
Aligning Security Objectives With Agile Software Development
Kalle Rindell

University of Turku
Turku, Finland

kalle.rindell@utu.fi

Sami Hyrynsalmi
Tampere University of Technology

Pori 305, Finland
sami.hyrynsalmi@tut.fi

Ville Leppänen
University of Turku

Turku, Finland
ville.leppanen@utu.fi

ABSTRACT
Success of the software development process depends on its ability
to transform its objectives into requirements, and implementing
these into features and functionality. Security objectives in soft-
ware development are increasingly converging with the business
objectives, as requirements for privacy and the cost of security
incidents call for more dependable software products. Development
of secure software is accomplished by augmenting the software
development process with specific security engineering activities.
Security engineering, in contrast to the iterative and incremental
software development processes, is characterized by sequential life
cycle models: the security objectives are thus to be achieved by an
approach in apparent conflict with the unaugmented software de-
velopment processes. In this study, to identify the incompatibilities
between the approaches, the security engineering activities from
Microsoft SDL, the ISO Common Criteria and OWASP SAMM se-
curity engineering models are mapped into common agile software
development processes, practises and artifacts. The organizational
and technical aspects of the mapping are considered primarily from
the point of view of achieving the security objectives set for the soft-
ware engineering process: setting security requirements for design,
the implementation of the security architecture and design, and
the required security verification before releasing secure software
through efficient software security development process towards
secure software maintenance.

KEYWORDS
agile, software engineering, security engineering, methodologies
ACM Reference Format:
Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen. 2018. Aligning Se-
curity Objectives With Agile Software Development. In Proceedings of
ACM Conference (SecSE 2018). ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software development organizations are hard pressed tomeet the in-
creasing demand for secure software [10, 15, 33]. Value-driven soft-
ware development processes are seen lacking in ability to produce
secure software, essentially a risk-based process. Responsibility for
software security is placed on elements external to the development
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SecSE 2018, May 25, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

teams [6], deepening the separation of business objectives and se-
curity objectives in software development. In agile development,
the lessened emphasis to preliminary planning, and the absence of
fixed milestones causes difficulties incorporating external security
processes into the iterative development processes: organizations
effectively end up running a non-agile security development life
cycle along the agile software development processes. Aligning the
business and security objectives, and aligning and integrating the
activities is necessary to avoid sacrificing neither efficiency of the
agile processes, nor the long-term security objectives.

Agile software development processes call for agile organiza-
tion, infrastructure and business models [4]. Self-organizing teams
and non-deterministic implementation processes result in task im-
plementation patterns remarkably different from those produced
by sequential and pre-planned counterparts of these models. In
addition to the organizational dissimilarities, security engineer-
ing processes are ultimately driven by risk rather than business
value; unlike the agile development processes, they also rely on
planned activities executed in a sequence [18, 38]. Deterministic
sequences aim to reduce the security risk by executing pre-planned
tasks at fixed points in the development life cycle. Lightweight,
iterative, and incremental processes utilize a profoundly differently
structured implementation and verification cycle; thus, security
mechanisms fully integrated into agile development processes are
required. There exists no inherent obstacle to utilizing agile pro-
cesses to achieve the security objectives: implement the required
security functionality and security assurance, and verify the ab-
sence of known security vulnerabilities [cf. 31].

The differences between the methodologies have been catego-
rized: the methods are determined to be either risk-driven or value-
driven [9]; hybrid models, such as Disciplined Agile Delivery [1], set
out to reintroduce a set of planned activities (a sequential element)
into the iterative work flow. To find out the reasons for the difficul-
ties experienced by the software and security engineers, software
security processes must first be defined, and the activities anal-
ysed. These differences between the approaches, values and even
the paradigms of software engineering and system engineering
methodologies lead to the primary research question:

RQ: How can the agile practises be integrated with software
security engineering activities?

This question is considered primarily by mapping a set of agile
agile practises, activities and artifacts into security development
lifecycle phases; this mapping is preformed per each phase sepa-
rately. In Chapter 2, the issues in software security and the current
adaptation of agile software security engineering activities, prac-
tises and artifacts are examined. In Chapter 3, an exhaustive list of
common software security activities are mapped into agile practises,
processes and artifacts found common in the software development

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SecSE 2018, May 25, 2018, Porto, Portugal Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen

industry[21]; the security engineering activities defined in the Mi-
crosoft SDL security development lifecycle model, the ISO/IEC
Common Criteria, and OWASP SAMM are used. In Chapter 4, the
process and the related issues are discussed in the perspective of
achieving both the security objectives and the business objectives
of software development process; Chapter 5 concludes the article.

2 BACKGROUND
Software Security Engineering (SSE) introduces several system en-
gineering practises and activities into the software development
process. In academia, software engineering as a subdiscipline of
computer science tends to systematically exclude unquantifiable
variables as ‘user’ and ‘operating environment’ from its core [see
14]. However, in practice it is clear that in order to meet the soft-
ware engineering’s objectives of delivering working software in
sustainable manner, software engineering and system engineering
will have to meet [7]. Mainstream software development methods
are extremely value-focused, and as such perform poorly when
facing non-functional requirements [28]. Functional requirements
describe what the system should do, whereas non-functional or
qualitative requirements are typically worded as how the system
should perform, or concern the architecture, operating environment,
scalability etc. Treating security as a non-functional requirement
has provided a convenient argument against the agile methods
suitability for security engineering work [36], and even sugges-
tions that agile methods are inherently ill-suited to produce secure
software [cf. 29].

