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Abstract—Articulated multiple degrees-of-freedom (DOF) hy-
draulic manipulators are used in many industry tasks. These
hydraulic manipulators can be used to move heavy loads, such
as logs and containers. The grasping tool of these manipulators
is often connected at the tip of the manipulator by using
unactuated revolute joints, which are not directly controllable.
Currently, work performed efficiently by commercial hydraulic
manipulators depends on the driver, and the automation level of
these manipulators is relatively low. The Virtual Decomposition
Control (VDC) is the nonlinear model-based control theory,
which performs subsystem-based control design and stability
analysis for complex multiple DOF redundant hydraulics ma-
nipulators. In this paper, we present a VDC approach-based
nonlinear full-model-based anti-sway controller for a redundant
manipulator in vertical plane. The experimental results, with
a full-size redundant hydraulic manipulator, verify that the
proposed anti-sway control efficiently damps load swaying in
the vertical plane motions.

I. INTRODUCTION

In industry, commercial hydraulic manipulators are used in
different tasks to move heavy loads, such as logs, biomass
and containers. Often, the grasping tool of the manipulator is
connected at the tip of the manipulator via a pair of unactuated
revolute joints to enable effective grasping. In free-space, these
unactuated joints sway due to the tip accelerations. Because
passive joints are not directly controllable, only the operator
can ensure the safe motions.

The operator workloads can be decreased and safety can
be increased by designing robotic controllers for the ma-
nipulators. As discussed in a survey of control hydraulic
robotic manipulators [1], robotics control for the heavy-duty
manipulators is expected to revolutionize control of these
machines. The first commercial boom tip control solutions for
heavy-duty hydraulic manipulators are available (see [2], [3]).
However, commercial solutions for hydraulic manipulators to
control a freely swaying load are not yet available.

The highly nonlinear dynamics behavior of hydraulic ma-
nipulators makes their high-performance control design task
substantial [1]. In the literature, most of the proposed anti-
sway control methods, e.g. [4]–[8], are still based on li-
near/linearized control methods, which leads to approxima-
tions in the controller and limited control performance. In
addition, only a few proposed control methods have been
verify with full-scale manipulators [8]–[10]. As the survey
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Fig. 1. Redundant hydraulic manipulator

[1] presents, nonlinear model-based control methods produced
high control performance. Only implemented nonlinear anti-
sway control methods are presented in [9] and [10]. In [10]
is proposed a nonlinear model predictive control for a 4-
DOF hydraulic manipulator. However, some of the major
nonlinearities in the system were neglected.

Our previous study [9] proposed a theory for a nonlinear
model-based anti-sway controller for underactuated redundant
hydraulic manipulator by using Virtual Decomposition Control
(VDC) approach. However, the control design still neglected
the unactuated joint frictions and the torque constraints in
unactuated joints. The present paper removes these assump-
tions and extends VDC to cover joint frictions and constraints
in passive joints. Similar to [9], the tool (the gripper mass 90
kg + an additional load of 150 kg) is connected at the tip of the
4-DOF coordinate controlled redundant hydraulic manipulator
as Fig. 1 presents. Experimental results demonstrate that the
proposed controller yields a better control performance in
relation to our previous study [9].

This paper is organized as follows. Section II introduces the
basis of the VDC approach. Section III defines the kinematics
and dynamics of the unactuated open chain and object, and
Section IV presents corresponding control equations for these
subsystems. Section IV defines releasing terms, which cover
the force/torque constraints of the joints. The virtual stability
of the unactuated open chain is presented in Section VI.
Finally, experimental results are presented in Section VII, and
conclusions are outlined in Section VIII.

II. VIRTUAL DECOMPOSITION CONTROL

The VDC approach (see [11], [12]) provides subsystem-
based control design tools for robotic systems. Subsystem-
based control design is suitable especially for complex robotic



systems with multiple DOF at the subsystem level. The
subsystem-based control design can also be used to perform
stability analysis of the system locally at the subsystem level.
The VDC approach also enables the modular control design,
because it is possible to add or replace one subsystem with
another without changing the control equations of the other
subsystems. Next, subsection II-A presents the basic mathe-
matical notations of the VDC approach. Then, subsection II-B
presents a virtual decomposition (a unique feature of VDC) of
the system, a simple oriented graph (SOG) presentation, and
a coordinate frame attachment in the studied subsystems.

