[n], the
maximum likelihood estimation problem can be formulated in a
probabilistic form as a product of N conditionally independent
measurements as [16]

x̂[n] = argmax
x[n]

N∏
j=1

p
(
yj [n]

∣∣x[n]
)
, (7)

where x̂[n] is the ML estimator at a given time-instant. In
this paper, we employ an iterative quasi-Newton method for
solving (7). Furthermore, we can estimate the uncertainty of
the obtained ML estimate by employing the observed Fisher
information matrix (FIM) of the measurement model such that

P̂[n] = (Jx(x̂[n])TJx(x̂[n]))−1, (8)

where the Jacobian matrix J is evaluated at x = x̂[n] such as

Jx(x̂[n]) =
∂h(x)

∂xT

∣∣∣∣
x=x̂[n]

. (9)

Due to the fact that the ML estimator as such does not take into
account any prior knowledge about the considered system, the
DoA-only ML estimator is used in initializing the state vector
for more extensive positioning and synchronization procedures.
In the numerical evaluations presented in Section VI we,
however, demonstrate also the positioning performance of the
ML approach compared to the proposed EKF-based approaches.

B. Extended Kalman filter (EKF)

The EKF is a well-known Bayesian filtering method where
non-linear system models are linearized using Taylor first-
order approximations around the a priori mean, after which
general Kalman filter (KF) equations can be applied. Assuming
models (5)-(6) and knowledge about the initial distribution, the
a priori mean x̂−[n] and covariance P̂

−
[n] can be evaluated

using the prediction step equations

x̂−[n] = F[n]x̂+[n− 1] (10)

P̂
−

[n] = F[n]P̂
+

[n− 1]F[n]T + Q[n]. (11)

The obtained a priori estimates can be then updated using the
available measurements in the update step of the EKF as

K[n] = P̂
−

[n]H[n]T(H[n]P̂
−

[n]H[n]T + R[n])−1 (12)

x̂+[n] = x̂−[n] + K[n](y[n]− h(x̂−[n])) (13)

P̂
+

[n] = (I−K[n]H[n])P̂
−

[n], (14)

where x̂+[n] and P̂
+

[n] are the a posteriori mean and
covariance matrix, respectively, and H[n] , Jx(x̂−[n]) is the
Jacobian matrix of the non-linear measurement model evaluated
at the a priori mean.

IV. JOINT POSITIONING AND SYNCHRONIZATION EKF

As shortly described in Section II, and illustrated in Fig. 1,
after obtaining the DoA and ToA measurements, we seek to
estimate and track not only the location of the UEs but also
the relative clock offsets and skews between the UEs and
active LoS-TRPs before estimating the relative clock offsets
and skews between the active TRP-pairs. Assuming a constant
acceleration motion model and the clock models in (3), we
can write the state vector x[n] ∈ R9+2Ni×1 for the ith UE as

xi[n] =
[
pT
i [n],vT

i [n],aT
i [n], ξT

i [n], ζT
i [n]

]T
, (15)

where the three-dimensional location, velocity and acceleration
of the UE are given as

pi[n] = [xi[n], yi[n], zi[n]]T (16)

vi[n] = [vxi [n], vyi [n], vzi [n]]T (17)

ai[n] = [axi [n], ayi [n], azi [n]]T, (18)

respectively, and relative clock offsets and skews between the
ith UE and all the receiving LoS-TRPs are given as

ξi[n] = [ξi,1[n], ξi,2[n], . . . , ξi,Ni [n]]T ∈ RNi×1 (19)

ζi[n] = [ζi,1[n], ζi,2[n], . . . , ζi,Ni [n]]T ∈ RNi×1, (20)



where Ni is the number of active LoS-TRPs for the ith UE. The
corresponding state transition matrix F[n] ∈ R9+2Ni×9+2Ni

and state noise covariance matrix Q[n] ∈ R9+2Ni×9+2Ni can
be thus written for the considered system as

F[n] =


I3×3 ∆tI3×3

∆t2

2 I3×3 03×2Ni

03×3 I3×3 ∆tI3×3 03×2Ni

03×3 03×3 I3×3 03×2Ni

02Ni×3 02Ni×3 02Ni×3 A



Q[n] =


σ2
a∆t5I3×3

20
σ2
a∆t4I3×3

8
σ2
a∆t3I3×3

6 03×2Ni
σ2
a∆t4I3×3

8
σ2
a∆t3I3×3

3
σ2
a∆t2I3×3

2 03×2Ni
σ2
a∆t3I3×3

6
σ2
a∆t2I3×3

2 σ2
a∆tI3×3 03×2Ni

02Ni×3 02Ni×3 02Ni×3 D

 ,
(21)

where σ2
a denotes the variance of the acceleration noise.