Security standards are guidelines for security implementation,
and several international software security regulation frameworks
exist. The Common Criteria [19] has been developed to quanti-
tatively evaluate security. It contains concrete instructions and
requirements for security functionality, and suggests a framework
of security objectives, to be elicited into security requirements. The
objectives are also used as a basis for security risk management
process, and form the outlines of the software system’s security
policies. Security policies are implemented by a set of security ac-
tivities and result in a phletora of functionalities which are verified
by security testing and other verification methods. Some of the
security activities bear a notable similarity with software quality
assurance activities: these include code analyses and reviews, verifi-
cation documentation and formal verification audits performed by a
external certifying entity. However, treating security requirements
categorically as non-functional reflects an insufficient understand-
ing of what software security is, and how it is implemented in the
software, and clearly departs from the security models provided by
the ISO/IEC standards [19, 20].

2.1 SSE models in an agile context
Even though agile adaptations exist, SSE is predominantly per-
formed by applying sequential models: however, security develop-
ment, i.e., incorporating security functionality into the software
is an implementation task among others. In practise, however, the
security process is a formal review at a fixed point in time, not a
continual process truly incorporated into the software development

process. Injecting inspection points into the agile work flow neces-
sarily requires pre-planning and thus has the potential to disrupt
the goals of value-driven processes.

At least two commonmaturity models address also development-
time information security issues: (1) The Software Security En-
gineering Capability Maturity Model (SSE-CMM), the ISO/IEC-
standardized heavily process-oriented security management, met-
rics and implementation framework [20]. This model originates
from the Capability Maturity Model Integration, developed by the
Carnegie Mellon University and currently maintained by the CMMI
Institute [22]. As a process model, applying the CMM-based model
can be very costly [13], and can be projected not be limited to
security improvement only. (2) The Open Web Alliance Security
Project’s (OWASP) open source licensed Software Assurance Ma-
turity Model (SAMM) contains also development-time activities,
and sets best practises for security governance, construction, verifi-
cation and operations. OWASP has previously maintained also
a model specific to software development, the Comprehensive,
Lightweight Application Security Process (CLASP); this model has
fallen out of common use and replaced by the SAMM. SAMM also
bears distinct similarities with Building Security In Maturity Model
(BSIMM) [34]. The BSIMM does not claim to specify security mod-
els or frameworks; it is published annually as a list of industry’s
state of information security, surveying the current best practises
in security engineering.

The OpenWeb Alliance Security Project’s (OWASP) open source
licensed Software Assurance Maturity Model (SAMM) contains
also development-time activities, and sets best practises for secu-
rity governance, construction, verification and operations. OWASP
has previously maintained also a model specific to software de-
velopment, the Comprehensive, Lightweight Application Security
Process (CLASP); this model has fallen out of common use and
replaced by the SAMM. SAMM also bears distinct similarities with
Building Security In Maturity Model (BSIMM) [34]. The BSIMM
does not claim to specify security models or frameworks; it is pub-
lished annually as a list of industry’s state of information security,
surveying the current best practises in security engineering.

The SAMM, combined with OWASP’s implementation guide-
lines such as the OWASP Top 10 Application Security Risks [25],
offers guidelines to build a security framework, complete with gov-
ernance and security metrics. As a framework the SAMM follows a
proven path: security strategy includes governance and metrics and
enabled by security education; this can be considered to be equiv-
alent of the Common Criteria’s Security Target. Security threat
assessment leads to security requirements, which form the basis
for security architecture. Security design and implementation (code
and software resources) are verified through analyses and reviews.
Security testing is thoroughly addressed, and this stage contains
also release criteria for the maintenance phase; this phase con-
tains issue management, environment hardenings and ‘Operational
Enablement’, providing instructions for secure DevOps (or, DevSec-
Ops). The SAMM is divided into three maturity levels, each with
specific objectives, activities, assessment criteria and expected re-
sults. These are discussed for each software security development
lifecycle phase.

Microsoft SDL is an example of a Software Security Development
Lifecycle (SSDL) model, representing the one of the several software

Aligning Security Objectives With Agile Software Development SecSE 2018, May 25, 2018, Porto, Portugal

security formalization efforts initiated in mid-2000s. Other SSDL
models include Touchpoints SDLC (Security Development Lifecycle,
now part of BSIMM) and the OWASP CLASP, continued as SAMM.

2.2 Research description
Producing secure software by introducing security engineering
processes and activities to an iterative and incremental software en-
gineering process is challenging. To reverse this, the various phases
and activities in software security development are extracted from
the Microsoft SDL and the ISO Common Criteria. No specific ag-
ile methodology is used as a reference, but rather agile processes,
activities and artifacts, which are linked to the security activities.
Some of the terminology is derived from the Scrum method [32],
currently the most commonly used mainstream software develop-
ment methodology [30, 37]. The development lifecycle is divided
into six phases, and the relevant security development activities
are set into agile context. Positive and negative effects are then
analyzed from the viewpoint of achieving security objectives. The
concept of security objectives is derived from the Common Criteria,
and visualized in Figure 1.