A. Mathematical Notations

Consider a coordinate frame {A}, which is fixed to the rigid
body. According to [12], the linear/angular velocity vector in
this frame can be defined by a combination of a linear velocity
vector Av ∈ R3 and an angular velocity vector Aω ∈ R3

as AV = [Av Aω]T . Similarly, the force/torque vector, in
coordinate frame {A}, can be defined as a compilation of
a force vector Af ∈ R3 and a moment vector Am ∈ R3 like
AF = [Af Am]T . Now, the following transformations for the
two fixed coordinate frames {A} and {B} holds:

BV = AUT
B

AV (1)
AF = AUB

BF , (2)

where AUB ∈ R6×6 presents the force/moment transformation
between the two fixed frames.

In view of [12], the dynamics equation in fixed coordinate
frame {A} can be written as

AF∗ = MA
d
dt
(AV )+CA(

A
ω)AV +GA, (3)

where MA ∈ R6×6 is the mass matrix, CA(
Aω) ∈ R6×6 is

the Coriolis and centrifugal terms, GA ∈ R6 is the gravity
vector, and AF∗ ∈ R6 is the net force/moment vector. The
required rigid body dynamics can be defined by using the
linear parametrization expression as

YAθA
def
= MA

d
dt
(AVr)+CA(

A
ω)AVr +GA, (4)

where definitions for the regressor matrix YA ∈ R6×13 and the
parameter vector θ A ∈R13 are presented in [12]. VDC control
theory includes parameter adaption for parameters in θ A, but
parameter adaption is not implemented in this paper.

B. Virtual Decomposition of the System

The first step of the VDC approach is a virtual decom-
position of the system into subsystems (objects and open
chains) by placing virtual cutting points (VCPs). A VCP
is a directed separation interface that defines the direction
for the force/moment relations with other subsystems and
conceptually divides the rigid body. A VCP is simultaneously
interpreted as a driven VCP by another subsystem and as a
driving VCP by one subsystem. The driven VCP is a point
to which the force/moment vector is exerted, and the driving
VCP is a point from which the force/moment vector is exerted.
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The dynamics relations between the subsystems can be
presented by using a SOG (see Denition 2.14 in [12]). In a
SOG, each VCP corresponds a directed edge, which defines
the reference direction for the force/moment vector, and each
subsystem is presented as a node. In a SOG, loops are not
allowed [12]. The SOG for the studied unactuated open chain
and object are presented in Fig. 2a. In this paper, the focus is to
design control equations for the unactuated open chain inside
the dashed line. The virtual decomposition for the 5-DOF
hydraulic manipulator (the inside dash-dot line) is given in [9],
and detailed control equations for a similar hydraulic crane are
given in [13]. Because the connected load mass is subject to
change, the load is modeled as a separate object. Thus, it is
possible to change only the object’s modeling parameters to
correspond to the real system.

The kinematics and dynamics relations of the unactuated
open chain and object are defined by using fixed coordinate
frames in the rigid bodies. The attached frames for the studied
subsystems are presented in Fig. 2b and Fig. 3. In frames {B0}
and {B1}, denoted with red, the z-axle points out from joint
1, and in frames {B2}, {B3}, and {B4} the z-axis pointing
out from joint 2.The coordinate frames for the object follow
from the studied open chain frames; therefore, in Fig. 3 the
z-axis pointing out from the paper. The other axes are defined
according to the right-hand rule.

III. KINEMATICS AND DYNAMICS OF THE UNACTUATED
OPEN CHAIN AND OBJECT

This section defines the kinematics and dynamics equations
for the unactuated open chain (see Fig. 2) and the object (see
Fig. 3).

A. Kinematics Equations of the Unactuated Open Chain

In view of Fig. 2b and Eq. (1), the kinematics equations for
the unactuated open chain can be written as



B1V = B0UT
B1

B0V + zq̇1 (5)
B2V = B1UT

B2
B1V (6)

B3V = B2UT
B3

B2V + zq̇2 (7)
B4V = B3UT

B4
B3V, (8)

where z = [0 0 0 0 0 1]T and q̇i,∀i ∈ {1,2} is the angular
velocity of the ith joint.

