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Abstract—In this paper, we study the performance of a finite-
element-based observer in estimating the flexural degrees of
freedom (DOF) of a single-link flexible long-reach manipulator.
The observability of the system confirms that all the flexural
states of the system can be estimated using a single angular
velocity measurement. The inputs to the observer are obtained
from retrofittable and low-cost inertial sensors suitable for mobile
machines. Results of the observer’s performance with different
measured states and varying loads are provided. Validation of
the end-point position is carried out using an OptiTrackTM

camera system. The performance of the estimated variables as
feedback signals in high-performance control is demonstrated
using a nonlinear model-based controller based on the virtual
decomposition control framework. The test setup consists of a
hydraulically driven 4.5-meter-long beam having a maximum
tip mass of 70 kg, resulting in a static deflection of -56.7 cm.
The initial experiments on the 1-DOF system indicate that the
proposed method is effective.

I. INTRODUCTION

Effective control of flexible manipulators is a long-standing
problem, which is caused by the infinite-dimensional prop-
erty of deformable body dynamics. Accurate positioning of
the end-point of a flexible link becomes challenging due to
structural deformations, such as bending. For control purposes,
it is necessary to obtain a measurement or an estimate of the
end-point position. Estimation schemes are often employed
due to the large number of flexural degrees of freedom (DOF)
in the system, which realistically cannot all be measured.
With mobile heavy-duty manipulators that are used in varying
weather conditions and harsh environments, the choice of the
measuring method carries great significance. An important
aspect of the measured or estimated end-point position is
that the signal quality is strong enough to be used for high-
performance control in feedback loops. Based on a recent
literature review on the control and sensor systems of flexible
manipulators [1], the sensor types used to obtain the end-
point position include strain-gauges, optical devices, cameras,
piezoelectric materials, ultrasonic sensors, accelerometers, and
gyroscopes. However, most studies lack in practicality and
present only simulation results.

Vision-based systems have been on the rise; see [2]–[4],
for example. The experiments in the aforementioned studies
were carried out with small, laboratory-grade systems. The
main challenge with vision-based systems is the time delay
between image capturing and processing [1]. Line of sight

is also a fundamental problem, especially with long-reach
flexible manipulator arms, for which few studies can be found
in the literature, for example [5] and [6]. The first study
used a joint angle measurement with optical link deflection
sensors to estimate the tip position, whereas the second study
utilized a landmark tracking system based on a stationary
camera mounted on a wall. While successful in laboratory
conditions, these optical and visual sensing methods are not
feasible for heavy machinery, such as forestry machines, that
operate under various weather conditions. In this paper, the
aim was to find a realistic and easily applicable way to estimate
the end-point position for high-performance control purposes
of mobile, long-reach flexible manipulators.

Recently, the use of inertial sensors in joint state estimation
of robotic manipulators has received considerable attention.
A humanoid robot’s joint velocities and accelerations were
estimated using link-mounted inertial measuring unit (IMU)
sensors in [7]. In [8], a distributed IMU Kalman filter was in-
troduced for joint velocity estimation of a hydraulic humanoid
robot. In [9], a gravity-referenced joint angle estimation
scheme using IMUs was proposed for multi-DOF hydraulic
manipulators. These previous studies show promising results
for rigid body manipulators. In this paper, we extend the
inertial-based principles for single-link flexible manipulators.

In this work, the finite-element method (FEM) is used to
estimate the deformations of an extremely flexible boom based
on angular velocity measurements from IMUs. To accomplish
this, Kalman filtering is used. The FEM (for example, see [10])
establishes a rigorous relationship between the deflections and
velocities at certain points along the flexible link. It will
be shown that the FEM model used in the observer design
is fully observable. This gives the opportunity of estimating
the deflections by using strap-on IMUs that are retrofittable
for mobile machines used in outdoor environments. While
finite-element (FE) modeling of flexible structures is well
established, a proper study on the performance of an FE-based
state observer in the context of high-performance control of
flexible manipulators has been lacking. This paper also fills
this knowledge gap. The estimated tip position is verified by
using an OptiTrack V120:Trio camera system as a ground-
truth reference.