Furthermore, the sub-matrices A and D in (21) are defined as

A =

[
1 ∆t
0 β

]
⊗ INi×Ni ∈ R2Ni×2Ni (22)

D =

[
σ2
η∆t3

3

σ2
η∆t2

2
σ2
η∆t2

2 σ2
η∆t

]
⊗ INi×Ni ∈ R2Ni×2Ni , (23)

where ⊗ and σ2
η denotes the Kronecker product and variance

of the clock skew process noise, respectively.
In the proposed positioning and synchronization EKF, we

fuse the DoA and ToA measurements from all the LoS-TRPs
into UE location and relative clock parameter estimates. For
a given UE, we denote the augmented measurement model
function as h(xi[n]) = [h1(xi[n])T, . . . ,hNi(xi[n])T]T, where
hj(xi[n]), ∀j = 1, . . . , Ni is defined as

hj(xi[n]) =

 atan2 (yi[n]− yj , xi[n]− xj)
atan2

(
zi[n]− zj , ‖pi[n]− pj‖2D

)
‖pi[n]−pj‖

c + ξi,j [n]

 , (24)

where c is the speed of light, ‖ · ‖2D denotes a 2D dis-
tance on the xy-plane, and atan2 denotes a multi-valued
inverse tangent function. Furthermore, we denote the aug-
mented measurement vector as yi[n] = [yT

1[n], . . . ,yT
Ni

[n]]T

and the corresponding noise covariance matrix as Ri[n] =
blkdiag(R1[n], . . . ,RNi [n]), where the measurement vector
and noise covariance matrix obtained at the jth LoS-TRP
are denoted as yj [n] = [ϕi,j [n], ϑi,j [n], τi,j [n]]T and Rj [n],
respectively.

However, the EKF with the model (24) may suffer from high
non-linearity underneath the TRPs [17], and hence, we also
adopt a circular statistics into the measurement model in terms
of a von Mises-Fisher (VMF) distribution based approximation
as proposed in [17]. In the proposed VMF-based approach, the
DoA measurements are first mapped onto a unit sphere and,
thus, the updated measurement vectors and model functions
become

h′j(xi[n]) =

[
pi[n]−pj
‖pi[n]−pj‖

‖pi[n]−pj‖
c + ξi,j [n]

]
(25)

y′j [n] = [f(ϕi,j [n], ϑi,j [n])T, τi,j [n]]T ∈ R4×1, (26)

Algorithm 1 Positioning and Network Synchronization EKFs

For every time-instant n = 1, . . . , T

For every active UE i ∈ U
1) Estimate yj [n] and Rj [n] at individual LoS-TRPs

j = 1, . . . , Ni as proposed in [8]
2) Initialize the state and covariance of the UE using

ML estimates (7) and distributions presented in
Section V if necessary.

3) Gather yi[n] and Ri[n] from all the LoS-TRPs and
estimate the UE location pi[n] and clock parameters
ξi[n] and ζi[n] using the EKF and models proposed
in Section IV.

end
For every active TRP-pair (j, l), where j, l ∈ R

4) Estimate the relative clock offsets and skews be-
tween the TRPs, i.e., ξj,l[n] and ζj,l[n], respectively,
using a KF and models in Section II.

end
end

where f(ϕ, ϑ) = [cos(ϑ) cos(ϕ), sin(ϑ) cos(ϕ), sin(ϕ)]
T is a

function that maps the directional variables to a unit vector
when the poles of the unit sphere are defined as in [17].

