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Abstract—This paper introduces classification of electricity
residential customers into different groups associated with in-
dividualized electricity price schemes, such as time-of-use (TOU)
or critical peak pricing (CPP). We use an unsupervised learning
method, K-means, assisted by a dimensionality reduction tech-
nique and an innovative supervised learning method, extreme
learning machine (ELM), to cluster daily load profiles based on
hourly AMI measurements. Then, the achieved typical daily load
profiles are analyzed and utilized for the design of an electricity
price scheme for every subgroup based on symbolic aggregate
approximation (SAX). These carefully designed and customized
retail price schemes can provide a potential tool for price-based
and incentive-based demand response in the Smart Grid context.

I. INTRODUCTION

Smart grids have been revolutionizing electrical generation
and consumption through a two-way flow of power and
information. As an important information source from the
demand side, advanced metering infrastructure (AMI) has
gained increasing popularity worldwide. For example, in Nordic
countries, the Finnish government passed a new act, which
states that at least 80% of the customers of each distribution
system operator (DSO) must have a smart meter by December
2013, and nowadays in 2017 almost every customer (98%)
in Finland is supplied with a smart meter [1]. The abundant
data set of electricity consumption of residential customers
enables accurate load profiling and data analytic application [2]
[3]. Usually, the load profiles refer to electricity consumption
behaviors of customers over a specific period, e.g., one day, and
can help utility companies understand how electricity is actually
used for different customers and obtain the load patterns to
provide better customized service.

Traditionally, the information or data set about an individual
energy customer’s load profile has been unavailable or incom-
plete. Consequently, research on retail electricity price design
usually assumes that all energy customers have very similar
electricity usage patterns [4]. Thus, the implemented retail
price schemes are designed independent of energy customers’
load profiles, even for some demand response (DR) projects.
Nowadays, however, with the comprehensive data sets of
individual load profiles having been made available, many
researchers have found remarkable heterogeneity in energy

customers’ load profiles [5] [6].
In this paper, instead of focusing on the clustering of different

load curves, we mainly focus on the design of individualized
electricity price schemes, such as time-of-use (TOU) [7], for
different types of residential electric customers based on their
classification results. However, the clustering of load profiles
still plays a vital role in the reasonable price design. So far, a
large number of clustering techniques, including K-means [8],
hierarchical clustering [9], self-organizing maps (SOM) [10]
and support vector machines (SVM) [11], have already been
widely applied in power systems. Most of these do not provide
a concrete description of how to utilize the clustering results
towards improving electricity services though. Here, we use
the simple K-means method combined with a dimensionality
reduction technique, principal component analysis (PCA), and
a fast efficient supervised learning method, extreme learning
machine (ELM) [12] [13], to make the classification of load
profiles more reasonable. Then, the achieved typical daily load
profiles in every group can serve better for the design of an
individualized electricity price scheme, with the help of the
symbolic aggregate approximation (SAX) method. At the high
level of a distribution network, the proposed method aims to
provide a potential tool for price-based coordinated control
and future DR programs in a Smart Grid.

II. FRAMEWORK AND METHODS

The proposed price scheme design mechanism can be
separated into two parts: achieving the typical daily load profiles
of every assigned group after classification, and matching a
suitable price structure to every typical daily load profile.

A. Classification

1) Data normalization: Data preparation including data
cleaning is not the subject of this paper, and will not be
discussed. In order to focus on the relative consumption
level of specific energy customers and make the load profiles
comparable, the normalization process transforms the AMI
data, yij , as shown in (1).

yij =
yoldij − yi,min

yi,max − yi,min
, (1)



where, yoldij denotes the actual electricity consumption for cus-
tomer i at time j, and yi,max and yi,min denote the minimum
and maximum consumption over T periods, respectively.

2) Principal component analysis: PCA is one of the most
widely used dimension reduction techniques available. It aims
to find a small set of orthogonal variables with manageable
reduced dimensionality. These principal components are actu-
ally linear combinations of original variables, which represent
the variance of the original data set in a low dimensional
subspace [14]. The purpose of utilizing PCA is to speed up the
convergence of the following clustering algorithm and make the
result more robust [15]. More specifically, lower dimensional
data will rationalize the clustering of time series based on the
Euclidean distance.