The performance of the proposed state estimation in high-
performance control is demonstrated using a controller based
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Fig. 1. The finite-element beam model used for the system. The part of the
beam between the rotating axis and the cylinder attachment point is interpreted
as the radius L0 for the center hub, as this part of the beam is assumed to
be rigid in the observer design.

on the virtual decomposition control (VDC) approach [11],
which has been proven to be highly effective with rigid
hydraulic manipulators [12]. VDC is a stability-guaranteed
nonlinear model-based control method that is increasingly
gaining academic attention. The performance of the VDC can
also easily be benchmarked using the performance indicator
presented in [13]. In the scope of this paper, only the equations
for the end-point control objective are presented. To achieve
this control objective, reliable measurement or estimation of
the tip position is imperative.

This paper is structured as follows: Section II describes
the observer’s structure. In Section III, the experimental setup
is presented; this is followed by the results in Section IV.
Concluding remarks are given in Section V.

II. MODELING AND CONTROL

A. Finite-Element Beam Model

Using the Euler-Bernoulli beam theory, the governing equa-
tions of motion for a planar flexible beam that rotates around
a rigid center hub are given as follows [14]:

Ir θ̈

∫ L

L0

ρx(xθ̈ + ÿ)dx+mlL(Lθ̈ + ÿt)) + Il(θ̈ + ÿ′t) = τ

(1)

ρ(xθ̈ + ÿ) + EIy′′′′ = 0 (2)

where θ denotes the angle of the beam measured from the
rotating axis, Ir denotes the inertia of the center hub, ρ denotes
the mass per unit length of the beam, ml denotes the load
mass, Il denotes the inertia of the load mass, L0 denotes the
radius of the center hub, L denotes the total length of the
manipulator, subscript t denotes the tip of the beam, E denotes
Young’s modulus of elasticity, I denotes the area moment of
inertia of the beam’s cross-section, and τ denotes the torque at
the center hub. The expression ˙(∗) denotes differentiation with
respect to time and (∗)′ denotes differentiation with respect to
the spatial variable x. Gravity due to the beam’s own mass

is excluded. The system is subject to the following boundary
conditions:

y = y′ = 0, at x = L0 (3)

EIy′′ = −Il(θ̈ + ÿ′), at x = L (4)

EIy′′′ = ml(Lθ̈ + ÿ), at x = L (5)

The infinite-dimensional system is truncated into a finite
system by applying the extended Hamilton’s principle. The
system is illustrated in Fig. 1. The extended Hamilton’s
principle is derived for each element and it is given as follows:∫ t2

t1

(δKe − δTe + δWe)dt = 0 (6)

where Ke denotes the kinetic energy of an element, Te denotes
the potential energy of an element, We denotes external work
done to the system, and δ indicates virtual property. The energy
equations for an element are formulated as follows:

Ke =

∫ xe+le

xe

ρ(ẏe + xθ̇)2dx (7)

Te =

∫ xe+le

xe

EI(y′′e )2dx (8)

where xe denotes the initial position of a given element along
the link and le denotes the length of the element. Then, ye is
defined using spatial interpolation as follows:

ye(x, t) = Φ1(x)q1(t)+Φ2(x)q′1(t)+Φ3(x)q2(t)+Φ4(x)q′2(t)
(9)

where q1, q′1, q2, and q′2 denote the flexural DOF of an element.
Namely, q1 denotes the left-side deflection, q′1 denotes the left-
side slope, q2 denotes the right-side deflection, and q′2 denotes
the right-side slope. The spatial interpolation is conducted with
Hermite polynomials as the shape functions Φ1, Φ2, Φ3, and
Φ4, which are defined as follows [10]:

Φ1(x) = 1− 3x2

le
2 +

2x3

le
3 (10)

Φ2(x) = x− 2x2

le
+
x3

le
2 (11)

Φ3(x) =
3x2

le
2 −

2x3

le
3 (12)

Φ4(x) = −x
2

le
+
x3

le
2 (13)

Substituting (9), using (10)-(13), into (7) and (8) and inte-
grating by parts yields the equation of motion for an element
[10]:

Mi
eq̈e + Ki

eqe = 0 (14)

where superscript i denotes the ith element and qe is a vector
containing the elemental DOF. The element inertia matrix is
denoted by Me and the element stiffness matrix is denoted by
Ke. In view of [10], the same principle is used for the elements
that contain the load mass and the rigid center body. The
element equations are then combined into global governing



equations using standard FE analysis. The global equations
are formulated as follows:

Mq̈ + Kq = Fu (15)

where the generalized coordinate vector q and the external
force vector F are of the following forms:

q = [θ q1 q
′
1 q2 q

′
2 · · · qn+1 q

′
n+1]T (16)

