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Abstract—Transport Triggered Architecture (TTA) processors
allow unique low level compiler optimizations such as software
bypassing and operand sharing. Previously, these optimizations
have mostly been performed inside single basic blocks, leaving
much of their potential unused. In this work, software bypass-
ing and operand sharing are integrated with loop scheduling,
allowing optimizations over loop iteration boundaries. This con-
siderably further reduces register file accesses and immediate
value transfers on tight loops — in some cases even eliminating
all register file accesses from the loop body. In the benchmarked
12 small loops, compared to traditional VLIW-style processors,
on average 63% of register file reads and 77% of register
file writes could be eliminated. Compared to a compiler which
performs these optimizations only inside a basic block, on average
58% of register file reads, 28% of register file writes could be
eliminated. The additional register access reductions allow both
direct energy savings from fewer register accesses and indirect
energy savings by allowing the use of simpler register files with
less read and write ports and a simpler interconnect network
with less transport buses.

I. INTRODUCTION

Transport Triggered Architectures (TTA) can be seen as a
sub-class of Very Long Instruction Word (VLIW) processor
architectures. As with ordinary VLIW processors, a single
instruction word is fetched from instruction memory on every
clock cycle, and the instruction can contain multiple parallel
operations. In a TTA processor, instructions specify data trans-
ports and the actual operation is executed as a side-effect to
the data transport [1]. This allows more fine-grained control of
the processor datapath to the software and allows optimizations
such as software bypassing [2] and operand sharing [3], which
can be used to save power.

Like VLIWs, TTA processors are typically used in Digital
Signal Processing (DSP) style workloads where the control
flow is relatively simple, but the code contains large amounts
of arithmetics organized as loop kernels. Therefore, perfor-
mance on loop-oriented code is of utmost importance when
compiling code for these processors. Compilers for TTA
processors have typically unrolled loops heavily to expose
static instruction-level parallelism needed for high perfor-
mance. However, aggressively unrolled code consumes more
instruction memory, and unrolling is not always practical if
the iteration count of the loop is not known at compile time.

Loop scheduling is a special mode of operation in an
instruction scheduler which is used for scheduling code in

inner loops. A loop scheduler typically interleaves multiple
iterations of loop, converting it to a “software pipeline” [4].
This allows the performance of the loop to be considerably
increased without unrolling the loop. Loop scheduling and
unrolling can both be applied simultaneously; a loop can be
first partially unrolled and the partially unrolled loop can then
be scheduled with a loop scheduler.

In this work, the TTA-specific optimizations software by-
passing and operand sharing, are extended to work in combi-
nation with loop scheduling to allow these optimizations to be
performed over loop iteration boundaries. This reduces register
file accesses and amount of immediate values transferred to
the processor datapath inside tight loops, while also removing
a one-cycle overhead, which some of the previous software-
bypass implementations sometimes cause for tight loops.

This paper is structured as follows: Section I discusses the
background for this research. Section II reflects this paper
against related work. Section III discusses the TTA program-
ming model. Section IV discusses loop scheduling in the
context of TTAs. Section V and Section VI describe the ideas
of loop-carried software bypass and the loop-invariant operand
sharing. Section VII contains evaluation of the proposed op-
timizations with register access, immediate transfer and cycle
count benchmarks. Section VIII highlights further research
topics related to this research, and Section IX concludes the
work.

II. RELATED WORK

A software bypassing algorithm similar to the one in the
proposed work was evaluated in [2] and [5], but that work
did not perform loop scheduling, and thus could not perform
software bypassing of loop-carried data. Not performing any
bypassing over loop iterations means not achieving optimal
register usage savings on loops, but it also may cause an extra
overhead of one cycle of latency in the loop cycle count in
case there are data dependencies between iterations that are in
the critical path of execution.

Operand sharing optimization implementation was intro-
duced in [6] and further studied in [3], but neither of the
references performed operand sharing over loop boundaries
for loop-invariant values.

In [6], loop scheduling for TTA processors was described
and a version of loop-carried software bypass was used to



bypass loop-carried values. However, this work only bypassed
values produced and used at same clock cycle, thus not
minimizing the number of register file accesses. In addition, it
did not remove register writes inside the loop body for values
which are only used after the loop, but not inside the loop.