The Common criteria provides a framework for evaluating the
security of a software-intensive product by setting a rather complex
framework. The Security Target consists of the security measures
for the software itself (Target Of Evaluation, TOE) and the operat-
ing environment; for the purposes of this study, only the security
objectives of the TOE are considered. Security objectives are met
by eliciting the security requirements, resulting in security specifi-
cation which guides the implementation of security functionality.
Some of the security functionality exists to explicitly provide secu-
rity assurance. Security assurance, such as logs, verifies the exis-
tence and effectiveness of the security functionality implemented
into the system. It also works as the basis for security metrics and
helps tracking down the potential security breaches later in the
software’s life cycle. The Common Criteria provides ten example
software security activities, which are used together with activities
from SDL and SAMM.

As the software security development life cycle models are di-
vided into distinct phases, the research is listed here in relation
to the life cycle model. The life cycle models phases used are pre-
requirement, requirement, design, implementation, verification and
release. This model is in close resemblance of the SDL’s model, omit-
ting the maintenance phase, and has been used in previous studies
by e.g. Baca and Carlsson [3] and Ayalew et al. [2]. The Common
Criteria does not explicitly address the pre-requirement phase, but
that is implied to consider the setting of the Security Target and
the Security Objectives.

The agile practises, process and artifacts, into which the security
activities are mapped, are derived from common agile methodolo-
gies. These are presented in Table 1.

The upper part of Table 1 lists the agile processes and process
artifact; these can be considered the ‘core’ of agile development.
The lower part, under the horizontal line, contains the software
development practises associated with various agile methodologies,
such as Scrum and Extreme Programming (XP). The ‘Usage’ column
ranks the activity by the reported average usage.

Table 1: Selected agile practises, processes and artifacts and
their use as reported in [21]

Code Agile processes and artifacts Usage
A1 Iterations 84.2%
A2 Iteration planning meetings 76.6%
A3 Iteration backlog 75.5%
A4 Product backlog 76.1%
A5 Daily meetings 69.6%
A6 Iteration reviews/retrospectives 72.3%
Agile practises Usage
AP1 Coding standards 81.2%
AP2 Test-driven development (TDD) 75.0%*
AP3 Simple design 74.5%
AP4 Continuous integration 73.9%
AP5 Refactoring 73.9%
AP6 On-site customer 49.5%
AP7 Pair programming 45.1%
AP8 Planning game 27.7%
* Value separately calculated from the result data.

The source survey for Table 1 has also been reported as agile
practises’ significance in reducing technical debt [17]. Managing
technical deficiencies and recognized debt holds remarkable simi-
larities to security engineering: many of the issues reported in this
study, such as inadequacy of the architecture, structure, testing
and documentation, are directly applicable to security work. In
contrast, the actual features, requirements and defects represent a
minority of the concerns for technical debt among the respondents,
while these are central considerations in security work. The agile
processes, practises and artifacts are mapped into software security
development lifecycle phases in Figure 2 in Chapter 4: the security
activities here are aligned to the activities in Table 1 by the SDLC
phases as shown in Figure 2.

3 SECURITY ACTIVITIES IN AGILE
SOFTWARE DEVELOPMENT PROCESS

This section lists all the security activities extracted from Microsoft
SDL [18, 23], The CommonCriteria [12, 19] andOWASP SAMM[24].
The activities for each lifecycle phase are examined and their adapt-
ability to agile development and a matching agile activity are pre-
sented. The mapping presented in the following chapter is derived
from literature individually for each practise; to the knowledge
of the writers, an empiric or systematic framework for a direct
mapping does not exist. For reference,

3.1 Pre-requirement phase
The security activities in this phase are presented in Table 2. The
pre-requirement phase in the SDL contains only one item: core
security training. For the purposes of agile development, this part
should also contain training in the agile methods: processes, ac-
tivities, tools, communication procedures, terminology and other
indoctrination. Even good software engineers may be unaware of
security issues and have a poor understanding of agile models; se-
curity engineers participating in software projects should be made

SecSE 2018, May 25, 2018, Porto, Portugal Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen

Security
Objectives

Security
Target

Security
Requirements

Security
Specification

Security
Functionality

Figure 1: Simplified software security target framework (adapted from the Common Criteria [19]).

aware how mainstream software projects are conducted and what
is their work flow.

Before the projects begin, SAMM suggests building security de-
velopment strategy and roadmap, measuring the relative value of
data and software assets, and establishing security and cost metrics;
after these, the security expenditure can be assessed. SAMM also
calls for establishment of security policies and security compliance;
third and from the development process point of view the directly
most important category at this stage is security education and guid-
ance for all people relevant for the software and security processes.
SAMM also places threat assessment onto level of organizational
practises rather than project specific; a well-build organizational
threat assessment framework should be able to address project-level
security issues as well, and create the necessary input for security
requirement gathering. At the third maturity level, SAMM advises
to develop and deploy compensating controls for the threats. The
threat assessment phase also provides the risk lists to be assessed
in the security development projects.