B. Kinematics Equations of the Object

In view of Eq. (1) the linear/angular velocity vector of the
object can be defined as

O1V =TO1 UT
O1

TO1V =G UT
O1

GV. (9)

C. Dynamics Equations of the Object

The net force/moment vector for the object can be defined,
in view of Eq. (3), as

O1F∗ = MO1

d
dt
(O1V )+CO1(

O1ω)O1V +GO1 . (10)

Second, the force/moment resultant equation in the object can
be written as

O1F∗ = O1UTO1
TO1 F−O1UG

GF, (11)

where the external force GF can be written as
GF = [0 0 0 0 0 0]T (12)

in free-space motions.

D. Dynamics Equations of the Unactuated Open Chain

By reusing Eq. (3), the dynamics equations for both unac-
tuated rigid bodies can be written as

B j F∗ = MB j

d
dt
(B jV )+CB j(

B j ω)B jV +GB j , (13)

where j ∈ {1,3} is the order number of the link. Because
the joint mass is low compared to the rigid links mass, the
joint mass can be included in the links mass. In the studied
coordinate frames, the total force/moment vectors can be
written as

B3F = B3F∗+B3UB4
B4F + zJ2q̈2 (14)

B2F = B2UB3
B3F (15)

B1F = B1F∗+B1UB2
B2F + zJ1q̈1 (16)

B0F = B0UB1
B1F, (17)

In Eqs. (14) and (16) the terms J1q̈1 and J2q̈2 are released to
satisfy the torque constraints. These terms are defined more
specifically in Section V.

The force constraints in the unactuated joints can be defined
as

zT B j F + τ fi = 0, (18)

where j ∈ {1,3} is the order number of the frame, τ fi is the
friction constraint for the relative joint, and i ∈ {1,2} is the
order number of the joint.

In this paper, the joint friction is modeled by using viscous
and Coulomb friction coefficients. Therefore, the joint friction
can be written as

τ fi = kviq̇i + kcitanh(nq̇i), (19)

where kvi is the viscous coefficient, kci is the Coulomb
coefficient and n > 0 and constant.

IV. CONTROL EQUATIONS OF THE SYSTEM

This section presents the required linear/angular velocities
for the object and the unactuated open chain. In addition, the
required force/moment vectors for the studied subsystems are
presented.

A. Required Kinematics Equations of the Unactuated Open
Chain

By reusing Eq. (5)–(8), the required linear/angular velocity
vectors can be written as

B1Vr = B0UT
B1

B0Vr + zq̇1r (20)
B2Vr = B1UT

B2
B1Vr (21)

B3Vr = B2UT
B3

B2Vr + zq̇2r (22)
B4Vr = B3UT

B4
B3Vr, (23)

In view of [12], the required velocity consists of the desired
velocity and terms that are related to control errors. Now,
in Eq. (20) and (22), the required joint velocities for the
unactuated joints can be defined as

q̇ir = q̇id +λui(qid−qi). (24)

In Eq. (24), λui is the position feedback gain for the relative
joint. For unactuated joints, the desired joint velocity and
position are usually designed according to the equilibrium
point. When the object is symmetric, the desired joint velocity
for both joints is 0 rad/s and the desired position is 0 rad.

B. Required Kinematics Equations for the Object

By reusing Eq. (9), the required kinematic equations for the
object can be defined as

O1Vr =
TO1 UT

O1
TO1Vr =

G UT
O1

GVr. (25)

C. Required Dynamics Equations of the Object

By reusing Eq. (4), the object’s required force/moment
vector can be defined as

O1F∗r = YO1θO1 +KO1(
O1Vr−O1V ). (26)

In Eq. (26), KO1 is the velocity feedback control gain matrix.
Furthermore, by reusing Eq. (11), the net force/moment

vector in frame {TO1} can be defined as

TO1F∗r = TO1 UO1
TO1 Fr−TO1 UG

GFr, (27)

where the required external force vector
GFr = [0 0 0 0 0 0]T (28)

is designed similarly to Eq. (12).



