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Abstract—To address the tip positioning problem among flex-
ible link robotic applications, we propose a new circular beam
deformation model that is ideally suited for networked linear
accelerometers and rate gyros. Importantly, the tip positioning
problem of multiple-flexible-link system is reduced to the tip
positioning problem of an individual flexible link subject to
the circularly characterized deformation. The validity of the
theoretical results is verified by experiments with a highly flexible
single-link hydraulic manipulator.

I. INTRODUCTION

Link flexibilities show up inevitably with lightweight or
long reach links. For example, this can be seen from the Euler-
Bernoulli beam equation: the static deformation of a uniform
cantilever beam subject to a force at the free end is proportional
to the third power of the beam length [1]. By far, the most
successfully designed tip control solutions have been based
on either computationally intensive computer vision and/or
relatively inaccurate strain gauges, e.g., [2] – [4]. However, low-
cost strap-down inertial sensors have been envisioned to offer
an attractive alternative to existing sensor solutions, but the
majority of this research has focused on stiff structures and
rigid body kinematics, see, e.g., [5], [6] and the references
therein. A careful literature review reveals that recovering the
bending profile by means of inertial sensing of highly flexible
structures has not been well developed, apart from few specific
cases focused on elasticity at the joints, see [7] – [9].

In this paper, our objective is to estimate the amount of beam
bending for advanced motion control schemes using a network
of beam-fixed inertial sensors. In Sect. II, we propose a new
circular beam deformation model for the fusion of relatively
low-resolution linear accelerometers’ and rate gyros’ readings.
By cascading the inertial sensors and describing the bending
from one sensor to the other as a circle-shaped closed curve,
the model circumvents the drifting issue in the accelerometer
reading double integration [10] while keeping assumptions to
a minimum. A control implementation with elastic vibration
damping capabilities is experimented in Sect. III, where we
estimate the local deformations of a 4.5 m flexible link in real
time. In this way, we qualify the whole deformation profile
of the beam in vertical plane, which is of the most practical
interest from the mechanical stress accumulation viewpoint.

II. DEFORMATION CHARACTERIZATION

Suppose a beam of length L0 is actuated by revolute joint
in the vertical plane, as illustrated in Fig. 1. The reference
frame {B0} is fixed to the ground, and a body frame {B1} is
attached to the distal end of the undeformed beam such that its
y axis intersects the joint center. To observe any deformation,
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we have attached sensor frames {P1}, . . . , {Pi} to the beam.
The frame {Pi} is on the beam tip for ease of illustration.
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Fig. 1. Sensor frames {P1}, . . . , {Pi} attached to a deformed beam. By
associating the sensor frames with accelerometers and rate gyros, we estimate
the tip angle and deflection with respect to the undeformed beam tip {B1}.

A. New circular beam deformation model

The position vector 0ri of the frame {Pi} can be expressed
using a unique rotation and translation:

0ri = 0ri−1 + 0Ri−1
i−1
i−1ri. (1)

Here, 0ri−1 is the position of frame {Pi−1} expressed in frame
{B0}, and i−1

i−1ri denotes the position of frame {Pi} with
respect to {Pi−1} expressed in frame {Pi−1}. The orientation
of frame {Pi}, or the tip angle, may be given as

0Ri = 0Ri−1
i−1Ri, (2)

where i−1Ri is the orientation of frame {Pi} with respect to
{Pi−1}. As the beam is rotated by about its longitudinal axis
relative to the force of gravity, variation in the amount of beam
bending appears, which changes the vector distance i−1

i−1ri.
Suppose the original undeformed length between the frames

{Pi} and {Pi−1} is denoted by L0
i , as shown in Fig. 2. The

deformed length is denoted by Li. We model gravity-caused
beam deformation shape to be circular:

θi =

{
−αi for αi < 0
αi otherwise, (3)

where αi denotes the angle of the arc that can be extracted
from the matrix i−1Ri, i.e., i−1Ri = R(αi). For θi 6= 0, the
radius of curvature is then

ρ =
L0
i

θi
(4)

and the law of cosines yields

Li =

{
L0
i for θi = 0√
2ρ2 − 2ρ2 cos(θ) otherwise.