In [7], register allocation was integrated with loop sche-
duling for a TTA processor. This thesis does not describe
what was done for values that are only used after the loop,
but not inside the loop, and it does not seem to perform
operand sharing over loop boundaries. Their integrated register
allocation and scheduling reduces the number of required
registers, and also gets rid of the antidependence problem
between different loop iterations, but does not reduce the
number of accesses made to the registers.

In [8], an integer linear programming based loop scheduler
was evaluated for TTA processors. Their instruction scheduler
is not performing any of the TTA-specific optimizations, it
is only rescheduling code generated by previous schedulers
such as [6] or [7] to different instructions. That is, it is not
performing any additional bypassing or operand sharing, thus
does not decrease the register file or immediate transfer usage.

Software bypassing of loop-carried values and loop-
invariant operand sharing were both used in the hand-
optimized assembly analysis in [9], but it was not performed
automatically by a compiler, and the benchmark set used in
the evaluation was quite limited. In the proposed work, these
optimizations are performed automatically by the compiler
starting from C code.

III. TRANSPORT TRIGGERED ARCHITECTURE

Figure 1 shows an example of a TTA processor datapath.
In TTA processors the basic element of execution is a move,
which means a single data transport inside the processor
datapath. A single instruction word can define several moves,
one for each bus in the architecture. These fields in the
instruction are called move slots. Each instruction maps to
exactly one clock cycle; every move in one instruction word
is executed at same clock cycle.

Figure 2 illustrates an example schedule of a TTA equivalent
of a RISC-style instruction ADD RO, R1, R2. Operands from
registers R1 and R2 are moved over buses busO and busl,
respectively, to the input ports of function unit ALU. Move to
trigger port inlt triggers the execution of ADD. The result is
available in the next cycle and is moved from the results port
to register R3 over bus bus0.

The destination of a move can be either a register or a
function unit operand port. If it is a function unit port which
is specified as a trigger port of the function unit, the move
also triggers an operation in the function unit as a side-effect.
If the destination port is not triggering, the value can be used
either by an operation triggered by another move at the same
or a later cycle. In some TTA processors none of the ports are
triggering, but there are special opcode fields in the instruction
word for every function unit to trigger an operation [10].

The source of a move can be either a register, an immediate
value, or a function unit result port. In case a move is from a
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Fig. 1. Example datapath of TTA processor, which has a Load-Store Unit
(LSU), Arithmetic-Logical Unit (ALU), Global Control Unit (GCU), 32- and
1-bit register files, and a immediate (constant) unit. These units are connected
via three buses, so the processor can perform three data moves in an instruction
cycle. The trigger ports of FUs are marked with X.

}' move slot 0 (bus0) '} }' move slot 1 (busl) '} }' move slot 2 (bus2) '}

’ instruction Ol RO -> ALU.inlt.add l l R1 -> ALU.in2 l l nop l ‘

’ instruction 1 l ALU.rslt -> R2 l l nop l l nop l ‘

Fig. 2. TTA instruction format for the processor in Figure 1. Unused move
slots are indicated by nop.

function unit result port to a function unit input port, this is
called a software bypass. This can be used to reduce register
file reads. Software bypassing also makes the control logic
of the processor simpler as the bypass detection logic can
be omitted from the hardware. In case all the uses of a
value are bypassed, the result do not have to be written to
a register. Omitting these register writes is called Dead result
elimination. Software bypassing with dead result elimination
can reduce the amount of register writes considerably [2] [11].

As TTA processors typically have function unit input regis-
ters, it allows operands to be written to function units earlier
than the clock cycle where the operation begins execution.
Furthermore, an operand used in consecutive operations may
be written only once, saving register file accesses and internal
bus traffic. This optimization is called operand sharing. The
effect of operand sharing when applied inside single basic
blocks was evaluated in [3].