D. Required Dynamics Equations for the Unactuated Open
Chain

The required dynamics equations for the unactuated open
chain can be defined by using the required linear/angular
velocity vectors in Eqs. (20)–(23) and by reusing Eq. (4) as

B j F∗r = YB j θB j +KB j(
B jVr−B j V ), (29)

where j ∈ {1,3} is the order number of the frame.
Thus, in view of Eqs. (14)–(17), the total required

force/moment vectors are

B3Fr = B3F∗r +B3 UB4
B4Fr + zJ2q̈2r (30)

B2Fr = B2UB3
B3Fr (31)

B1Fr = B1F∗+B1UB2
B2Fr + zJ1q̈1r (32)

B0Fr = B0UB1
B1Fr. (33)

The required force constraints for unactuated joints can be
defined, similar to Eq. (18), as

0 = zT B j Fr + τ fir , (34)

where j ∈ {1,3} is the order number of the frame, τ fir is
the required friction constraint for the relative joint, and i ∈
{1,2} is the order number of the joint. The required friction
constraint for the joints can be written by reusing Eq. (19) as

τ fir = kviq̇ir + kcitanh(nq̇ir), (35)

where i ∈ {1,2} is the order number of the joint.

V. DEFINITION OF THE RELASING TERMS

In this section, the terms Jiq̈i and Jiq̈ir are defined, which are
released to satisfy the force/moment constraints in Eqs. (18)
and (34) in Eqs. (14), (16), (30), and (32), when i ∈ {1,2}
is the order number of the joint. As is discussed in [12],
the number of the force/moment constraints is equal to the
released variables. In this paper, the open chain consists of two
unactuated joints; thus, the released variables to these joints
are angular accelerations of the joints.

According to Eqs. (14), (16), and (18), the released terms
for the joints can be written as

J2q̈2 =−zT B3F∗− zT B3UB4
B4F− τ f2 (36)

J1q̈1 =−zT B1F∗− zT B1UB2
B2F− τ f1 . (37)

Because in commercial manipulators joint angles are mecha-
nically limited, the following assumption can be made:

Assumption 1. An unactuated open chain cannot reach its
unstable equilibrium point.

According to Assumption 1, the joint angular acceleration
is zero, when the joint is in an equilibrium point in a free-
space motion. In the equilibrium point, the torque constraints
(18) and (34) hold. When the angular acceleration is different
from zero, the mapping coefficients J2 and J1 can be solved
from Eqs. (36) and (37).

The required mapping coefficients according to Eqs. (30),
(32), and (34) for the unactuated joints can be written as

J2rq̈2r =−zT B3F∗− zT B3UB4
B4 F− τ f2r (38)

J1rq̈1r =−zT B1F∗− zT B1UB2
B2F− τ f1r . (39)

When the required acceleration is different from zero, mapping
coefficients J2r and J1r can be solved from Eqs. (38) and (39).

VI. STABILITY ANALYSIS FOR THE SYSTEM

This section presents the virtual stability analysis for the
unactuated open chain. The virtual stability of the object
and the entire system virtual stability are proven [9]. The
stability analysis for a similar redundant hydraulic manipulator
presented in [13].

A. Stability Analysis of the Unactuated Open Chain

The virtual stability of the unactuated open chain can be
ensured by using Theorem 1 and Definition 2.16 in [12].

Theorem 1. Consider the open chain, composed of two
unactuated joints (joint 1 and joint 2) and two rigid links (link
1 and link 3), depicted in Fig. 2, described by Eqs. (5)–(8) and
(13)–(18), and with the control equations Eqs. (20)–(23) and
(29)–(34). This subsystem is virtually stable with its affiliated
vector B jVr − B jV,∀ j ∈ {1,3} being a virtual function in L2
and L∞ in the sense of Definition 2.17 in [12].

Proof. Let the non-negative accompanying functions νoc for
the studied open chain be

νoc = νB1 +νB3 , (40)

where νB1 and νB3 denote the non-negative accompanying
functions for the rigid bodies of the unactuated open chain
and are defined as

νB j =
1
2
(B jVr−B jV )T MB j(

B jVr−B jV ), (41)

where j ∈ {1,3} is the order number of the coordinate frame.
Subtracting Eq. (13) from Eq. (29) yields

B j F∗r −B j F∗ = MB j
d
dt (

B jVr−B jV ) (42)

+CB j(
B j ω)(B jVr−B jV )+KB j(

B jVr−B jV ).