The updated DoA measurements are now VMF distributed
as f(ϕi,j [n], ϑi,j [n]) ∼ VMF

(
pi[n]−pj
‖pi[n]−pj‖

, κu[n]

)
, where

VMF(x;µ, κ) = Cκe
κµTx, (27)

where ‖µ‖ = 1, κ ≥ 0 is a concentration parameter and Cκ
is a normalization constant [18, Ch. 9.3]. In the EKFs, it is
however assumed that the noise terms should be Gaussian and
therefore, we exploit an approximation for the VMF-based
measurement model as

f(ϕi,j [n], ϑi,j [n]) ∼ N
(

pi[n]− pj
‖pi[n]− pj‖

,
1

κu[n]
I3×3

)
, (28)

where κ−1
u[n] , max{σ2

ϕi,j [n], σ
2
ϑi,j [n]} [17]. In the proposed

VMF-based approach, the measurement model for the ToA is
the same as that of (24). Throughout the rest of the paper, we
denote the proposed positioning and synchronization EKF that
utilizes the measurement model in (24) as Pos&Sync EKF and
the one that exploits the models in (25) and (28) as Pos&Sync
VMF-EKF. In order to ensure fast convergence of the proposed
EKFs, we first estimate the initial location of a given UE
using an ML estimate and observed FIM, by employing the
equations presented in Section III. Such an initialization process
provides sufficient initial guess for the initial location of the
UE which in turn increases the synchronization performance in
the beginning of the filtering compared to the approach in [8].

The third phase of the proposed approach contains estimation
and tracking of the relative clock offsets and skews between
the active TRP-pairs as illustrated in Fig. 1. In this final step,
the obtained relative clock estimates between the UEs and
active LoS-TRPs, i.e., ξi[n] and ζi[n] ∀i ∈ U are fused into the
relative clock offset and skew estimates of the TRP-pairs. Since



TABLE I: Simulation numerology

Parameter Value
Carrier frequency 3.5GHz
Subcarrier spacing 15 kHz

Number of pilot subcarriers 64
Effective bandwidth 4.8MHz

Transmit power 10dBm
Transmission time-interval 200 µs

TRP inter-site distance 50m
Antenna height 7m
Antenna model Semi-spherical (22 patch-elements) [22]

Speed of a pedestrian UE 3-4 km/h
Speed of a vehicle UE 15-45 km/h

these clock variables also follows the considered clock models,
we implement a simple KF for tracking the relative clock offsets
and skews between the TRP-pairs using the first part of (4) as
a linear measurement model. The proposed KF-based tracking
is again beneficial because it provides not only sequential
estimates for the clock variables but also valuable information
about the uncertainty of the obtained estimates. However, other
estimation solutions such as ML can be exploited in the final
step of the proposed method as well. A simplified algorithm of
the proposed positioning and synchronization EKF solutions
is presented in Algorithm 1.

V. SIMULATION ENVIRONMENT

In order to demonstrate the performance of the proposed
positioning and synchronization EKFs, simulations and numer-
ical evaluations are carried out in the realistic outdoor METIS
Madrid map environment [19]. In particular, the METIS map-
based ray-tracing channel model is implemented, thus allowing
for simulating the propagation environment as realistically as
possible [20]. Furthermore, we model both pedestrian and
vehicle UEs through 50 random trajectories on the map. The
pedestrian UEs are assumed to move with a constant velocity
along straight lines on the sidewalks, whereas the vehicle
UEs are following a realistic acceleration model designed
for the vehicles [21]. In addition, interfering UEs are placed
on the map randomly 250 m away from a given UE with a
density of 1000 interferers/km2. The numerology regarding
the physical channels and network, presented in Table I, are
mainly stemming from the expected 5G numerology.

Furthermore, we draw the initial clock offsets and skews
for both UEs and TRPs from the distributions N (0, (100 µs)2)
and N (25 ppm, (20 ppm)2), respectively, and we set the clock
skew driving noise to σ2

u = 4 · 10−15. Such clock model
values are stemming from the discussion in Section II and
that of [8]. Moreover, we set the clock model parameter for
the actual clocks as β = 0.9998, whereas in the EKFs, we
use β = 1 for the sake of generality. For the implemented
EKFs, we also set the process noise variances in (21) to σ2

a =
(0.01 m/s2)2 and σ2

η = (1 · 10−5)2. Finally, we gather DoA
and ToA measurements from two closest LoS-TRPs and fuse
them into UE location and clock estimates every 100 ms.

