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Abstract—An open-loop and closed-loop operating boost-
power-stage converter with relatively low damping factor exhibit
resonant behavior in transient conditions. Such a undamped
transient characteristic introduces overshoot to control-to-output-
variable transfer function which is also visible in the inductor
current transient behavior. Therefore, due to the either too large
duty ratio or voltage-reference step change, the inductor current
can move from continuous conduction mode to discontinuous
conduction mode. That transforms second-order system into an
equivalent first-order dynamic system extending the PV-power
settling time significantly and reducing power tracking perfor-
mance of the system. This paper introduces design guidelines
to determine maximum perturbation step size for duty ratio
and input-voltage reference under open-loop and closed-loop
operation, respectively. Two different closed-loop design examples
are considered in this paper, based on the application of pure
integral controller with phase margin (PM) close to 90 degrees
and proportional-integral-derivative controller with PM close
to 40 degrees, respectively. The closed-loop system dynamics is
known to be characterized by the dominating poles and zeros,
which locate closest to the origin. This means that the closed-loop
system can be usually characterized by the well-known second-
order transfer function. Therefore, the minimum and maximum
overshoot of the inductor current can be well approximated as
demonstrated by deterministic analysis and experimental results.

I. INTRODUCTION

The solar energy systems are usually operated at the maxi-
mum power point (MPP) of their photovoltaic (PV) generator
[1]–[3] or at the maximum power (MP) stipulated by the coor-
dinating system controller for preventing the grid overvoltage
to take place [4]–[7]. Due to the highly nonlinear nature of the
PV generator and varying environmental conditions in terms
of irradiance, ambient temperature, passing by clouds, etc., the
validity of every operation point has to be checked by means
of the proper method. The most frequently applied perturbative
MP-tracking methods are the perturb and observe (P&O) and
incremental conductance methods, where the PV voltage is
perturbed and the corresponding changes in PV power is
observed for mapping the location of the operation point
within the current-voltage (I-V) curve of the PV generator as
well as the direction, where to go for satisfying the set goal [1],
[2]. In this respect, the parameters, which have to be designed,
are the frequency of the perturbation (i.e., the time interval
between the consecutive perturbation instants) and its step
size [3]. As discussed in [8]–[12], the maximum perturbation
frequency should be selected according to the settling time of
the PVG power transient induced by the injected perturbation,

as well as the minimum perturbation step size depends on the
maximum expected irradiation variation rate and resolution
of the converter analog-to-digital converters. Perturbation step
size should be reduced as long as the change in the PVG power
induced by the perturbation step is higher than that induced
by irradiation change.

In addition to the minimum perturbation step size, the upper
limit also exists. In the grid-connected solar energy systems,
one common approach is to use double-stage conversion,
in which there is the single-phase or three-phase inverter
in cascaded with the boost-power stage converter. In this
way, larger variations in input voltage can be tolerated and
the maximum input voltage can be smaller compared to the
single-stage conversion consisting only the inverter [13]. Other
benefits of the boost topology in photovoltaic applications are
that the input current is continuous and that blocking diode
is included in the topology so that no additional diode is
needed. The purpose of blocking diode is to prevent current
from flowing back to the PVG during the night or other times
of low irradiation [14]. However, the open-loop and closed-
loop boost-power-stage converter operating with relatively low
damping factor exhibit resonant behavior in transient con-
ditions. Such a undamped transient characteristic introduces
overshoot to control-to-output-variable transfer function which
is also visible inherently in the inductor current transient
behavior. Therefore, due to the either too large duty ratio or
voltage-reference step change, the inductor current can move
from continuous conduction mode (CCM) to discontinuous
conduction mode (DCM). That transforms the second-order
system into an equivalent first-order dynamic system extending
the PV-power settling time significantly, thus, reducing power
tracking performance and violating the validity of the theory
developed for PVG-power settling time estimation for open-
loop [15] and closed-loop [16] converters.

This paper introduces design guidelines to determine max-
imum step changes for duty ratio and input-voltage reference
under open-loop and closed-loop operation. Two different
design examples are considered in this paper, based on the
application of pure integral (I) controller with phase margin
(PM) close to 90 degrees and proportional-integral-derivative
(PID) controller with PM close to 40 degrees, respectively.
The closed-loop system dynamics is known to be characterized
by the dominating poles and zeros, which locate closest to
the origin. By means of previously developed techniques to
extract system damping factor and natural frequency [15]–



[17], solving maximum perturbation step size becomes a trivial
task.

