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Abstract. In this article we first review the classical results of octonions and octonionic analysis. Then we consider some theoretical
properties of the theory and compare it to quaternionic analysis and Clifford analysis.

INTRODUCTION

Octonionic analysis is a function theory related to the functions taking their values in the famous non-associative
and non-commutative division algebra of octonions. Our point of view to the theory is to consider the functions
which are in the kernel of the Cauchy-Riemann operator ∂x. We started our study in our paper [9] and this paper is a
continuation of it. One can say that in [9] we gave all the necessary formulas, and that the nature of this small paper
is more philosophical, i.e., here we study some similarities and differences of the similar type of function theories,
namely quaternionic analysis and Clifford analysis. Comparing this text with the standard text of quaternionic analysis
one may see a lot of similarities, but the theories have also crucial differences. These differences are located in the
places where associativity is needed. This is of course a priori a trivial observation, but here we try to give some
explicit points where this happens, e.g., the lack of Leibniz rule.

PRELIMINARIES

In this section we recall the preliminaries of octonions and analysis on it. Details and more information may be found
in our paper [9] and standard literature, e.g., [1, 3, 8, 10, 11]. We also assume that a reader is familiar with the classical
theory of quaternions and quaternionic analysis, e.g., [3, 6, 7, 8, 10, 11].

Octonions
The algebra of octonions O is a well known non-commutative and non-associative algebra, generated by the basis
elements {1, e1, . . . , e7} satisfying the multiplication table:

1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

In the table, 1 is the identity element of O. An arbitrary octonion x ∈ O may be written in the form x = x0 + x, where
x0 is the scalar part and

x = x1e1 + · · · + x7e7
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the vector part of the quaternion, where x0, x1, . . . , x7 ∈ R. The conjugation is defined by x = x0 − x, satisfying
xy = y x. In the multiplication table, we see that the elements {1, e1, e2, e3} generate the quaternion algebra H as a
natural subalgebra of O. Every octonion x ∈ O admits also the quaternionic form x = a + be4, where

a = x0 + x1e1 + x2e2 + x3e3 and b = x4 + x5e1 + x6e2 + x7e3

are quaternions. The quaternionic parts a, b of x satisfy the algebraic rules

(a) e4a = ae4,
(b) e4(ae4) = −a,
(c) (ae4)e4 = −a,
(d) a(be4) = (ba)e4,
(e) (ae4)b = (ab)e4,
(f) (ae4)(be4) = −ba,

which gives us explicit rules to make computations by quaternionic forms. The conjugate of a quaternionic form
x = a + be4 is x = a − be4. Considering only the vector parts x and y we obtain the decomposition

xy =
1

2
(xy + yx) +

1

2
(xy − yx), (1)

where x · y := − 1
2
(xy + yx) = x1y1 + · · · + x7y7 is the scalar product and x × y := 1

2
(xy − yx) the (7-dimensional) cross

product of vectors x and y.

Octonionic Analysis
Octonionic analysis is dealing with the functions f :Ω ⊂ R8 → O, where we usually make the identification R8 � O
assuming that our functions are of an octonion variable. Our point of view is based on the Cauchy-Riemann operator

∂x = ∂x0
+ e1∂x1

+ · · · + e7∂x7
,

and on its vector part, the Dirac operator
∂x = e1∂x1

+ · · · + e7∂x7
,

both acting on componentwise differentiable octonion valued functions. The conjugate of the Cauchy-Riemann oper-
ator ∂x = ∂x0

+ ∂x is defined as ∂x = ∂x0
− ∂x. Both of the operators factorize the Laplacian, i.e., ∂x∂x = ∂x∂x = Δx and

∂2
x = −Δx, where Δx := ∂2

x0
+ Δx and Δx :=

∑7
j=1 ∂

2
x j

. As in the quaternionic analysis, we make the following crucial
definition.

Definition 1 Let Ω ⊂ O be open and f :Ω→ O a componentwise differentiable function. If

∂x f = 0 (resp. f∂x = 0)

in Ω, then f is called left (resp. right) monogenic in Ω.

In our point of view the octonionic analysis means to study monogenic octonion valued functions and their function
theoretic properties. The Cauchy-Riemann operator admit also its quaternionic form ∂x = ∂u + ∂ve4, where quater-
nionic Cauchy-Riemann operators are

∂u = ∂x0
+ e1∂x1

+ e2∂x2
+ e3∂x3

and ∂v = ∂x4
+ e1∂x5

+ e2∂x6
+ e3∂x7

,

acting on octonionic valued differentiable functions f = f (u, v), where we represent the variable x in the quaternionic
form x = u+ve4 and consider functions as functions of two quaternion variables. We may represent an octionion valued
function in a quaternionic form f (u, v) = g(u, v)+h(u, v)e4, where g and h are quaternion valued. For quaternion valued
functions we have the algebraic rules

(a) ∂u(ge4) = (g∂u)e4,
(b) (∂ue4)g = (∂ug)e4,
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(c) (∂ue4)(ge4) = −g∂u.

(d) (ge4)∂u = (g∂u)e4,

(e) g(∂ue4) = (∂ug)e4,

(f) (ge4)(∂ue4) = −∂ug.