(5)

Inserting the above to the Pythagorean theorem

∆ρi = ρi −
√
ρ2i − (0.5Li)2 (6)



gives the displacement in the middle. Moreover, since
βi = 0.5αi, we can define

i−1
i−1ri = R(βi) [0 Li 0]T. (7)

Therefore, the vectorized distance i−1
i−1ri may be considered

known to a high degree of accuracy, and it follows that

0ri =

i∑
j=1

0Rj
j

j−1rj . (8)

Hence, the tip deflection with respect to the undeformed beam
tip {B1} can be given as

yt = ||0ri − 0d1||2, (9)

where 0d1 is given by the rigid body kinematics. The frames
{Pi} and {B1} are coincident in the case of no deformation.
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Fig. 2. Circular characterization of gravity-caused beam deformation between
sensor frames {Pi−1} and {Pi} assuming constant strain of the beam.

B. Real-time deformation estimation by inertial sensor network
The proposed circular beam deformation model is dependent

on the angle of the arc αi. To estimate it in real-time, suppose
a linear 3-axis accelerometer is located at the origin of {Pi} to
measure accelerations with respect to the inertial frame {I}.1
The linear accelerometer output can be expressed by:

iai = ir̈i − ig + ni ∈ R3 (10)

where ir̈i denotes the instantaneous accelerations of motion,
ig is the force of gravity acting on the accelerometer, such that
||ig||≈9.8 m/s2, and ni is a noise term. Next, by associating
a network of accelerometers with frames {P1}, . . . , {Pi−1},
too, we establish the following relationship

i−1ai−1 = i−1Ri

(
iai − i

i−1r̈i

)
= i−1ai (11)

where i
i−1r̈i denotes the accelerations caused by the displace-

ment of {Pi−1} and {Pi} while in motion. Since i−1Ri =
R(αi) now appears in (11), rearranging the terms leads to

αa
i = arctan

( i−1ayi
i−1azi−1 −i−1 azi

i−1ayi−1
i−1ayi

i−1ayi−1 +i−1 ayi
i−1azi−1

)
, (12)

1For notational convenience, sub- and superscripts “I”are hereafter omitted
for quantities referred to the inertial reference frame {I}.

where the superscripts x, y, and z denote the axial components
of (11). However, this estimate is prone to the high accelerom-
eter noise and offsets unless the term i

i−1r̈i is reconstructed.
The proposed circular modeling can be utilized for real-time

reconstruction of the linear accelerations i
i−1r̈i in (12). That is,

assuming that the deformation does not effect the total beam
length, i.e., L0 =

∑i
j=1 L

0
j , differentiating (1) twice results in

i
i−1r̈i = iω̇i × i

i−1 ri + iωi × ( iωi × i
i−1 ri), (13)

where iωi denotes the instantaneous angular velocity and iω̇i

is the angular acceleration of frame {Pi} relative to {B0},
respectively. To define the two quantities in practice, suppose
the angular velocity of {Pi} is sensed by 3-axis rate gyro:

iΩi = iωi + bi + µi ∈ R3, (14)

where iωi denotes the true angular rate of {Pi} with respect
to {I}, a constant or slowly time-varying gyro bias is denoted
by bi, and µi is a noise term. Now, the angular acceleration in
(13) can be obtained by the numerical differentiation of (14).
Importantly, by differentiating (2) and associating a gyro also
with {Pi−1}, we obtain a derivative of the arc angle αi:

α̇g
i
ik̂i−1 = iΩi − iΩi−1 = i

i−1ωi + bi + µi (15)

where ik̂i−1 is the unit vector of the revolute joint axis. Here,
bi and µi stand for the coupled biases and noises preventing
the open-loop integration of (15), as we shall show.