VI. RESULTS

In the numerical evaluations, the positioning performance
of the proposed Pos&Sync EKF and Pos&Sync VMF-EKF is

 

 

 

 

 

Fig. 2: 3D positioning CDFs for the considered positioning approaches for
both vehicle (above) and pedestrian (below) UE scenarios.

compared to more classical DoA-only EKF, DoA-only VMF-
EKF and DoA-only ML, where only DoA measurements are
utilized for positioning purposes. Furthermore, we implement
also an EKF, denoted as Pos&Clock EKF, for the scenario
where the TRPs are assumed synchronous and only UE
devices are assumed to have time-varying clock offsets. In
addition to the positioning performance, we analyze also the
synchronization performance of the proposed solutions under
the considered asynchronous network. The obtained positioning
and synchronization results are depicted in Figs. 2-3.

Based on the obtained 3D positioning results visualized in
Fig. 2 in terms of cumulative distribution functions (CDFs),
a clear difference in positioning accuracy can be observed
between pedestrian UEs and vehicle UEs as expected2. Such a
difference is mainly due to the different speeds of the target
types. Obviously, when tracking a target with a high speed
without any velocity-related measurements, the positioning
performance is usually worse compared to that of a target with
a slower speed. We can also easily observe that the tracking
solutions provide better positioning performance compared
to the snapshot-based DoA-only ML solution, where the
prior information of the state is not utilized in estimation.
In pedestrian UE case, differences in the performance of the
EKF-based solutions can not be clearly distinguished, whereas
in vehicle UE positioning, the VMF-based EKFs slightly
outperform the EKFs using the models (25). Such differences
are even more visible in the considered UE scenarios when,
e.g., cylindrical antenna models with worse geometry closer
or underneath the TRPs are employed, which also emphasizes
the role of VMF-based EKFs in positioning. It can be also

2A short video visualizing the positioning performance is available on-line
at http://www.tut.fi/5G/WCNC18/



 

 

Fig. 3: Relative clock offset and skew tracking performance between UEs and
LoS-TRPs, and between the TRP-pairs with different number of connecting
UEs for the pedestrian UE case.

seen from the results in Fig. 2 that the ToA measurements are
not significantly contributing to the positioning performance,
and they are mainly used in synchronization in the considered
filters. Despite the almost identical positioning performance
of the different methods, the proposed DoA and ToA based
approaches are able to provide also highly accurate clock
estimates as a valuable by-product. Interestingly, the pedestrian
UEs can be located with the accuracy of 1 m in 90 % of the
situations, whereas better than 1.5 m accuracy can be achieved
with the probability of 85 % for the considered vehicle UEs.

In addition to accurate positioning, not only the relative clock
offsets and skews between the pedestrian UEs and active LoS-
TRPs but also the clock offsets and skews between the active
TRP-pairs can be estimated with an extremely high accuracy
as illustrated in Fig. 3. As expected, the more there are UEs
connecting a given TRP-pair the better is the relative clock
offset and skew estimation performance between the TRPs
due to noise reduction after averaging several measurements.
Overall, better than 5 ns offset and 30 ns skew estimation
accuracy can be achieved between the active TRP-pairs in
more than 80 % of the cases even when only a single UE
is connecting the TRP-pair. However, when four UEs are
connected to the same TRP-pair, almost 4 ns relative clock
offset estimation accuracy can be acquired in all situations.

VII. CONCLUSIONS

In this paper, we proposed a joint 3D device positioning
and synchronization solution building on the premises of the
expected cmWave-based 5G UDNs and realistic time-varying
clock models. In addition to device location estimates, also
relative clock offsets and skews are estimated and tracked in the
proposed EKF based solutions, which can be further utilized

by a network operator in synchronizing the active network
elements and devices within the network. Based on extensive
simulations and numerical evaluations, highly accurate posi-
tioning performance can be achieved while tracking the relative
clock offsets and skews among the asynchronous devices and
network elements.
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