II. GENERAL DYNAMICS OF PV POWER

Considering small perturbations in PV power, the small-
signal PV power can be written as [3]

p̂pv = Vpv îpv + Ipvv̂pv + v̂pv îpv, (1)

which can be derived from the definition of power in terms
of voltage and current (i.e. ppv = (Vpv + v̂pv)(Ipv + îpv))
and discarding the steady-state value at the operation point.
If considering only the dynamic behavior of the PV power
induced by a step-change at the operation point of the DC-
DC converter (i.e. irradiance and output voltage variations of
DC-DC converter are neglected) then (1) can be given by

p̂pv ≈ Vpv

(
1

Rpv
− 1

rpv

)
v̂pv −

v̂2
pv

rpv
, (2)

because îpv ≈ −(1/rpv)v̂pv and static PV resistance equals
Rpv = Upv/Ipv. According to (2), we can state that the
PV power ripple can be defined in CCR by p̂pv ≈ Ipvv̂pv,
in CPR by p̂pv ≈ −v̂2

pv/Rpv, and in CVR by p̂pv ≈
(−Vpv/rpv) v̂pv = Vpv îpv based on the behavior of rpv and
Rpv at the different operation points of the PV generator. [15]

Fig. 1 shows the effect of the PV-voltage perturbation on
the PV power around the MPP. According to the figure, the
ripple of PV power is constant and in phase with the PV-
voltage ripple in CCR, zero at MPP and increasing along the
increase in PV voltage with 180◦ phase shift with the PV-
voltage ripple in CVR, respectively. This kind of behavior is
exactly as the developed PV-power-ripple in (2) predicts to be
happening. The same phenomenon is also utilized in MPPT
technique called ripple correlation control [18]. By observing
the vicinity of the MPP in Fig. 1, it can be noticed that MPP
is not just a point but a narrow region (i.e., CPR).

Fig. 1. Extended view of PV-voltage-induced PV-power ripple at the operating
points in the vicinity of the CPR.

III. PV-INTERFACING CONVERTER OPERATING AT OPEN
LOOP

The boost-power-stage converter shown in Fig. 2a is com-
monly used as an MPP-tracking converter. The open-loop op-
erating boost-power-stage converter exhibits resonant behavior
in the transient conditions, which extends the settling process
of PV voltage and current. The transient behavior can be
studied from the linear dynamical representation of the PV-
generator-converter interface depicted in Fig. 2b, which is
discussed more detail in [19], [20].

(a)

(b)

Fig. 2. Illustration of (a) PV-generator-interfacing boost-power-stage converter
and (b) a dynamic representation of the PV-generator-converter interface.

According to the figure, we can compute that the dynamics
related to the PV voltage and current can be given as follows

v̂pv =
Zin

1 + ZinYpv
îph +

Toi

1 + ZinYpv
v̂o +

Gci

1 + ZinYpv
ĉ

îpv =
1

1 + ZinYpv
îph −

YpvToi

1 + ZinYpv
v̂o −

YpvGci

1 + ZinYpv
ĉ,

(3)

where Zin is the input impedance of the converter, Toi is the
output-to-input transfer function and Gci refers to control-to-
PV-voltage transfer function. As the converter operates at open
loop, the control variable is duty ratio (i.e. ĉ = d̂). It is well
known that the temperature of the PV modules has significant
effect on the PV power but its dynamics is quite slow due
to the large thermal capacity of the PV panels as discussed
also in [3]. Therefore, its effect is not considered in (3). From
the perturbation-frequency design point of view, the control-
to-input-voltage-related dynamics is of interest in (3) (i.e., the
last terms of the equations in (3)).