Because heavy-duty manipulators have almost exclusively
1-DOF joints, we use the following filter to compensate for
the high noise in (12) and bias dynamics of (15):[
α̂i(t)

b̂i(t)

]
=

[
1 Ts
0 1

][
α̂i(t− 1)

b̂i(t− 1)

]
+

[
Ts 0.5T 2

s

0 Ts

] [
k1
k2

]
(
αa
i − α̂i(t− 1)

)
+

[
Ts
0

]
α̇g
i , (16)

where t denotes time, Ts is the sampling time, and k1 and k2
denote the filter’s gains. As usual in Kalman filtering, we choose
the gains such that k1 � k2 to accommodate the slowly-time
varying gyro bias dynamics. We also set the gains close to zero
on-line if the beam undergoes high magnitude accelerations
ignored by the kinematic model (13), such as shocks.

III. EXPERIMENTAL MODEL VALIDATION

To verify the validity of the circular deformation model,
experiments were carried out with a hydraulically actuacted
4.5 m long flexible link made of high strength steel and having
60 mm×60 mm×3 mm cross-section in Fig. 3. Equating
some three times the mass of the flexible link itself, a load of
70 kg was attached at the tip. A digital encoder of type SICK
Stegmann DGS60 was fitted to the rotary joint angle to measure
the beam’s angle about its axis of rotation. Four inertial units
based on ADIS16485 iSensor MEMS module, packing a 3-axis
±5 g accelerometer and 3-axis ±450 deg/s gyroscope, were
mounted on the link. A PowerPC-based dSpace DS1103 system
was used as the real-time control interface to a servo valve,
and for sampling of the sensors at 500 Hz rate (Ts =0.002 s).



Fig. 3. Hydraulically actuated flexible steel beam with four inertial units.
The maximum stress is at the hydraulic cylinder’s connection point on left.

Fig. 4 demonstrates our tip angle estimation under free, 1 Hz
vibration of the tip. More precisely, three cases are shown: i) the
circular deformation model without the real-time acceleration
compensation, see (11) and (13), ii) integration of the rate (15)
as such, and iii) the full circular deformation model culminating
to (16). As can be seen from iii), the proposed estimation
remains completely bias free while in fast motion. The result
is highlighted by the fact that the link’s natural dampening of
elastic vibrations is very low, making i) and ii) prone to loss
of accuracy and drifting over a considerable period of time.
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Fig. 4. Gyro bias dynamics and acceleration effects illustrated in tip angle
estimation. The circular model remains accurate under free link vibration.

For control purposes, an arc approximation, used for example
in [11], was applied as a representation of the tip position:

y = L0α0 + yt, (17)

where α0 denotes the rotation angle from the encoder attached
to the joint. The use of this approximation is convenient due to
the fact that the deflection yt can be directly obtained from a
finite element (FE) model based dynamic observer. The Euler-
Bernoulli beam theory (e.g., [1]) was used to derive the dynamic
equation of motion. The characteristic elastic modulus and
material density values for the steel of the beam were 210 GPa
and 7850 kg/m3, respectively. However, the implementation of
FE models into real-time systems is usually not feasible [12],
which is why our realization relies on a cantilever beam model
comprising only 5 elements. To damp elastic vibrations on the
fly, control equations were formulated for the tip angle and tip
position (arc length) using the modality presented in [13].

Fig. 5 presents tip deflections with respect to a professional
optical tracking system of type OptiTrack:V120 Trio. The link
was inclined almost vertically from the horizontal level with the
optical tracker tracking its tip. Though some sync errors can be
seen, our inertial sensor network provides a bias-free estimate
smoothly following the optical reference. However, depending
on the inclination, the encoder fixed on the link’s rotating
axis is constantly off by 15-42 cm, which is reduced to some

6-24 cm by the FE based observer (not shown for clarity). This
verifies the validity of the circular beam deformation model.
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Fig. 5. Tip deflections under elastic vibration damping control. The root
mean square error of the circular deformation estimate in respect to the optical
reference is only 3.3 cm – a 7-fold improvement over the plain encoder use.

IV. CONCLUSION

In this paper, the amount of beam bending has been estimated
using a new circular deformation model for inertial sensors.
Owing to (7), (11), (15) and (16), the model operates on floating
base, making it equally applicable to manipulators comprising
multiple flexible links in vertical plane. In this way, dynamic
modeling efforts often required in the form of rather difficult
observer design may be even obviated. This an important
milestone to us, to which we do not know a prior reference.
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