In the CC framework, personnel trained in security is a part
of the overall Security Target. Security training of the individuals
is one of the Security Objectives to be fulfilled before the project
begins. Other security objectives are typically application depen-
dent and more difficult to generalize. However, skill is an universal
requirement in both software development [8] as well as security
engineering [see e.g. 26].

As this phase precedes the initiation of the development process,
there are no directly applicable agile practises: communication with
the on-site customer (AP6) may be started already at this point,
and the security items added into a rudimentary version of product
backlog (A4). Security training is an essential prerequisite, as skill
and knowledge forms the base for all security engineering work [cf.
26].

3.2 Requirement phase
Requirement phase activities, presented in Table 3, contain activities
necessary for security requirement elicitation. The SDL deals with
the requirement phase activities at quite high level, and does not
provide concrete resources, guidance or tools to perform them. SDL
also suggests that security requirements and risks are defined only
once in the project, although it is doubtful that they will remain

Table 2: Pre-requirement phase activities

Source Security activity Agile activities
SDL Core Security Training AP6
CC Set security target and objectives A4, AP6
SAMM Strategy & metrics
SAMM Policy & compliance
SAMM Education & guidance
SAMM Threat assessment A4, AP6

static throughout the project. SDL’s approach of setting quality
gates is hardly security specific at all, yet this is something that
can be addressed through agile practises of Coding Standards. The
Common Criteria also stays at rather abstract level, and defines
two types of security activities: definition of Security Functional
Requirements (SFR) and Security Assurance Requirements (SAR). In
the ISO standardization framework fulfilling both these requirement
types is essential in achieving the security objectives, and verifying
this.

SAMM’s security requirement activities give a logical process
how to gather and elicit security requirements: partially it relies
on the business requirements, which are then evaluated against
the compliance guidance for security requirements; this has been
created in the pre-requirement phase. At the second level, an access
control matrix is created, and the security risk list from previous
phase used to complement the list of security requirements. At
third level, SAMM calls for business-oriented security activities of
security management for supplier contracts, and an audit program
for security requirements.

Agile software development is all about change. Effectively this
means efficient and continual requirement management. In Table 1
the only agile activity directly addressing requirement elicitation
and prioritization is the Planning Game [5]. With 27.7 % adoption
rate this technique, originating from the XP methodology, sets an
example how requirement elicitation is done iteratively. Security
requirement elicitation techniques have been surveyed by Tondel
et al. [35], although this study does not address the issue specifically
from agile software developer’s point of view.

Requirement elicitation process must be thorough and systemat-
ically identify all the relevant security functionality and assurance
requirements; iterative approach (A1) directly supports this process.
Agile methods are extremely efficient in prioritizing the implemen-
tation queue: identified items are given workload or complexity
estimates, and are then placed into the product backlog (A4). Work
items will also get assigned an explicit Definition of Done (DoD).
Eventually, depending on their priority, they will be picked up for
the iteration backlog, get implemented and verified. Quality of the
requirements is typically ensured through rigorous validation pro-
cess: methods, such as INVEST for user stories (natural language
requirements) and SMART for backlog items [39] are used to review

Table 3: Requirement phase activities

Source Security activity Agile activities
SDL Establish Security Requirements A1, A4
SDL Create Quality Gates/Bug Bars A1
SDL Perform Security and Privacy A1, A4

Risk Assessments
CC Definition of SFR and SAR A1, A4
SAMM Security requirements A1, A4

Aligning Security Objectives With Agile Software Development SecSE 2018, May 25, 2018, Porto, Portugal

Table 4: Design phase activities

Source Security activity Agile activity
SDL Establish Design

Requirements A1, A3, A4, AP3, AP6
SDL Perform Attack Surface A1, AP3

Analysis/Reduction
SDL Use Threat Modelling A1, AP3
CC Cross-analysis of TOE A1, AP3

designs
CC Vulnerability analysis and A1, AP3

flaw hypothesis
CC TOE design analysis against A1, AP3

the requirements
SAMM Security architecture A1, AP3, AP6
SAMM Design review A1, AP3

the requirements and transform them into implementable features
and functionality.

3.3 Design phase
Design-time activities are listed in Table 4. Both SDL and CC are
again at quite high abstraction level, and both backtrack to require-
ment elicitation and requirement management. SDL also recom-
mends threat modelling. Based on the tool provided1, Microsoft
has a sufficiently lightweight approach to this task. However, mod-
eling a large software system with multiple servers and interfaces,
and maintaining that model through the iterations may become a
burden; also, the model should be reviewed as any other artifact in
order to maintain a credible security tool.

SAMM contains two categories for this phase: the security ar-
chitecture and a design review. Security architecture consists of
a list of practical procedures: first, maintaining a list of recom-
mended software frameworks and applying security principles to
the design; second, security services and infrastructure are to be
identified an promoted, and security design patterns identified from
the architecture. The third level does not include development-time
architectural activities; it calls for formal reference architectures
and platforms are to be established and frameworks, patterns and
platforms validated. Design review, at the first maturity level, should
include identification of attack surfaces and design analysis against
the security requirements. Requirements for the second maturity
level are inspection for complete provision of security mechanisms
and the organizational task of deployment of design review service
for project teams. Third level is again project specific, containing the
activities of developing data-flow diagrams for sensitive resources
and establishing release gates for design review.