The experimental transient waveforms of PV voltage, cur-
rent, and power shown in Fig. 3 clearly confirms the validity
of the theoretical formulation for the behavior of the PV-power
transient in the different operational regions discussed in more
detail in [15]. Fig. 3 is constructed in such a manner that all
the original waveforms are divided by their final values to



Fig. 3. Behavior of PV voltage (dashed line), current (dash-dotted line),
and power (solid line) when a step change in a duty ratio is applied in
a duty-ratio-operated boost-power-stage converter in different PV-generator
operational regions. [15]

maximize the information of the settling behavior: In CCR,
the PV-power transient follows directly the settling behavior of
the PV voltage. In CPR, the PV-power transient is very small,
because the PV-voltage and current behaviors tends to cancel
each other. In CVR, the PV-power transient follows directly
the settling behavior of the PV current. The PV-power settling
time is also longest in CCR, which is clearly visible in Fig. 3 .
The changes in the settling time are induced by the changes in
the damping behavior of the internal resonance due to the PV-
generator dynamic resistance, which affects the time constant
of the system i.e., τ = 1/ζpvωn (i.e., ζpv denotes the PVG-
affected damping factor and ωn denotes the undamped natural
frequency). The PV-generator-affected damping factor of a
duty-ratio or voltage-mode-controlled (DDR/VMC) converter
can be given in general by [20]

ζpv ≈
1

2

(
rloss

√
C1

L
+

1

rpv

√
L

C1

)
, (4)

where rloss = rL+rC1+Drds+(1−D)rD denotes the parasitic
losses of the power-stage components as well as L and C1

denote the power stage inductance and capacitance values,
respectively. As shown in [20]–[22], while PVG dynamic
resistance greatly affects the damping factor, its influence on
the DC gain and natural frequency is insignificant.

According to [20], when PVG is connected to an interfacing
power converter, the control-to-input voltage transfer function
of the combined system is given by (cf. (3))

Gpv
ci−o(s) =

Gci−o

1 + ZinYpv
= −Ve

ω2
n(1 + s/ωz−esr)

s2 + 2ζpvωns+ ω2
n

, (5)

where ωn = 1/
√
LC1 is undamped natural frequency of

the converter and ωz−esr is the ESR zero induced by input
capacitor. Since, PVG voltage transient response in Laplace
domain is v̂pv(s) = Gpv

ci−o · d̂ and the longest settling time

of PVG power occurs in CCR where p̂pv ≈ Ipvv̂pv, we
can approximate the time where the PV power is settled to
(1−∆) · 100 % from its final value as follows [15], [17]

T∆ =
1

ζpvωn
ln

√
1 +

ωn

ωz−esr

[
ωn

ωz−esr
− 2ζpv

]
∆
√

1− ζ2
pv

≈ 1

ζpvωn
ln

1

∆
√

1− ζ2
pv

,

(6)

In order to accurately predict the PV settling time process, Eq.
(6) assumes continuous conduction mode, i.e., inductor current
does not reach zero during the transient. However, it will
shown in the following analysis that discontinuous inductor
can extend the PV power settling process significantly.

A. Determining Maximum Duty Ratio Step Change

If assuming that the PV generator is an ideal current source
(i.e., in CCR) then the open-loop control-to-inductor-current
transfer function GcL−o can be solved similarly as in [20] by

GcL−o =
Veω

2
nC1s

s2 + 2ζpvωns+ ω2
n

=
C1s

1 + s/ωz−esr
·Gci−o. (7)

Hence, the PV-voltage transient induced by a step change in
the duty ratio can be given in Laplace domain as follows

iL(s) =
Veω

2
nC1s

s2 + 2ζωns+ ω2
n

· ∆d

s
(8)

According to (8), we can estimate the time-domain behavior
of iL when a step change in duty ratio is applied. By utilizing
inverse Laplace operator to (8), we get

iL(t) =

− VeC1

 ωn√
1− ζ2

pv

exp (−ζpvωnt) sin
(
ωn

√
1− ζ2

pv

)∆d,

(9)

Figure 4 represents simulated PV voltage, inductor current
and capacitor current transient waveforms when two different
duty ratio step changes are applied in the boost-power-stage
converter in Fig. 2a. Black lines indicate the condition where
inductor current just reaches the zero due duty-ratio step
change ∆d. In contrast, red lines represent the case where ∆d
is too large causing the inductor current to move discontinuous
continuous mode. Due to the diode included inherently in
the power-stage (cf., Fig. 2a), the inductor current cannot
drop below zero. Since, capacitor current iC1 = Ipv − iL
remains constant, the inductor-current saturation transforms
the second-order system into equivalent first-order dynamic
system extending the PV-power settling time and reducing
power tracking performance of the system.