Reducing the number of register accesses directly saves
energy as the register file access can consume considerable
amount of energy, but also indirectly, as reducing both register
file reads and writes allow creating processors with data paths
that have less register file read and write ports, which are more
power-efficient. [5]

In some cases however TTA code can be longer, than an
equivalent VLIW code. This is because the timing of the result
writes is defined by the program explicitly, unlike in VLIWs

LSU.load RF.3,
LSU.load RF.4,
(full nop)

FPU.addf RF.5,

RF.1
RF.2

RF.4, RF.3

Fig. 3. “Traditional VLIW” code for summation of two values loaded from
memory with a 2-cycle LSU and an 4-cycle FPU. The schedule is only 4
cycles long, but as the result value will be written to RF.3 register 4 cycles
later, total execution time of this code is 8 cycles.



RF.1 -> LSU.1ld8.a
RF.2 -> LSU.1ld8.a
LSU.out -> FPU.1
LSU.out -> FPU.addf.2
(full nop)

(full nop)

(full nop)

FPU.out -> RF.3

Fig. 4. Equivalent TTA code for the example in Fig.3. This schedule is 4
instructions longer. However, the result is written to the register RE.3 at same
cycle and is available to be bypassed in the same cycle as in the VLIW case,
that is, the actual execution is not longer than the VLIW code, but the TTA
programming model makes the result wait time explicit.

where the result is always implicitly written to the destination
after the static operation latency. As the result writes of
operations are in different, later instruction cycles than the
operand writes that trigger the operations, the same code may
require more instructions to describe. Figures 3 and 4 show the
example of TTA code that is longer than an equivalent VLIW
code. Typically, however, later code can be overlapped with
the result writes and the resulting execution time difference
disappears.

IV. LooP SCHEDULING ON TTAS

Software pipelining is a technique where the instruction
schedule of multiple loop iterations is interleaved in such
way that different phases of different iterations of a loop
are executing concurrently. Figure 5 illustrates a software
pipeline of a high level code where the calculation is shown
in three high-level phases; load, calculate and store. In this
example, three iterations of the loop are overlapped. First, an
initialization code called prologue is executed. It initiates the
execution of the first iteration(s) of the loop. The loop body
(also known as the “kernel” or the “steady state”) contains
parts of code for multiple interleaved iterations of the original
loop, so that the each original instruction of the loop is there
exactly once, but in a different order and for a different
iteration than the original non-pipelined loop. After the body
has finished executing, most of the original iterations have
fully finished, but the very last ones are not. In order to finish
the last iterations, a code block called epilogue is executed.

Loop schedulers of compilers typically implement software
pipelining via some variation of the “modulo scheduling”
algorithm [12]. In modulo scheduling, a new (original) loop
iteration starts between exact number of cycles, called initia-
tion interval (II). The prologue and epilogue are then generated
in such way that they together with the modulo scheduled loop
body retain the data flow of the original unpipelined loop body.

In the proposed loop scheduler optimizations, we focus on
the following style data-oriented inner loops, which we believe
represent a majority of DSP-style inner loops:

a) Storing loops that produce multiple values and store them
into an array in memory, and

b) Reduction loops that produce a single value into a register
or a few registers out of the input data.

Naturally, there are also other classes of loops such as loops
which only produce side effects such as write commands to an
IO device, loops that simultaneously store multiple values into

LOAD
(iter 1) prologue
CALC LOAD
(iter 1) (iter 2)
Y
STORE CALC LOAD loop
(iter i) (iter i+1) (iter i+2) body
[
STORE CALC
(iter N-1) (iter N)
epilogue STORE
(iter N)

Fig. 5. High-level Example of software pipelining with loop with 3 phases:
load, calc and store. In this example three iterations of the loop are overlapped,
so the prologue contains the beginning of two iterations and epilogue contains
the end of two iterations. Code which is in the same line can be executed
in parallel. Here the loop iterations go from 1 to N, and the loop body is
executed N-2 times as 2 iterations are handled by the prologue and epilogue.

memory and perform a reduction storing the result in a register,
or loops which perform multiple iterations of calculations with
same scalar data, but such loops are a not typically in parts
of the program where performance matters.

A common example of a type a loop is the memcpy function
which copies a range of values from one memory location to
another, or an element-wise array addition. A simple example
of a type b loop is the vector dot product, which accumulates
a single value from the products of elements of two vectors.
Practically all loops input at least one of their values in a
register. Even when the values used for calculation originate
from memory, at least a single pointer used for accessing the
data is transferred into the loop kernel in a register.