F = [0 0 0 · · · 1 0]T (17)

Here n denotes the number of FEs. The global inertia and
stiffness matrices are defined as follows [10]:

M =

[
Ir +Mθθ Mθq

Mqθ Mqq

]
, K =

[
0 0
0 Kqq

]
(18)

where Mqq and Kqq contain the flexural terms, Mqθ and Mθq

are vectors containing the coupling terms between rigid and
flexural body motion, and Ir+Mθθ denotes a scalar rigid body
term. For the purpose of constructing an observer for the sys-
tem, the second-order equation of motion (15) is transformed
into a first-order state-space presentation. Furthermore, only
the flexural terms are used for the observer:

ẋss =
d

dt

[
qf
q̇f

]
=

[
0 I

−M−1qq Kqq 0

] [
qf
q̇f

]
+

[
0

M−1qq Ff

]
uss

(19)
= Axss + Buss, yss = Cxss + Duss (20)

where Mqq, Kqq, and the identity matrix I are dimensioned
2n× 2n. The DOF related to the rotating angle θ is removed
from (16) and (17), making qf , q̇f , and Ff dimensioned 2n×1.

B. Observability of the System

Due to the large number of state variables in the system,
the often used observability matrix method could not be used
to prove that the states are observable. Instead, the Popov-
Belevitch-Hautus test for observability [15] was used, which
states that a state equation specified by its state matrix A and
output matrix C is observable if and only if

rank
[

C
λI−A

]
= 4n (21)

for all λ ∈ C, where λ contains the eigenvalues of the system.
The test indicates a full rank for the system (20); thus, it is
fully observable.

C. Observer Design

An observer design for the system (20) is characterized by:

˙̂xss = Ax̂ss + Buss + G(yss −Cx̂ss) (22)

where ˆ(∗) denotes an estimated variable and G denotes the
observer gain matrix. In order to find an optimal solution for
the gain matrix, an algebraic Riccati equation (ARE) is used.
Based on duality, it stands that the observer gain matrix can
be obtained using linear quadratic regulator (LQR) algorithm
by replacing (A,B) with (AT ,CT ) [10]. Considering the
dualism and using the following ARE yields:

SAT + AS− SCTR−1CS + Q = 0 (23)

where S denotes the Riccati matrix, while R and Q denote
two LQR weighting matrices. The observer gain matrix can
then be solved from:

G = R−1CS (24)

Finally, the state-space presentation for the observer can be
expressed as follows:{

˙̂xss = Asysx̂ss + Bsysu
∗

y∗ = Csysx̂ss + Dsysu
∗ (25)

with u∗ = [yTss | uTss]T . The matrices are of the following
forms:

Asys = A− (GTC), Bsys = [GT | B] (26)
Csys = I, Dsys = 0 (27)

where Asys and Csys are dimensioned 4n× 4n, while Bsys

and Dsys are dimensioned 4n× the amount of observer inputs.
Five elements were used in the modeling process. Omitting

the boom angle θ (Node 1) from the observer design left five
nodes remaining, all of which were assigned an IMU (see
Fig. 2). In accordance with (17), the force resulting from the
load mass at the tip of the boom was used as the input uss
to the observer. The orientation of the force was accounted
for by using the summation of the estimated tip slope and a
joint angle measurement. For the observer input yss, measured
angular velocities from the IMUs were used.

D. Virtual Decomposition Control

A controller was designed for the system using the VDC
approach. The controller design and performance will be
reported in a separate paper [16]. In the scope of this paper,
the control equations associated with the estimated variables
are given, along with a brief description of VDC.

The VDC approach (see [11]) is a nonlinear model-based
control method that takes advantage of Newton–Euler dynam-
ics. The fundamental idea is to virtually decompose a complex
robot into subsystems. The dynamics and control equations
are handled on the subsystem level, making VDC subsystem-
dynamics-based. The VDC framework also includes rigorous
tools for stability analysis, which is also carried out at the
subsystem level.