Agile development support security design well: iterations (A1)
allow revisiting the earlier decisions and the iteration backlog (A3)
as necessary. Agile practises promote simple design (AP3); all se-
curity designing and reviews are performed under this activity.
TDD (AP2) and pair programming (AP7) convey the security de-
sign into implementation and verification phases. Iterations (A1)
implicitly offer opportunities to enhance the security design in case

1https://www.microsoft.com/en-us/download/details.aspx?id=49168, ref. 19. Feb. 2018

Table 5: Implementation phase activities

Source Security activity Agile activity
SDL Use Approved Tools A1
SDL Deprecate Unsafe Functions A1, AP1
SDL Perform Static Analysis AP7
CC Analysis and checking of

processes and procedures AP7
SAMM Implementation review AP7

the requirements or environmental factors have changed. Having
customer on-site for communication (AP6) also supports security
design process.

3.4 Implementation phase
Table 5 contains the security activities for the implementation
phase, necessary to achieve the security objectives. Mainstream
software engineering is increasingly dependent on a large set of
interconnected and connected tools. Programming IDEs integrate
into packet management servers and code repositories; code repos-
itories are part of Continuous Integration and Continuous Delivery
(CI/CD) services, and automated unit tests are executed upon each
commit. Automated CI/CD systems deploy the tested components
into staging areas, from where the code will eventually be released
into production after integration and security testing. Although
a lot of the security-related implementation-time activity can be
automatized, a human-performed static code review is considered
very effective. Continuous integration (AP4) is a common agile
practise.

Static reviews are the only implementation-time activity in SAMM,
and the model gives quite coherent way to conduct them: review
checklists are created, and high-risk code is somehow identified
and reviewed in detail. At second level automated analysis tools
are to be used, and the code analysis to be integrated into the devel-
opment process. On the third level, the code analysis automation
is to be made application-specific and release gates for the review
established.

Coding standards (AP1), although established already in the pre-
requirement phase, are an important quality improvement practise.
It also directly contributes towards security by enabling code re-
views and making the source code more structured. Pair program-
ming (AP7) is a very effective quality and security improvement
practise [27]; pair programming also acts as a substitute for for-
mal reviews [11]. Iterative development (A1) gives opportunities
for refactoring (AP5) which also works as security improvement
measure; activities and practises such as daily meetings (A5) and
underlying TDD (AP2).

3.5 Verification and validation phase
Security verification activities are presented in Table 6. In order
to achieve security objectives and effectively manage security re-
quirements, the iterative security verification faces two unique
issues:

(1) Returning of the failed items into the backlog, accounting
requirement and design changes.

SecSE 2018, May 25, 2018, Porto, Portugal Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen

Table 6: Verification phase activities

Source Security activity Agile activity
SDL Perform Dynamic Analysis AP4
SDL Perform Fuzz Testing A4
SDL Conduct Attack Surface Review A4
CC Verification of proofs A4
CC Independent functional testing AP4
CC Test case and test result review A4
CC Penetration testing A4
CC Verification of processes and procedures A4
SAMM Security testing AP4

(2) Automating the security testing, or performing it in such
manner that each potentially shippable iteration has gone
through the security verification process.

Test-Driven Development (AP2) is an obvious enabler for secu-
rity verification practises; proper training in security and testing
methods should help incorporating the security testing into the
software testing suite. Costly and time-consuming fuzz testing,
advocated by the SDL, can be considered a quite specialized opera-
tion, appropriate for organizations developing APIs and operating
systems; application developers should have less use for fuzzing.

The security verification phase is best covered in security en-
gineering methodologies, and has the least direct counterparts in
agile activities. Performing these security activities as part of secu-
rity assurance procurement is to be done already at the requirement
specification phase, and the security requirements inserted into the
product backlog (A4). Security verification can also be performed
during a security specific iteration. Continuous integration (AP4)
automates and helps facilitate testing; daily meetings (A5) also often
cover testing issues.

SAMM continues to rely on the security requirements also in
the verification phase: security test cases are drawn from them.
SAMM also calls for penetration testing at the basic maturity level,
an activity that requires specific knowledge and tools, and is typi-
cally performed by security engineering experts. Only at level two
does SAMM require use of automated security testing tools and
integration of security testing into development process. Similarly
to the implementation verification, on third level, the automation
is to be made application-specific and release gates for security
testing established.

3.6 Release phase
At the end of each iteration a potentially shippable program incre-
ment is released, and the activities in Table 7 are to be performed.
The only agile activity taking place at the release phase is the retro-
spect (A6). This quality improvement measure is directly applicable
to security engineering as well. Security engineering activities tak-
ing place at later phases of the software lifecycle are crucial to
the security objectives, but separate from the development process.
Continuous integration (AP4) also extends in the release of the
software; on-site customer (AP6) participates also in release-time
activities.