These two classes of loops present different challenges and
opportunities during loop scheduling. In a-type loops, the alias
analysis is typically a challenge as the memory is usually both
read and written inside the loop. Reads and writes may not
be reordered unless the compiler can prove that the accesses
do not target the same memory address. The alias analysis
problem is, however, orthogonal to the proposed techniques
of this paper.

Another challenge in some a-type loops is that the same
index or pointer variable may be used for both a load and
a store, which means that the value of the pointer of index
must be alive when the store needs it, but the load of next
iteration already needs the updated value. This causes an
antidependence problem for overlapping the loads and stores.
Antidependence problems can, however, be solved by register
renaming. That is, by copying the value into another register.
Software bypassing can be used to ease the problem by
transferring the value to a function unit input port.

In b-type loops, where values in registers are produced, with



(int i = 0; i < n; i++) {
*dstPtr++ = c;

for

}

Fig. 6. A simple memset implementation used as an example case. Real
memset implementations are typically more complex loops that write multiple
bytes with one iteration, but this simple loop is also used with them for
unaligned first or last iterations.

prologue:
RF.1 -> gcu.lbufs.iters,
(full nop) ;
(full nop) ;
(full nop) ;

loop:
RF.2 -> ALU.add.2, 1 -> ALU.1 ;
RF.3 -> LSU.d, RF.2 -> LSU.st8.a,

2 -> gcu.lbufs.len

ALU.out -> RF.2 ;

Fig. 7. Schedule for the memset loop of Figure 6 without either of the
optimizations. Without loop-carried bypass, the loop takes two cycles to
execute as the first instruction reads the pointer from the RF.2 register and
starts the pointer update add operation, and the second instruction writes the
updated pointer value in the RE.2 register. LSU.d is the data input port of the
LSU, LSU.st8.a is the address port of the LSU with opcode st8 (store 8 bits).
The example uses a loop buffer: Operand 1 of the lbufs operation controls
the loop buffer’s iteration count which in this example is dynamic (variable
n in the original code) and comes from register RF.1, operand 2 sets the loop
length in instructions (1).

ordinary processors without software bypassing, the updated
result values are written to the register file on every loop
iteration. TTAs allow omitting the write to the register file in
the loop body and storing the final value to the result register
only in the epilogue of the loop, if the intermediate values are
bypassed across loop iterations.

When compared to traditional VLIWSs, the explicit result
writes (explained in Section IIT) of TTAs add an extra chal-
lenge to the loop scheduling. In b-type loops there must be
an instruction which performs the result write, while with a
VLIW or other traditional “operation-triggered processor”, this
instruction is not needed, as the result write is implied by the
earlier instruction. This means that in order to achieve the same
performance (initiation interval), the schedule for a TTA may
need to be overlapped over more iterations than a schedule for
an equivalent operation-triggered VLIW processor.

V. LooP-CARRIED SOFTWARE BYPASS

prologue:
RF.1 -> ALU.1, -1 -> ALU.add.2
ALU.out -> gcu.lbufs.iters, 1 -> gcu.lbufs.len
(full nop) ;
(full nop) ;
RF.2->ALU.add.2,
loop:
RF.3->LSU.d, ALU.out->LSU.st8.a,

1->ALU.1, RF.3->LSU.d, RF.2->LSU.st8.a

ALU.out->ALU.add.2, 1->ALU.1

Fig. 8.  Schedule for the memset loop of without loop-invariant operand
sharing, but with loop-carried bypass enabled. The new pointer address, which
is a result of the add operation, is bypassed to both the add operation itself
over the loop edge, for calculating the pointer for the next iteration, and also
to the store operation (LSU.st8.a).

When software bypassing is not performed for loop-carried
values, all the loop-carried values have to be temporarily stored
into registers or memory to pass them across iterations. As a
result, the energy saving benefits of software bypass cannot
be achieved and in addition, an extra clock cycle of latency

is needed for the execution of the operation as the value
is not bypassed. Integrating software bypassing into loop-
scheduling and performing software bypassing also for loop-
carried dependencies solves these issues, allowing both greater
reduction in register file accesses and, in case the loop-carried
values were in critical path of execution, one cycle faster loop
kernel execution time.