Further, the skew-symmetric property of CB j(
B j ω) yields

(B jVr−B jV )T C(B j ω)(B jVr−B jV ) = 0. (43)

Now, let the non-negative accompanying function for the
unactuated open chain be written as

νB j =
1
2
(B jVr−B jV )T MB j(

B jVr−B jV ). (44)



By differentiating Eq. (44), the time derivative of the νB j

can be defined as

ν̇B j = (B jVr−B jV )T MB j

d
dt
(B jVr−B jV )

= (B jVr−B jV )T
[
(B j F∗r −B j F∗)−

C(B j ω)(B jVr−B jV )−KB j(
B jVr−B jV )

]
= −(B jVr−B jV )T KB j(

B jVr−B jV )

+(B jVr−B jV )T (B j F∗r −B j F∗). (45)

Then, it follows from Definition 2.16 in [12] and Eqs. (5)–
(8), (14)–(17), (18), (20)–(23), (30)–(33) and (34) that the last
term in (45) can be expressed as

(B jVr−B jV )T (B j F∗r −B j F∗)

= (B jVr−B jV )T
[
(B j Fr−B j F)−B j UB j+1(

B j+1Fr−B j+1 F)
]

=
[

B j−1UT
B j
(B j−1Vr−B j−1V )+ z(q̇ir− q̇1)

]T
(B j Fr−B j F)

−
[

B j UT
B j+1

(B jVr−B jV )
]T

(B j+1Fr−B j+1 F)

= (B j−1Vr−B j−1V )T B j−1UB j(
B j Fr−B j F)

+(q̇ir− q̇i)zT (B j Fr−B j F)

− (B j+1Vr−B j+1V )T (B j+1Fr−B j+1 F)

= pB j−1 − pB j+1 +(q̇ir− q̇i)zT (B j Fr−B j F), (46)

where pB j+1 and pB j−1 are virtual power flows (VPFs) (see
Definition 2.16 in [12]). In view of Eqs. (19), (18), and (34),
the last term in (46) can be written as

(q̇ir− q̇i)zT (B j Fr−B j F)

=−(q̇ir− q̇i)
[
kvi(q̇ir− q̇i)+ kci(tanh(nq̇ir)− tanh(nq̇i))

]
=−kvi(q̇ir− q̇i)

2− (q̇ir− q̇i)kci(tanh(nq̇ir)− tanh(nq̇i)), (47)

where

(q̇ir− q̇i)kci(tanh(nq̇ir)− tanh(nq̇i)),≥ 0 (48)

holds ∀i ∈ {1,2}.
Then, taking the time derivative from (40) and by using Eqs.

(45)–(48), ∀i ∈ {1,2}, and ∀ j ∈ {1,3}, yields

ν̇oc6 = ν̇B1 + ν̇B3

≤ −(B1Vr−B1V )T KB1(
B1Vr−B1V )

−(B3Vr−B3V )T KB3(
B3Vr−B1V )

−kv1(q̇1r− q̇1)
2− kv3(q̇3r− q̇3)

2

+pB0 − pB4 , (49)

Consider that the open chain has one driven VCP associated
with frame {B0} and one driving VCPs associated with frame
{B4}. Using (40), (41), and (49) completes the proof of
the virtual stability of the unactuated open chain, in the
sense of Definition 2.17 in [12], ensuring that B jVr − B jV ∈
L2

⋂
L∞,∀ j ∈ {1,3}, and (q̇ir− q̇i)

⋂
L∞,∀i ∈ {1,2}.

TABLE I
VDC CONTROLLER FEEDBACK GAINS

Lift cylinder Tilt cylinder Extension cylinder
λx = 35.6 [m

s ] λx = 35 [m
s ] λx = 36 [m

s ]

kf = 4.3·10−6 [m2

Ns ] kf = 5·10−6 [m2

Ns ] kf = 2.6·10−6 [m2

Ns ]
kx = 0.041 [m] kx = 0.039 [m] kx = 0.025 [m]

B. Stability Analysis of the Entire System

The entire system is stable in view of Theorem 2.1 in [12],
if all the subsystems are proof of the virtual stability, and
all the VPF’s can be canceled out in the summation of the
time derivative of all non-negative accompanying functions, in
view of Lemma 2.3 in [12]. The virtual stability of the object
is proven in [9], and the virtual stabilities of the remaining
subsystems (manipulator subsystems; see Fig. 2a) are proven
in [13].