The critical duty-ratio step change can be solved by ana-
lyzing the time-domain equation in (9). The time, where iL



Fig. 4. Illustration of the transient response of the inductor current when
critical (black line) and too large (red line) duty-ratio step change is applied.
White line corresponds the estimated transient response based on (9).

in (9) reaches its minimum value, can be found by solving
diL(t)/dt = 0. The minimum value for the unit-impulse
response of the underdamped system occurs at [23]

tmin =
tan−1

(√
1− ζ2

pv/ζpv

)
ωn

√
1− ζ2

pv

. (10)

Thus, the minimum value for iL(t) due to the duty-ratio step
change is

iL(tmin) =

−VeC1ωn exp

− ζpv√
1− ζ2

pv

tan−1


√

1− ζ2
pv

ζpv


︸ ︷︷ ︸

Md

·∆d.

(11)

To ensure continuous inductor current, the minimum inductor
current after step change must be ∆iL = Ipv −Md · ∆d −
∆iL,pp/2 > 0. The inductor current ripple ∆iL,pp is at its
highest value when the input voltage is half the output voltage,
i.e., ∆iL,pp = Vo/(4Lfs). Therefore, we can get the following
equation for the maximum duty-ratio step size

∆d <
Ipv − Vo/(8Lfs)

VeC1ωn exp

(
− ζpv√

1−ζ2pv
tan−1

(√
1−ζ2pv
ζpv

)) . (12)

It can be noticed from (12) that the maximum duty-ratio step
size depends both on converter parameters and voltage and
current levels on its input and output. The worst case from the
duty-ratio step change point of view occurs at low PV current
(i.e. in low irradiance condition), where Ipv is the lowest.

IV. PV-INTERFACING CONVERTER OPERATING AT
CLOSED LOOP

In a case of input-voltage-feedback-controlled converters,
the PV-generator effect on the system damping behavior is
quite different, especially, when the input-voltage-feedback-
loop crossover frequencies are designed to be sufficiently
lower or higher than the resonant frequency. The PV-generator
effect to the closed-loop transfer functions can be attributed
directly to 1/(1 + Zin−cYpv). The corresponding predicted
frequency responses are given in Fig. 5, where the solid,
dashed, and dash-dotted lines correspond to the operation in
CCR, CPR, and CVR, respectively. Fig. 5 indicates clearly
that the PV-generator effect on the converter dynamics in an
input-voltage-feedback-controlled converter will be very small
as discussed in [16]. Therefore, the set of equations in (3)
becomes

v̂pv ≈ Zin−cîph + Toi−cv̂o +Gci−cĉ

îpv ≈ îph − YpvToi−cv̂o − YpvGci−cĉ,
(13)

where subscript extension ’c’ denotes the closed-loop transfer
functions.

Fig. 5. Predicted PV-generator effect on the closed-loop transfer functions of
an input-voltage-feedback-controlled boost power-stage converter (i.e., 1/(1+
Zin−c/rpv), where the crossover frequency of the input-voltage feedback
loop is placed higher than the resonant frequency (i.e., 1 kHz vs. 3 kHz).
[16]

Two different design examples are considered in this paper,
based on the application of pure integral (I) controller with
PM close to 90◦ and proportional-integral-derivative (PID)
controller with PM close to 40◦, respectively. In the case
of I controller, the input-voltage feedback-loop crossover
frequency would be less than the resonant frequency of the
converter for providing sufficient attenuation at the resonant
frequency (i.e., the resonant peak value should be less than -
10 dB for eliminating the effect of the resonant on the settling
behavior). This means that the damping factor would be rather
high, because the PM would be close to 90◦, and therefore, the
roots of the second-order denominator would be well separated
(i.e., (s+ ωn

2ζ )(s+ 2ζωn) = 0).



In case the desired loop gain crossover frequency ωc is much
lower than ωp, integral (I) controller of the form

GI
cc =

Kcc

s
(14)

Furthermore, in case ωc � ωp, there is no need to cancel
the capacitor ESR induced zero and pure integrator may be
utilized. In contrast, in case of PID control, the feedback-loop
crossover frequency would be placed at the frequencies higher
than the resonant frequency and the PM would be designed as
desired.

GPID
cc =

Kcc(1 + s/ωz1)(1 + s/ωz2)

s(1 + s/ωp1)(1 + s/ωp2)
(15)

Since the plant is underdamped, loop gain resonance peak must
reside GM [dB] (gain margin) below zero to assure stability.