In the Common Criteria, security is verified through two pro-
cesses: security functionality is verified by functional testing, and

Table 7: Release-time activities

Source Security activity
SDL Create an Incident Response Plan
SDL Conduct Final Security Review
SDL Certify Release and Archive
CC Analysis of guidance documents
SAMM Issue management
SAMM Environment hardening
SAMM Operational enablement

security assurance by documentation reviews. At the project’s in-
ception, one of the security-related objectives is setting of the Eval-
uation Assurance Level (EAL). This level, ranging from 1 (most
basic) to 7 (the most rigorous) defines the amount of documenta-
tion to review. The formality requirement for the software code
itself increases accordingly. The development-time documentation
consists of five parallel documentation tracks, number and level of
which is increasing as the EAL rises. At EAL 1, only basic functional
specification is required. EAL 2 adds a basic design document, and
security architectural description; it also requires the basic func-
tional specification to be augmented with specification of security-
enforcing functionality. Each level brings additional documentation
requirements up to EAL 5, after which the documentation or for-
malization requirements do not increase. The maintenance-specific
documentation is not included in the development-time documen-
tation requirements.

SDL is less concerned with the internal documentation and con-
cerns on things such as certification and maintenance. This is well
in accordance to claims that majority of the cost in software en-
gineering incurs after the release phase [16]. This is reflected in
SAMM’s trio of activity categories directed at security of the post-
development part of the software lifecycle: SAMM calls for issue
management, environment hardenings and enabling the operations
teams for security, before the software can be released. The last
of these provides actual tasks for the software development phase:
at first level, critical security information should be captured, and
procedures (operational instructions) for typical application alerts
documented. At second level, change management procedures are
created, related to the issue management, and formal operational
security guides created and maintained. Third level again concen-
trates on the business goals, and calls for an audit program and
code signing.

DevOps models call for maintenance phase activities as well; for
the purposes of this study, the release phase is considered to cover
the essentials required for setting up the maintenance operations. A
primary concern would be setting up a process to bring the defects
found in operations into the development backlog, and giving them
a sufficient priority.

4 DISCUSSION
Development-time security activities form the basis for the soft-
ware security. The security functionality, security assurance and
operational documentation are created by the development-time
processes, forming the base for the later phases of the software life-
cycle. Figure 2 gives an overview of the difficulty in direct mapping

Aligning Security Objectives With Agile Software Development SecSE 2018, May 25, 2018, Porto, Portugal

Pre-requirement Requirement Design Implementation Verification Release

A1: Iterations

Training

A2: Iteration planning meetings A5: Daily meetings

AP3: Simple design

AP2: Test-Driven Development (TDD)

AP4: Continuous Integration

A3: Iteration backlog
A6: Iteration

reviews

A4: Product backlog

AP6: On-site customer

AP7: Pair programming

AP5: Refactoring

AP1: Coding standards

Figure 2: Agile activities mapped into the security development life cycle.

of sequential lifecycle models to agile development practises; very
few agile activities are confined into a single lifecycle phase, and
even this division appears somewhat artificial in a dynamic agile
model.

Pre-requirement tasks are mostly policy and process oriented;
security training, training in the agile processes, and establishing
practises such as coding standards takes place in this phase – and
occasionally these practises may have to be revisited even during
the course of the implementation process. In iterative develop-
ment, the phases from here onward are iterative. The phases are
bound together by most important requirement elicitation method:
communication with the customer, reflected by “on-site customer”.
Product backlog is also established already at the pre-requirement
phase with the general requirements, which are then complimented
with the project specific items at later phases. Test-driven develop-
ment binds the phases together; pair programming, even if utilized
only at crucial points and as an “enhanced code review practise”,
is another iteration-spanning activity useful from the requirement
phase onward, until end of implementation phase.

Simple design, iteration planning, and placing the planned items
into an iteration backlog bind the requirements and design together;
implementation is augmented with daily communication between
the developers, and also availability of the customer communica-
tions. Continuous Integration, together with TDD, provides security
verification management and proper coordination with iteration
backlog by identifying the items that require rework; also refac-
tored items requiring security verification are handled through
these activities – automatically, with proper tooling. CI process
also produces the releases after the verification, to undergo any
release-phase security activity after completion of the development
processes.

Security development lifecycle models have a strong emphasis
on security verification. This is also the phase with least common
activities between the agile and security engineering activities. The
solution to this discrepancy is twofold: both strong integration of
security testing into the functional testing and CI/CD processes
is required; also, a level of pre-planning is required: the security
engineering activities required to achieve the security objectives

have to be recognized early in the development process and the
activities placed into the the product backlog.

Agile methods are geared towards requirement management
and getting features implemented and delivered; however, security
experts still keep reporting that this is not the case with security
objectives [see 36]. While value-driven agile development processes
have certain unique shortcomings, fulfilling security requirements
could be as simple as a matter of prioritization. As long as the secu-
rity personnel and security requirements are external, the security
objectives are under the threat of getting poorly realized, if at all.
This can only be changed by increasing the awareness of the se-
curity engineering processes and including the security features
and especially verification activities into the development process
itself. As long as security engineering is external to the software
development, also security objectives remain external – at the cost
of potentially inadequate software security.

5 CONCLUSION
Implementing software with security objectives requires alignment
of software engineering and security engineering processes by
infusing the security engineering activities directly into the agile
processes. This should take place on three levels: providing training
for the individuals, executing security requirement management,
and by integrating the security activities, tools and experts into
the software development process. With an acceptable level of
preliminary planning the security-related work items are to be
placed into the product backlog, and completed at a convenient
time during the iterative development process.