Figures 6, 7 and 8 show an example of a loop where the
lack of bypassing over a loop-carried dependence increases the
initiation interval of the loop from one cycle to two cycles.
The source code of this example is shown in Figure 6. Figure 7
contains the generated two-cycle code without loop-carried
software bypassing, and finally, Figure 8 shows the one-cycle
schedule of the same loop with loop-carried bypass enabled.

When a value is software-bypassed from one loop iteration
to the next iteration, it cannot be bypassed to the first iteration
with the same mechanism, as there is no previous iteration
and the operation producing the result has not been executed.
Therefore, the first iteration reads the value of the variable
before the loop execution, which comes from a register. This
is implemented by not performing the loop-carried bypasses
for the moves in prologue, and only performing the bypass in
moves in the loop body. The moves in the prologue read their
values from the original source registers.

When performing bypassing for loop-carried data, there are
two separate dead result elimination modes: In case all the
uses of the value inside the loop are bypassed and the value
is not used after the loop, the result write is removed from
both the loop body and the prologue or the epilogue. In case
all uses of a value inside a loop are bypassed, and the value
is only used from a register after the loop, only the value in
the last iteration needs to be stored to the result register. This
is performed by scheduling these result write moves only to
the epilogue of the loop and not to the loop body.

VI. LOOP-INVARIANT OPERAND SHARING

Loop scheduling can benefit from the TTA’s operand sharing
optimization. The idea is that loop-invariant operands may be
written to the operand port of the function unit only once
before entering the loop, and the operand write can be totally
omitted from the loop body. This saves power and also frees
up processor resources such as buses, register file read ports
and instruction word bits to be used for other operations within
the loop. This can increase performance if these resources are
limiting it.

Loop-invariant operand sharing means that the function unit
input port is allocated for the value for the duration of the total
execution time of all the iterations of the loop. This means that
such an FU input port allocation algorithm must be used which
allocates the input ports of the function units to different loop-
invariant values. Often all the loop invariant values cannot be
shared if the processor does not have enough function units to
store all the shared values and also have at least one function
unit of each type free for variant values.

In this work, a greedy usage-count prioritizing allocator was
used. Before the loop is scheduled, all the different operand



prologue:
RF.1 -> ALU.1, -1 -> ALU.add.2
ALU.out -> gcu.lbufs.iters, 1 -> gcu.lbufs.len
(full nop) ;
RF.3 -> LSU.d, 1 -> ALU.1,
RF.2 -> ALU.add.2, RF.2 -> LSU.st8.a
loop:

ALU.out -> ALU.add.2, ALU.out -> LSU.st8.a

Fig. 9. Schedule for the memset loop of figure 6 with both optimizations
enabled. The RE.3 — LSU.d and | — ALU.add.2 moves are moved into the
prologue, and are being executed only once before the loop. This code can
execute with just two transport buses, as there are no more than two moves
in any instruction.

sources going into operations in the loop are counted. When
performing this counting, registers which are modified in the
loop are also counted, even though they are not loop-invariant.
These operand sources are then sorted by the number of uses
they have. For example, if register RF.0 is used three times
and immediate value 4 is used twice and register RFE.1 is used
once, they are sorted into the order RF.0, 4, RF.1.

Function unit ports are then allocated for each value, be-
ginning with the sources which are used the most often. In
case a value in a register was invariant, i.e. it was modified in
the loop, the allocation is marked as the port shared between
multiple values, and no operand sharing is performed for this
port. In case there is no free function unit port for some value,
one previously made allocation is reversed and both values
are then allocated to the same port, marked as shared between
multiple values and no operand sharing is performed for this
port. The allocation with the lowest usage count is reversed.
When the value allocation to the ports is finished, all the moves
in the loop body are scheduled. The writes of the shared loop-
invariant operands to the function unit ports are only scheduled
to the prologue of the loop, not to the loop body.