VII. EXPERIMENTAL RESULTS

The experiments, with a full-scale commercial Hiab 033
hydraulic manipulator (see Fig. 1), demonstrated the control
performance of the proposed anti-sway controller. The experi-
mental setup consisted of the following hardware components:

1) PowerPC-based dSpace ds1103 with sample time of 1 ms
2) Bosch Rexroth NG6 size servo solenoid valve (40 l/min

at ∆p = 3.5 MPa per notch) for Lift cylinder
3) Bosch Rexroth NG10 size servo solenoid valve (50 l/min

at ∆p = 3.5 MPa per notch) for Tilt cylinder
4) Bosch Rexroth NG10 size servo solenoid valve (100 l/min

at ∆p = 3.5 MPa per notch) for Extension cylinder
5) Lift and Tilt cylinder dimensions: φ80/60–607
6) Extension cylinder dimensions: φ45/30–1350
7) Druck PTX1400 pressure transmitter (range 25 MPa)
8) Fraba Incremental encoders (16384 inc/rev)
9) Vahva B15 (mass 90 kg) gripper and a load mass 150 kg

10) Unactuated rigid links l1 = 0.13 m and l2 = 0.21 m
Control laws for the hydraulic cylinders of the manipulator

are given in [13]. Table I shows the feedback gains for the
lift, tilt, and extension cylinders used in the present study.
In Table I, λx, kx and kf are the cylinder’s piston position,
velocity, and force feedback gains. The joint position feedback
gains in Eq. (24) were λu1 = 28 and λu2 = 18.

In the experiments, the proposed anti-sway controller was
demonstrated in a case study of redundant vertical plane
motion. A freely swaying motion of the manipulator tip
is generated by designing a point-to-point quintic reference
trajectory, which is generated for motions along the x-axis
(see Fig. 1). Fig. 4 presents the results for the compensated
and uncompensated systems, when the load center of mass
moves from position 2.3 m to 2.7 m in 1.2 s. The solid line
denotes the desired position trajectory, the dashed line denotes
the results to anti-sway compensation, and the dotted line
denotes the results without damping control (the manipulator
was controlled with a well-tuned p-control). Fig. 4 shows that
the proposed anti-sway controller can efficiently damp the
swaying of the load. The settling time (2% from the final
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value) for the anti-sway controlled system is approximately 3
s, when the corresponding settling time for the uncompensated
system is more than 20 seconds. The persistent overshoot of
the compensated system is approximately 7%, which is less
than the overshoot of the uncontrolled system. By comparing
our previous results in [9] to Fig. 4, it can be observed that
faster ramp does not affect to the settling time.

Fig. 5 shows the effect of the proposed friction model to the
load damping with the same trajectory as in Fig. 4. The dashed
line presents the results with the friction model, and the dotted
line shows the results without the friction model in view of our
previous study [9]. As Fig. 5 shows the friction model effect
to compensate for the swaying of the load. As Fig. 4 shows,
without an anti-sway controller the first unactuated joint is
lightly very damped. For that reason, the friction model effects
on the damping of the load are low in this case. The friction
model is more significant in cases where the load mass affects
the damping less.

VIII. CONCLUSIONS

This paper proposed, for the first time, a nonlinear full
model-based anti-sway control method for the coordinate
controlled redundant hydraulic manipulator. Furthermore, the
stability of the proposed anti-sway controller was guaranteed
in stability analysis. The experiments, with a full-scale coor-
dinate controlled redundant hydraulic manipulator, verify that
the proposed anti-sway controller damps the swaying of the

load efficiently. In this case, the proposed friction model effect
on the load damping is low, because of the lightly damped
joints.

In future studies, the proposed anti-sway control method
will be implemented to damp the load swaying motions in
both unactuated directions. As demonstrated in [14], [15],
the parameter adaption for uncertain parameters (e.g., in
friction and rigid body dynamics) can significantly improve the
control performance of hydraulic systems. In future studies,
the parameter adaption will be incorporated. Furthermore,
the proposed anti-sway controller will be extended to cover
asymmetric loads.
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