Achieving security objectives in software development requires
security engineering. Software security is an investment: it requires
training, tools and time. Integrating security engineering directly
into the software development activities, rather than executing
it as detached processes, is intuitively an obvious benefit – both
economically and technically. This study has provided a framework
for this alignment, and suggested ways to overcome the potential
difficulties in this alignment process. Software development is agile,
and security engineering will have to follow suit.

SecSE 2018, May 25, 2018, Porto, Portugal Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen

REFERENCES
[1] Scott W. Ambler and Mark Lines. 2012. Disciplined Agile Delivery: A Practitioner’s

Guide to Agile Software Delivery in the Enterprise (1st ed.). IBM Press.
[2] Tigist Ayalew, Tigist Kidane, and Bengt Carlsson. 2013. Identification and Evalu-

ation of Security Activities in Agile Projects. In Secure IT Systems: 18th Nordic
Conference, NordSec 2013, Ilulissat, Greenland, October 18-21, 2013, Proceedings,
Hanne Riis Nielson and Dieter Gollmann (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 139–153. https://doi.org/10.1007/978-3-642-41488-6_10

[3] Dejan Baca and Bengt Carlsson. 2011. Agile Development with Security Engi-
neering Activities. In Proceedings of the 2011 International Conference on Soft-
ware and Systems Process (ICSSP ’11). ACM, New York, NY, USA, 149–158.
https://doi.org/10.1145/1987875.1987900

[4] Richard L. Baskerville, Lars Mathiassen, and Jan Pries-Heje. 2005. Agility in Fours:
IT Diffusion, IT Infrastructures, IT Development, and Business. In Business Agility
and Information Technology Diffusion, Richard L. Baskerville, Lars Mathiassen,
Jan Pries-Heje, and Janice I. DeGross (Eds.). Springer US, Boston, MA, 3–10.

[5] Kent Beck. 2000. Extreme Programming Explained: Embrace Change. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[6] Konstantin Beznosov and Philippe Kruchten. 2004. Towards agile security assur-
ance. In NSPW ’04 Proceedings of the 2004 workshop on New security paradigms.
47–54.

[7] Barry Boehm. 2006. Some future trends and implications for systems and software
engineering processes. Systems Engineering 9, 1 (2006), 1–19. https://doi.org/10.
1002/sys.20044

[8] B. Boehm and R. Turner. 2003. Balancing Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley, New York.

[9] B. Boehm and R. Turner. 2003. Using risk to balance agile and plan-drivenmethods.
Computer 36, 6 (June 2003), 57–66. https://doi.org/10.1109/MC.2003.1204376

[10] B. Boehm and R. Turner. 2005. Management challenges to implementing agile
processes in traditional development organizations. IEEE Software 22, 5 (Sept
2005), 30–39. https://doi.org/10.1109/MS.2005.129

[11] Alistair Cockburn and Laurie Williams. 2000. The costs and benefits of pair
programming. Extreme programming examined 8 (2000), 223–247.

[12] Common Criteria Recognition Arrangement (CCRA). 2018. The Common Criteria.
(2018).

[13] Jessica Diaz, Juan Garbajosa, and Jose A. Calvo-Manzano. 2009. Mapping CMMI
Level 2 to Scrum Practices: An Experience Report. In Software Process Improve-
ment, Rory V. O’Connor, Nathan Baddoo, Juan Cuadrago Gallego, Ricardo Re-
jas Muslera, Kari Smolander, and Richard Messnarz (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 93–104.

[14] Edsger W. Dijkstra. 1982. Selected Writings on Computing: A Personal Perspective.
Springer-Verlag.

[15] Brian Fitzgerald and Klaas-Jan Stol. 2014. Continuous Software Engineering and
Beyond: Trends and Challenges. In Proceedings of the 1st International Workshop
on Rapid Continuous Software Engineering (RCoSE 2014). ACM, New York, NY,
USA, 1–9. https://doi.org/10.1145/2593812.2593813

[16] R. L. Glass. 2001. Frequently forgotten fundamental facts about software engi-
neering. IEEE Software 18, 3 (May 2001), 112–111. https://doi.org/10.1109/MS.
2001.922739

[17] Johannes Holvitie, Sherlock A. Licorish, Rodrigo O. Spínola, Sami Hyrynsalmi,
Stephen G. MacDonell, Thiago S. Mendes, Jim Buchan, and Ville Leppänen.
2017. Technical debt and agile software development practices and processes:
An industry practitioner survey. Information and Software Technology (2017).
https://doi.org/10.1016/j.infsof.2017.11.015

[18] Michael Howard and Steve Lipner. 2006. The Security Development Lifecycle.
Microsoft Press, Redmond, WA, USA.

[19] ISO/IEC standard 15408-1:2009. 2009. Information technology – Security techniques
– Evaluation criteria for IT security. ISO/IEC.

[20] ISO/IEC standard 21827. 2008. Information Technology – Security Techniques –
Systems Security Engineering – Capability Maturity Model (SSE-CMM). ISO/IEC.