Figure 9 shows the memset example case of figure 6
with loop-invariant operand sharing enabled. The same code
without loop-invariant operand sharing was shown in Figure 8.
In this example, loop-invariant operand sharing has eliminated
two moves from the loop body: One transferring the immediate
value one to the ALU and another transferring the register RF.3
to the store data port.

VII. EVALUATION

The proposed optimizations were evaluated using the TCE
toolset [13]. The optimizations were implemented on top of
the instruction scheduler algorithm described in [11], which
was extended to perform modulo scheduling.

In this evaluation, a simple hardware loop buffer was used.
This loop buffer takes the iteration count of the loop and
instruction word count of the loop as parameters and keeps
looping the given number of instructions that occur a specified
delay slot cycles after the loop buffer setup instruction. This
eliminates loop index calculations and checks from the loop
body, and allows loops that are shorter than the number of
delay slots in the processor architecture.

Benchmarks were performed on a TTA processor with three
integer ALUs with a 1-cycle latency, an FPU with an FMA
operation and a 4-cycle latency, a LSU with a 2-cycle load

latency, six register read ports, three register write ports, and
sufficient bus connectivity that the interconnection network is
not a bottleneck with any of the test cases. The LSU did not
have any addressing modes which require arithmetics, thus all
address calculations were done by the ALUs.

We evaluated loop-carried bypass and loop-invariant
operand sharing both separately and in combination. These
cases are later referred to as bypass, opshare and both, re-
spectively. The comparison was made against a baseline where
operand sharing and software bypass are performed only inside
basic blocks (tta baseline) and against a more limited loop-
carried bypass implementation with the same limits as the
MOVE instruction scheduler described in [6], without loop-
invariant operand sharing (t#fa move). As the actual scheduling
algorithm implementation was not available, we used our
proposed scheduler with artificially added constraints present
in their implementation.

In addition, as TTAs have been proposed as an alternative
for VLIW processors, we made a comparison against a hypo-
thetical VLIW design with similar execution resources (vliw).
The VLIW comparison was done by calculating results based
on the schedule for the TTA with the constraints that the
VLIW programming model has in comparison to TTA. The
constraints we added were the following: Every instruction
has to write its result to a register file, bypassing has to be
done at the cycle of the result arrival (models the hardware
bypassing), and operands have to be read on the same cycle
(models the lack of operand transport freedom).

A. Benchmarks

A variety of loops were selected as benchmarks. All are
single-basic block loops as the current loop scheduler imple-
mentation used in the evaluation did not yet support loops with
multiple basic blocks. The most common C library routines
memset and memcpy were selected as their performance may
have considerable impact on performance of a wide variety
of workloads. Various other simple loops commonly used in
linear algebra and other numerically intensive routines from
signal processing workloads were selected. These versions
of the loops used single-precision floating point arithmetics,
as usage of floating point arithmetics in signal processing is
increasing. The loops are the following:

o 4-way memcpy. 4-way unrolled memcpy, from newlib.
This copies 16 bytes at one iteration with four 32-bit
memory reads and writes per loop. iteration. This is the
main memcpy loop used by the TCE toolset used in the
evaluation. A “storing loop”.

e 1b memcpy. Bytewise memcpy, from newlib, used for
unaligned copies and final iterations. A “storing loop”.

o 4-way memset. 4-way unrolled memset, from newlib. This
sets 16 bytes per loop iteration by storing four 32-bit
integers. This is the main memset loop used by the TCE
toolset used in the evaluation. A “storing loop”.

e 1b memset. Bytewise memset, from newlib, used for
unaligned/last iterations. A “storing loop”.