3) K-means: The aim of classification is to divide a set
of objects into different groups such that objects in the
same group are more similar to each other than to those in
other groups. K-means, as the most widely used and easily
implemented clustering algorithm, will divide the input data
set into K groups by their similarity [16]. Consider a data set
{x1,x2, . . . ,xN} consisting of N independent input vectors
with D-dimension. The goal of the algorithm is to partition
the data set into K groups. In order to obtain those groups, a
set of vectors µk, with D-dimensionallity and k = 1, . . . ,K,
is introduced to indicate centers (centroids) of K clusters. In
other words, an assignment of data points to clusters is found,
along with a set of vectors {µi}, to ensure that the sum of
the squares of the distances of each data point to its closest
vector µk is minimized as in (2). In this paper, xi stands for
the PCA components of normalized AMI measurements, and
yi, for an input vector.

J =

N∑
j=1

K∑
i=1

rij ‖ xj − µi ‖2, (2)

rij =

{
1 if i = argmini ‖ xj − µi ‖2

0 otherwise.
(3)

4) Extreme learning machine: The ELM is a comparably
novel learning technology for working with generalized single
hidden layer feed-forward neural networks (SLFN) [17]. An
SLFN usually includes three layers, which are the input layer,
hidden layer, and output layer, as shown in Figure 1. Given a
training data set with N samples, the output function of the
SLFN with L hidden nodes and the activation function θ is as
shown in (4).

fL(xj) =

L∑
i=1

βiθ

(
ωixj + bi

)
= tj , j = 1, 2, . . . , N (4)

ELM distinguishes itself from other conventional iterative
learning algorithms because it randomly selects the biases and
input weights for hidden nodes, ω and b. Besides, it usually
calculates the output weights, θ, analytically by finding a least-
square solution. In [17] and [18], the authors theoretically
prove that the training error are usually minimized with better
generalization performance and higher accuracy.
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Fig. 1. Structure of an SLFN

B. Price Scheme design

1) Symbolic aggregate approximation: SAX mainly works
as a powerful technique for the representation of time series data
with lower bounding of the Euclidean distance [19]. Through
the following two steps – transforming the load data into a
piecewise aggregate approximation (PAA) representation and
then symbolizing the PAA representation into a discrete string
–, SAX can discretize a numeric time series into symbolic
strings. As shown in (5), the intuitive idea of PAA is to use
the mean values to represent the amplitude values that fall into
the same time interval.

x̄′i =
1

ki − ki−1

ki∑
j=ki−1+1

x′j , (5)

where j is the index of the normalized load data; i is the index
of the transformed PAA load data; ki is the ith time domain
breakpoint; and x̄′i is the average value of the ith segment [20].
In many applications, the averaging feature of the PAA can be
utilized to smooth out short-duration, sudden and large ‘spikes’
of time series [2]. PAA has been proven to have all the pruning
power of the Haar-based discrete wavelet transform (DWT)
and can be defined with lower computation cost for arbitrary
length queries [20].

2) Flowchart: The complete framework and method will
follow the general principles of data analytics-type processing,
including normalization, feature extraction (dimensionality
reduction) and data post-processing of the clustering results.

Step 1: Pre-process the collected AMI data of regional energy
customers, which includes removing of invalid data sets and
normalizing of customers’ daily load profiles.

Step 2: Implement the dimensionality reduction with the
PCA technique to make daily load profiles more suitable and
easier for classification.

Step 3: Cluster the PCA components of the analyzed daily
load profiles into initial K typical groups of energy customers
with the K-means classification algorithm.

Step 4: Check the clustering index and accuracy with ELM.
If the training and testing accuracy are below a chosen threshold
Th, the number of clusters will be decreased by K ′ = K−Nc,
and Step 3 will be repeated again.

Step 5: Obtain the typical daily load profiles for every energy
customer group by averaging the grouped daily load profiles
based on the clustering index.



Step 6: Use SAX to assign symbols to the segmentations
of the obtained typical daily load profiles in every customer
group.