[21] S. A. Licorish, J. Holvitie, S. Hyrynsalmi, V. Leppänen, R. O. Spínola, T. S. Mendes,
S. G. MacDonell, and J. Buchan. 2016. Adoption and Suitability of Software De-
velopment Methods and Practices. In 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC). 369–372. https://doi.org/10.1109/APSEC.2016.062

[22] CMMI Institute LLC. 2017. The CMMI Institute. (2017). http://cmmiinstitute.com/.
[23] Microsoft. 2017. Agile Development Using Microsoft Security Development

Lifecycle. (2017).
[24] OWASP. 2017. Software Assurance Maturity Model. (2017).
[25] OWASP. 2018. OWASP Top 10 Application Security Risks. (2018).
[26] T. D. Oyetoyan, D. S. Cruzes, and M. G. Jaatun. 2016. An Empirical Study on

the Relationship between Software Security Skills, Usage and Training Needs in
Agile Settings. In 2016 11th International Conference on Availability, Reliability
and Security (ARES). 548–555. https://doi.org/10.1109/ARES.2016.103

[27] M. C. Paulk. 2001. Extreme programming from a CMM perspective. IEEE Software
18, 6 (Nov 2001), 19–26. https://doi.org/10.1109/52.965798

[28] Balasubramaniam Ramesh, Lan Cao, and Richard Baskerville. 2010. Agile require-
ments engineering practices and challenges: an empirical study. Information

Systems Journal 20, 5 (2010), 449–480. https://doi.org/10.1111/j.1365-2575.2007.
00259.x

[29] Kalle Rindell, SamiHyrynsalmi, and Ville Leppänen. 2017. Busting aMyth: Review
of Agile Security Engineering Methods. In Proceedings of the 12th International
Conference on Availability, Reliability and Security (ARES ’17). ACM, New York,
NY, USA, Article 74, 10 pages. https://doi.org/10.1145/3098954.3103170

[30] P. Rodríguez, J. Markkula, M. Oivo, and K. Turula. 2012. Survey on agile and
lean usage in Finnish software industry. In Proceedings of the 2012 ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement.
139–148. https://doi.org/10.1145/2372251.2372275

[31] Reijo M. Savola, Christian Frühwirth, and Ari Pietikäinen. 2012.
Risk-Driven Security Metrics in Agile Software Development -
An Industrial Pilot Study. j-jucs 18, 12 (jun 2012), 1679–1702.
|http://www.jucs.org/jucs_18_12/risk_driven_security_metrics|.

[32] Ken Schwaber. 1995. Scrum Development Process. OOPSLA’95 Workshop on
Business Object Design and Implementation.

[33] S. Subashini and V. Kavitha. 2011. A survey on security issues in service delivery
models of cloud computing. Journal of Network and Computer Applications 34, 1
(2011), 1 – 11. https://doi.org/10.1016/j.jnca.2010.07.006

[34] Synopsys Software Integrity Group. 2017. The Building Security In Maturity
Model. (2017). https://www.bsimm.com/

[35] I. A. Tondel, M. G. Jaatun, and P. H. Meland. 2008. Security Requirements
for the Rest of Us: A Survey. IEEE Software 25, 1 (Jan 2008), 20–27. https:
//doi.org/10.1109/MS.2008.19

[36] Sven Türpe and Andreas Poller. 2017. Managing Security Work in Scrum: Ten-
sions and Challenges. In Proceedings of the International Workshop on Secure
Software Engineering in DevOps and Agile Development (SecSE 2017). CEUR Work-
shop Proceedings, 34–49.

[37] VersionOne. 2017. 11th Annual State of Agile Survey. (2017).
https://versionone.com/pdf/VersionOne-11th-Annual-State-of-Agile-
Report.pdf.

[38] John Viega and Gary R McGraw. 2002. Building Secure Software: How to Avoid
Security Problems the Right Way. Addison-Wesley.

[39] William Wake. 2003. INVEST in Good Stories, and SMART Tasks. (2003). https:
//xp123.com/articles/invest-in-good-stories-and-smart-tasks/

https://doi.org/10.1007/978-3-642-41488-6_10
https://doi.org/10.1145/1987875.1987900
https://doi.org/10.1002/sys.20044
https://doi.org/10.1002/sys.20044
https://doi.org/10.1109/MC.2003.1204376
https://doi.org/10.1109/MS.2005.129
https://doi.org/10.1145/2593812.2593813
https://doi.org/10.1109/MS.2001.922739
https://doi.org/10.1109/MS.2001.922739
https://doi.org/10.1016/j.infsof.2017.11.015
https://doi.org/10.1109/APSEC.2016.062
https://doi.org/10.1109/ARES.2016.103
https://doi.org/10.1109/52.965798
https://doi.org/10.1111/j.1365-2575.2007.00259.x
https://doi.org/10.1111/j.1365-2575.2007.00259.x
https://doi.org/10.1145/3098954.3103170
https://doi.org/10.1145/2372251.2372275
|
https://doi.org/10.1016/j.jnca.2010.07.006
https://www.bsimm.com/
https://doi.org/10.1109/MS.2008.19
https://doi.org/10.1109/MS.2008.19
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

	Abstract
	1 Introduction
	2 Background
	2.1 SSE models in an agile context
	2.2 Research description

	3 Security Activities in Agile Software Development Process
	3.1 Pre-requirement phase
	3.2 Requirement phase
	3.3 Design phase
	3.4 Implementation phase
	3.5 Verification and validation phase
	3.6 Release phase

	4 Discussion
	5 Conclusion
	References