9
8
7
6
5
4
3
2
1
bo‘* Q & &

B vliw
o tta move
tta baseline
W bypass
m opshare
I both
6@‘5

& a‘?' 4‘ .3\9-\ S 0°°° &
& & @ -b\ $ o ?}\
6\@ \9@ P @\@ $® & & 60& & @G!
W 4 &

Fig. 10. Number of register file reads per iteration.

o SAXPY, from BLAS [14]. Elementwise accumulate every
n:th value of one vector by product of scalar value and
every m:th elements of another vector. A “storing loop”.

e Scale. Vector by scalar multiplication, from
STREAM [15]. A “storing loop”.

e Add. Elementwise array addition, from STREAM [15]. A
“storing loop”.

o Triad, from STREAM [15]. Elementwise accumulate all
elements of one vector by product of a scalar value and
elements of another vector. A “storing loop”.

o Sliding FIR, FIR filter with sliding window data copying,
from DSPStone [16]. In addition to calculating the FIR,
this loop copies values of one source array into new
places in the source array and drops the last one so that
the next sample could arrive into same place into memory.
This is both a “storing loop” and a “reduction loop”.

e Dot product. Dot product/FIR/convolution. A “reduction
loop”.

e Matrix mul. Matrix multiplication. Organized with dot-
product-like inner loop, but with different index updates
as going over rows of one matrix and columns of another
matrix. A “reduction loop”.

e sum over array. Summation of all elements of single
array. A “reduction loop”.

Only the steady state of the loop bodies was evaluated in
these benchmarks as it is assumed the prologue and epilogue
are not significantly contributing to the total execution profile.
The “restrict” keyword of C99 and other similar methods were
used to make sure alias analysis does not limit the scheduling
of the benchmark codes.

B. Results

Figure 10 shows the number of register reads per loop
iteration, and Figure 11 shows the number of register writes
per loop iteration. In most of the benchmarks, both opti-
mizations have similar reduction of register read accesses,
but in the reduction type loops, loop-carried bypass gives
greater improvement, eliminating most of register reads and
all register writes.
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Fig. 11.  Number of register file writes per iteration.

In the matrix multiplication case, sum over array, and 1-
byte memset loops, the optimal performance of eliminating all
register accesses from the loop body is achieved by enabling
both optimizations. In the dot product case without loop-
invariant operand sharing, all loop-carried data could be by-
passed as the two pointer updates used different function units.
With loop-invariant operand sharing enabled, both pointer up-
dates used a common function unit as they shared the constant
value 4, and the loop-invariant operand sharing allocated the
function units before the bypasser was run. This prevented
bypassing the pointer updates. Bypassing them would have
required an architecture with multiple result registers, which
was not used in the evaluation.

The sliding FIR case shows an increase in register writes
with loop-invariant operand sharing enabled. The reason for
this is that the loop-invariant operand sharing is forcing some
operations into certain function units which may disturb both
local operand sharing and bypassing.

For all the benchmark cases, compared to the baseline TTA
compiler, on average 36% of both register reads and register
writes were eliminated by loop-carried bypassing, and 23% of
register reads by loop-invariant operand sharing. Performing
only loop-invariant operand sharing caused on average 3%
increase in register writes. The combination of both optimiza-
tions gave on average 58% savings in register reads and 28%
savings in register writes. Compared to the more limited loop-
carried bypass of [6], on average 56% of register read savings
and 34% of register write savings were achieved by performing
both optimizations together. Compared to VLIW, on average
63% savings in register reads and 77% in register writes were
achieved by enabling both optimizations.

Figure 12 shows the number of immediate transfers per
loop iteration. The loop-carried bypassing performed alone
had no effect on the number of immediate value transfers,
as expected, but loop-invariant operand sharing has a huge
effect on them. In half of the benchmark cases, all immediate
value transfers inside the loop could be totally removed. The
average reduction between all the benchmark cases which
contain immediate values is 69%. The SAXPY loop which
does not contain any immediate values is not included in this
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Fig. 12.  Number of immediate value transfers per iteration.
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Fig. 13. Initiation interval in clock cycles.
number.

Figure 13 shows the initiation interval of the loops. This
tells the length of a single loop iteration without considering
the prologue or the epilogue. In the reduction loops and 1-byte
memset, loop-carried bypass gives a single cycle improvement
in the cycle count. The reason for this is that without over
loop-edge bypass, there is one extra cycle of effective latency
over the loop-carried dependencies, as the value is first stored
to a register and only then read to the operation in next
iteration, while with loop-carried bypass, it is bypassed and
the operation of the next iteration can start immediately when
the result has been calculated.