Step 7: Match the symbols associated with every typical
daily load profile to suitable energy price levels.

Step 8: Analyze the economic effect and explore the different
potential demand response programs for all the energy customer
groups.

Start

Data pre-processing and 
normalization

Dimensionality reduction 
with PCA

Clustering of daily load 
profiles

Check clustering index and 
accuracy with ELM

Accuracy > Th ?

Obtain the clustering index

Find the typical daily load 
profile for every group

Use SAX to assign  symbols to the 
segmentations of  typical daily load profile

Match the symbols with suitable 
price level for every group

Explore potential demand 
response programs

end

Classification

Electricity Price 
Scheme design

Yes

No

K’ = K-Nc

Fig. 2. Flowchart of the price scheme design process

III. RESULTS AND DISCUSSION

The following test cases include an AMI data set collected
from a realistic Finnish distribution system operator (DSO),
which includes 3,398 non-empty low voltage customers in a
small region. We randomly picked 1,500 customers from them,
and chose several typical normal dates (without special national
holidays) to demonstrate the proposed framework.

A. Individualized price scheme design

In the classification stage, 90% is chosen as a criteria for the
explained variance in the PCA and Th. 16 energy customer
groups are obtained (as shown in Figure 3) to stand for the
typical energy consumption patterns extracted from the chosen
1,500 customers. In most groups, one or two peaks can be
observed during a typical 24-hour time interval.
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Fig. 3. Clustering of 1500 customers into 16 groups

The dynamic behavior of energy consumption for the whole
group can be represented by SAX symbols as shown in Figure
4. It is noteworthy that the number of symbols forming a
string can be very flexible. For simplification purposes and
implementation easiness of the utility company (retailer), we
just use three different symbols “a, b, c” in this test case.
While, a larger number of symbol types will produce more
accurate pricing for electricity products of different energy
customers, it will also produce more complexity in terms of
utility operation. The mapping between these SAX symbols
and specific energy price levels should depend on a utility’s
historical operation experience and market analysis. A typical
example of an electricity pricing level based on an existing
global TOU pricing scheme is presented in Table I. Accordingly,
the individualized price scheme designs for all 16 energy
customer groups are shown in Figure 5.

 

Fig. 4. The electricity price scheme design for a typical load profile with
SAX

B. Economic analysis

In the retail electricity market, different energy customers
are usually given different preferences and actually have cross-
subsidy with each other [4]. By testing those 1,500 customers,



TABLE I
PRICE SCHEME DESIGN WITH SYMBOLS IN SAX

Symbols in SAX Pricing Level Price

a Low level pricing 0.013 $ / kWh

b Intermediate level pricing 0.075 $ / kWh

c High level pricing 0.180 $ / kWh
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Fig. 5. The design of an individualized price scheme structure for every group

we found that, as shown in Table II, the individualized
TOU proposed in this paper mainly benefits retailers rather
than energy customers in the short-term. However, if some
demand response programs are introduced for customers, and
their awareness of DR is reflected by some responsive rates,
customers will still be able to achieve smart energy usage and
economic benefit. In this way, retailers and customers will
interact with each other more actively to commonly reach a
better energy management and service.

TABLE II
ECONOMIC ANALYSIS OF THE REVENUE AND PAYMENT

Pricing strategy Customers Retailer Retailer

(payment) (cost) (revenue)

Global TOU $1458.33 $1178.12 $280.21

Individualized TOU $1525.34 $1178.12 $347.22

Individualized TOU with DR $1429.42 $1148.89 $280.53

IV. CONCLUSION

In this paper, we proposed an individualized electricity price
scheme design mechanism for various types of customers based
on SAX and some combined classification methods, namely K-
means and ELM. The final goal is that the utility company can
make better use of the collected smart meter data and provide
customized service to end-users. The customers can also reach
more awareness of the possible energy usage strategy.

In the future, some more accurate and computationally
efficient classification method should be studied for other
related applications involving large-scale distribution networks
with an industrialized big-data platform. More innovative
business models of demand response programs based on the
designed individualized electricity price scheme may also be
discussed in the Smart Grid context.
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