A. Approximated Dynamic Behavior of Closed-Loop System

In control engineering [23], the loop gain (L) and sensitivity
function (L/(1 + L)) are known as open and closed-loop
feedback-loop gains, respectively. The closed-loop system
dynamics is known to be characterized by the dominating
poles and zeros, which locate closest to the origin. This means
that the closed-loop system can be usually characterized by the
well-known second-order transfer function as [16]

ω2
a

s2 + s2ζωa + ω2
a

≈ L

1 + L
, (16)

where ωa and ζa denote the undamped natural frequency and
damping factor of the closed-loop system, respectively. It is
worth noting that different subscript is used for the closed-loop
system to differentiate those from open-loop counterparts. The
corresponding open-loop loop gain with unity feedback and
integral control action can be given by

L ≈ ω2
a

s(s+ 2ζaωa)
, (17)

from which the crossover frequency (ωc) and phase margin
(PM) can be solved by setting the magnitude to unity (i.e.,
|L| = 1), and solving the corresponding frequency and phase.
The corresponding PM = 180o + ∠L(ωc) [23]. According to
these procedures, ωc and PM can be given by

ωc = ωa

√√
1 + 4ζ4

a − 2ζ2
a

PM = tan−1

 2ζa√√
1 + 4ζ4

a − 2ζ2
a

 .
(18)

According to (17), we need to know ωa and ζa for solving the
corresponding time-domain behavior (cf., (8)), which can be
solved from (18) yielding [16]

ωa =
ωc√√

1 + 4ζ4
a − 2ζ2

a

, ζa =
tan(PM)

2
(
1 + tan2(PM)

) 1
4

(19)

If assuming that the PV-power transient has to be attenuated
within (1 ± ∆)-times the final value before the next pertur-
bation would take place then the corresponding settling times
(T∆) can be computed to be [16]

T I
∆ =

2ζa
ωa

ln

(
1

∆

)
TPID

∆ =
1

ζaωa
ln

(
1

∆
√

1− ζ2
a

)
.

(20)

B. Determining Maximum Input-Voltage Reference Step
Change

In order to formulate equation for maximum input-voltage
reference step change, corresponding closed-loop transfer
function for inductor current need to be solved (cf., (8)). The
closed-loop reference-to-inductor-current transfer function can
be calculated based on open-loop transfer functions [20]

GcL−c =
îL

v̂pv,ref
=

1

Gse

L

1 + L
· GcL−o

Gci−o
(21)

The closed-loop transfer function L/(1 + L) can be approxi-
mated by (16) yielding

GPID
cL−c ≈ −

1

Gse
· ω2

a

s2 + 2ζaωas+ ω2
a

· C1s

1 + rC1C1s

≈ C1ω
2
as

s2 + 2ζaωas+ ω2
a

, 0 < ω < ωc

(22)

The final form in (22) can be achieved by the fact that pole
of the capacitor is located much further from the origin and
therefore, it will not affect the transient behavior. In case of
I control, the roots of the second-order denominator are well
separated and (22) can be represented as

GI
cL−c ≈

(C1ωa/2ζa)s

s+ (ωa/2ζa)
, 0 < ω < ωc. (23)

Therefore, the time-domain transient response of iL corre-
sponds to exponential function where the only pole is located
at (ωa/2ζa). The inductor current time domain behavior can
be solved from (22) similarly as in open loop yielding

iL(t) =

− C1

(
ωa√

1− ζ2
a

exp (−ζωat) sin
(
ωa

√
1− ζ2

))
·∆vref

(24)

Inductor current should not reach the zero during the transient
due to voltage reference step size, i.e. ∆iL = Ipv−Mv·∆vref−
∆iL,pp/2 > 0. Therefore, the maximum voltage reference step
change, which ensures CCM operation of the converter can be
given as

∆vref <
IL − Vo/(8Lfs)

C1ωa exp

(
− ζa√

1−ζa2
tan−1

(√
1−ζ2a
ζa

)) . (25)



V. EXPERIMENTAL VERIFICATION

The experimental measurements have been carried out by
using a low-power MPPT boost converter supplied by a single
PV module as illustrated in Fig. 6. Raloss SR30-36 PV module
was used as a PVG, which is composed of 36 series-connected
monocrystalline silicon cells. The PV module was illuminated
by fluorescent lamps, which can produce maximum irradiance
of about 500 W/m2 yielding short-circuit current of 1.0 A
and open-circuit voltage of 19.2 V at module temperature
of 45 ◦C. Further information about the panel can be found
in [24]. The PV module is connected to the boost-power-
stage prototype shown in Fig. 2a controlled by a digital signal
processor (DSP). Voltage and current measurements were low-
pass-filtered with the cut-off frequency of 50 kHz in order
to prevent noise from converter switching action. Finally, the
output of the converter is connected to the 26-V battery in
parallel with Chroma 63103A current sink to maintain constant
battery voltage.