In the SAXPY loop, loop-carried bypassing gives a huge
improvement compared to a TTA without it. The reason
is that without loop-carried bypassing, the antidependence
problem mentioned in Section IV prevented the loop from
being interleaved with the instruction scheduler used in the
evaluation, causing a very slow schedule, while loop-invariant
bypassing removed some of the antidependencies causing this
problem. A smarter instruction scheduler could have solved
this problem better even without loop-carried bypassing. On
average 13% of cycles were saved by loop-carried bypass.
Loop-invariant operand sharing had no impact on the cycle
count.

The number of required register file read and write ports
to sustain the parallel function units in the optimal loop
schedules was also evaluated. These results are shown in
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Fig. 14. Required number of register file read ports required to run the loop
with optimal performance.
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Fig. 15. Required number of register write ports required to run the loop

with optimal performance.

Figures 14 and 15. With the proposed optimizations, nine out
of the twelve loops could be executed at full performance
with just one register file read port. In SAXPY loop enabling
only operand sharing seems to suffice with less register read
ports (one instead of two) than when enabling both opti-
mizations. This is because SAXPY with only loop-invariant
operand sharing enabled is slower than SAXPY with both
optimizations enabled. In case a better instruction scheduler
would allow SAXPY to execute in five cycles without loop-
carried bypassing, it would need two register file read ports.

Assuming at least one write and read port per register
file are always needed, compared to the baseline TTA com-
piler without enabling either loop-carrier bypassing or loop-
invariant operand sharing allows on average 21% less register
file read ports. Enabling both of the optimizations allow on
average 25% less. Compared to the more limited bypassing
constrains of [6], the proposed optimizations allow on average
21% less register read ports. Compared to the VLIW baseline,
a TTA with both of the proposed optimizations suffices with
on average 65% less register file read ports.

The TTA with all the instruction schedulers could execute
all the loops in optimal performance with just one register file
write port. This translates to an average of 55% register file
port reduction compared to the VLIW baseline, which needed
one to four write ports.



C. Core-Level Power Consumption

In order to assess the overall benefits from the proposed
optimizations, the power consumption of the whole core run-
ning the Scale loop was evaluated. We optimized the datapath
of the processor for both the baseline TTA compiler and a
compiler with the proposed optimizations such that both can
still execute the loop on four clock cycle initiation intervals.

The processor for the proposed optimizations has five buses
and one register read write port, while the baseline processor
needs an additional bus and an additional register read port
to reach the same cycle count without the optimizations. The
processors were synthesized with Synopsys tools using 28 nm
FD-SOI process technology with a 1 GHz clock rate and 1.1V
supply voltage.

The baseline processor consumed 5.2 mW while executing
the loop without the optimizations and 4.3 mW while execut-
ing the loop with the optimizations on. The smaller processor
with both of the optimizations consumed 4.2 mW. Thus, in
this loop, the optimizations directly saved 18% of power, and
with the indirect power reduction of being able to utilize a
smaller, more power-efficient processor datapath, total 20% of
power was saved.

VIII. FUTURE WORK

Loop scheduling support is planned to be integrated to the
integer linear programming-based scheduler proposed in [17]
and the proposed optimizations are applicable to that. The
integer linear programming-based scheduler may allow more
efficient schedules for tight loops than the heuristical list
scheduler used in evaluations of this work.

Support for performing loop-invariant operand sharing to
only some loop-invariant values and leaving more than one
free function unit for general use should be investigated, as
in some cases the loop-invariant operand sharing was too
aggressive, ending up disturbing later optimizations.

The proposed work only concentrates on reducing number
of register accesses in the loop, but not the amount of allocated
registers needed by the loop. Combining the proposed methods
with the integrated allocation of [7] would be beneficial for
tackling this.

IX. CONCLUSIONS

This paper proposed two new loop scheduler optimizations
for Transport Triggered Architecture code generation. The
optimizations improve the efficiency of software bypassing
and operand sharing across loop iterations. The proposed loop
optimizations can considerably decrease register file usage and
number of immediate value transfers while executing tight
inner loops. This reduces the number of required register
file ports and transport buses to sustain the kernel execution
performance.

With the proposed optimizations, nine out of the twelve
tested loops could be executed at full performance with just
one register file read port while sustaining the parallel function
units.
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