These rules allow us to make computations using quaternion formed objects in octonionic analysis. The following
result allows us to transforms a problem of octonionic monogenic function completely to a problem of the quaternionic
analysis.

Proposition 1 (Quaternionic Cauchy-Riemann systems [9]) Assume that the quaternionic form of a differen-
tiable function f is f = g + he4. Then
(a) ∂x f = 0 if and only if

∂ug = h∂v,

h∂u = −∂vg,

(b) f∂x = 0 if and only if
g∂u = ∂vh,

h∂u = −∂vg.

Let us consider still the vector valued functions f = f1e1+ · · ·+ f7e7 and operators. The scalar and cross product allow

us to define the divergence operator ∂x · f := − 1
2
(∂x f + f∂x) = ∂x1

f1 + · · · + ∂x7
f7 and the rotor

∂x × f :=
1

2
(∂x f − f∂x) =

7∑

i, j=1

i� j

∂xi f jeie j.

Then decomposition (1) gives

∂x f = −∂x · f + ∂x × f ,

f∂x = −∂x · f − ∂x × f .

For a function f = f0 + f with real and vector parts f0 and f we have

∂x f = ∂x0
f0 + ∂x0

f + ∂x f0 − ∂x · f + ∂x × f , (2)

f∂x = ∂x0
f0 + ∂x0

f + ∂x f0 − ∂x · f − ∂x × f . (3)

Comparing the real and vector parts of equation (2) we deduce that a function is left monogenic if and only if its real
and vector parts f0 and f satisfy the generalized octonionic Moisil-Teodorescu system

∂x0
f0 − ∂x · f = 0,

∂x0
f + ∂x f0 + ∂x × f = 0.

ON RIESZ SYSTEM IN OCTONIONIC ANALYSIS

In [13] Stein and Weiß represented the so called Riesz system in a component form. In R8 this is

∂x0
f0 − ∂x1

f1 − . . . − ∂x7
f7 = 0,

∂x0
fi + ∂xi f0 = 0, (i = 1, . . . , 7),

∂xi f j − ∂x j fi = 0, (i, j = 1, . . . , 7, i � j).
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In this section our aim is to study how this system is connected to octonionic analysis. First we observe that we may
write the Riesz system in the operator form

∂x0
f0 − ∂x · f = 0,

∂x0
f + ∂x f0 = 0,

∂x × f = 0.

Comparing the Moisil-Teodorescu system with the Riesz system we see that left monogenic functions do not satisfy
the Riesz system. The Riesz system may be characterized as follows.

Theorem 1 Let f :Ω → O be a differentiable octonion valued function. Then f satisfies the Riesz system if and
only if ∂x f = f∂x = 0.

Proof. If ∂x f = f∂x = 0, adding and subtracting equations (2) and (3) and comparing the real and vector parts, we
obtain the Riesz system. The other direction is trivial. �

The preceding observations tell us that the classical theory of the Clifford analysis (see, e.g., [2, 5]) differs from the
theory of octonionic analysis. In Clifford analysis it is enough to use one of the Cauchy-Riemann operators to get
Riesz system by restricting to the so called paravector valued functions.

In the quaternionic analysis, the similar result to the preceding theorem holds in four dimensions. It is natural that the
theories of quaternionic and octonionic analysis are similar in this sense, because we haven’t have any case yet where
associativity would have been needed.

RADIAL ALGEBRA IDENTITIES FOR CAUCHY-RIEMANN OPERATOR

Behind Clifford analysis stays the more general abstract structure, called the radial algebra, and analysis on it; see
[4, 12]. In the case of octonionic analysis, it is not possible to use the radial algebra because of the lack of associativity.
But we may still take a look at the operator identities, and check which of those hold. At the same time we will see
the connections and differences between the theories.

In our case the ”vector variables” are octonions x ∈ O and the ”vector derivative” is the Cauchy-Riemann operator ∂x.
The axioms for the vector derivative are given at the page 298 in [12]. In the next proposition, we obtain the following
modifications of the axioms.

Proposition 2 Assume that f is a real valued and F an octonion valued differentiable function. Let a ∈ O. Then
(D1) ∂x( f F) = (∂x f )F + f (∂xF) and ( f F)∂x = F(∂x f ) + f (F∂x),
(D2) ∂x(Fa) � (∂xF)a and (aF)∂x � a(F∂x),
(D3) ∂x(F∂x) = (∂xF)∂x,
(D4) ∂x(xx) = ∂x(xx) = 2x and ∂x(x0y0 + x · y) = y.

Proof. The proof for (D1) is obvious. To prove (D2), one needs to find a simple counterexample, e.g., F = x1e2 and
a = e4. The proof for (D3) follows from the fact x(yx) = (xy)x, see [9]. Also the proof of (D4) is trivial. �

The property (D2) is different than in the quaternionic analysis, where the equality holds. The biggest conse-
quence is that the similar Leibniz product formula than in the quaternionic analysis (”∂x( f g) = (∂x f )g + ∂̇x f ġ”, see
e.g. [7]) does not exist in octonionic analysis. The lack of the Leibniz rule have many theoretical implications. For
example to find polynomial solutions for the equation ∂x f = 0 is much more complicated than in the quaternionic
and Clifford analysis.
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