Fig. 6. Schematic representation of the experimental boost converter.

Figure 7 shows the PV voltage and inductor-current tran-
sient responses under three different duty ratio step changes.
Based on the parameters listed in Fig. 2a, undamped nat-
ural frequency and damping factor can be calculated to be
6.086 · 103 rad/s and 0.074, respectively. Thus, according to
(12), the maximum duty-ratio step change can be calculated
to be 0.075, which corresponds to 1V PV-voltage step change.
Two other measured step responses are carried out by using
half and double the critical step changes to highlight the effect
of choosing too high duty-ratio step size. As can be seen
from Fig. 7 and predicted in the prior analysis, the transient
response of the PV voltage has similar settling time as long
as the duty-ratio step change is lower than the critical step
change. Moreover, Eq. (12) gives a good approximation for
inductor current peak value. In contrast, it can be seen that
inductor current is discontinuous, thus, increasing the settling
time process of PV voltage and PV power. In contrast, it can
be seen that the settling time process of PV voltage and PV
power is extended due to the discontinuous inductor current.

The measured loop-gain transfer functions with PID con-
troller can be seen in [16] providing more detailed information
of the system. Based on the parameters listed in Fig. 2a and
system characteristics listed in [16], the average crossover
frequency and phase margin are 2π · 2950 rad/s and 35◦,
respectively. Therefore, PID-controlled closed-loop undamped
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Fig. 7. Open-loop step responses of the PV voltage and inductor current when
duty-ratio step changes of 0.037 (black line), 0.075 (blue line) and 0.150 (red
line) are applied.

natural frequency and damping factor can be calculated to be
ωa = 2π ·3263 rad/s and ζa = 0.32, obtained using (19). Thus,
according to (25), the maximum voltage reference step change
can be calculated to be 0.71V. Fig. 8 represents the closed-
loop step responses when 0.5V, 0.71V and 3V PV-voltage-
reference step changes are applied. The figure clearly indicates
that too large perturbation step size causes delay in PV voltage
transient response, thus, extending the settling time process.

Fig. 8. The PV voltage and inductor-current step responses under PID control
when 0.5V (black line), 0.71V (blue line) and 3V (red line) reference-voltage
step changes are applied).

Finally, Fig. 9 shows PV voltage and inductor current step
responses with I control. Gain of the integral controller is set
to 6.3 yielding crossover frequency and PM to be 2π · 28.6
rad/s and 89.8◦, respectively. With these values sufficient gain
margin of 15dB is achieved. Based on (19), natural frequency
and damping factor can be calculated to be ωa = 2π ·484 rad/s
and ζa = 8.46. As can be predicted from the prior analysis,
the transient response in Fig. 8 is overdamped and therefore,
inductor current does neither induce any overshoot nor satu-



ration. Therefore, the predicted settling time (T I
∆ = 16.6 ms)

based on (20) matches well with experiments.
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Fig. 9. The PV voltage and inductor-current step responses under I control
when 0.9V (black line), 1.8V (blue line) and 2.7V (red line) reference-voltage
step changes are applied.

VI. CONCLUSION

Due to the either too large duty-ratio or voltage-reference
step change, the inductor current can move from CCM to
DCM. That transforms second-order settling behavior into
equivalent first-order settling behavior extending the PV-power
settling time and thus, reducing the power-tracking perfor-
mance and violating the validity of theory developed for PVG-
power settling-time estimation for open-loop and closed-loop
operated converters.

This paper introduces design guidelines to determine the
maximum step sizes for duty ratio and input-voltage reference
under open-loop and closed-loop operation. Two different
design examples are considered in this paper, based on the
application of pure integral controller with PM close to 90
degrees and proportional-integral-derivative controller with
PM close to 40 degrees, respectively. The closed-loop system
dynamics is known to be characterized by the dominating
poles and zeros, which locate closest to the origin. This means
that the closed-loop system can be usually characterized by
utilizing well-known control engineering methods.
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