When studying a single-link flexible manipulator, it is
convenient and valid to use an arc approximation to describe
the tip position (for example, see [17]). The flexural DOF
given by the FE beam model are directly applicable to the
control equations. Two variables are formulated in order to
describe the end-point position of the boom as follows:

σ = Lθ + qn+1 (28)
ϕ = θ + q′n+1 (29)

where σ denotes the arc length and ϕ denotes the tip angle.
Respectively, the deflection at the tip qn+1 and the slope at
the tip q′n+1 are obtained as estimates from the observer. The



Fig. 2. The experimental flexible boom. The IMUs were used to estimate
the tip position, whereas camera measurements were used for validation. The
camera system forms a frame at the center of the marker and measures its
orientation and velocities with respect to the camera. The displacement of
the marker from the camera with respect to the Z-axis was used only for
validating the estimated end-point position.

control equations for the end-point of the flexible link are given
as follows:

σ̇r = σ̇d +Kσ

(
σd − σ

)
(30)

ϕ̇r = ϕ̇d +Kϕ

(
ϕd − ϕ

)
(31)

where the subscript r denotes a required (design) variable
and the subscript d denotes a desired variable (reference
trajectory). Required variables are a unique property of the
VDC approach. Two control gains are denoted by Kσ and
Kϕ. The control objective is to follow a given path while
simultaneously damping vibration.

III. EXPERIMENTAL SETUP

The target system, illustrated in Fig. 2, is a single-link
flexible manipulator actuated by a hydraulic cylinder. The 4.5-
meter-long hollow boom is constructed out of SSAB Strenx
700 MC high-strength steel, making it very flexible and
resistant to permanent structural deformations. The steel has a
yield strength of 700 MPa and an ultimate strength of 750–950
MPa. The beam’s own mass is approximately 23 kg, while a
maximum load mass of 70 kg is used. The hydraulics consist
of a �35/25–300 mm-sized cylinder and a Bosch Rexroth
4WRPEH servo valve with a nominal flow of 24 dm3/min at
∆p = 3.5 MPa per notch. The joint angle θ was measured
using a SICK Stegmann DGS60 encoder. The IMUs are
based on ADIS16485 iSensor R© devices, which each contain a
triaxial accelerometer and a triaxial gyroscope. The measuring
ranges for the accelerometer and for the gyroscope are ±5g
and ±450◦/sec, respectively. The IMUs were connected to a
CAN bus. An OptiTrack V120:Trio optical tracking system
consisting of three cameras was used as a reference sensor.
The visual measurements were read via a UDP connection. A
dSPACE control system was used for collecting all the sensor
data and implementing the observer and VDC. A sampling
period of 2.5 ms was used in the implementation.

IV. RESULTS

Four different observer input combinations were experi-
mented with. The cases are presented in Table I, in which the
IMU numbering corresponds to the one illustrated in Fig. 2.
IMU5 was used in case 1, which was expected to provide
the best results, as estimating the nodal variables at the tip
would benefit the most from measuring the angular velocity
at the same point. However, placing the sensor at the tip of
a manipulator may often be out of question. In cases 3 and
4, IMUs further from the tip were used. In case 2, two IMUs
were used to see how the performance changes in comparison
with a single IMU. The performance was also tested with two
different load masses.

It is well known that the Euler-Bernoulli beam theory
assumes only small deformations. Furthermore, the use of
the FEM leads into an overestimated stiffness matrix [18].
Thus, the model parameters were tuned off-line based on the
camera measurements; the estimated height of the boom tip
was first configured to reflect reality by parameterizing E
in the FE model. Second, the amplitude of the oscillation
was compared between the camera measurements and the
estimated deflections. Fig. 3 illustrates a situation in which the
boom was set to vibrate freely. The amplitudes were roughly
matched by tuning ml in the model. Both E and ml require
reconfiguration when the load mass changes. The load mass
of 70 kg yields a static tip deflection of -56.7 cm, whereas the
20 kg load mass results in a static tip deflection of -41.2 cm.

Fig. 4 shows the estimated tip angular velocities with a 70
kg load mass during the free vibration. Respectively, Fig. 5
illustrates the estimated angular velocities at the tip with a
20 kg load mass during the free vibration. As it shows,
the estimated angular velocities are very close to the actual
measured value in each case. The same set of parameters were
used with the 70 kg load mass and another set with the 20 kg
load mass; only the IMU input(s) changed. Unsurprisingly,
there are no significant differences between the estimated
tip deflections (see, Fig. 3) based on the input IMU(s). For
example, using IMU3, located near the center of the link,
produces approximately the same estimated tip deflection as
using IMU5 does.

In Fig. 6, a predefined trajectory using the high-performance
VDC controller was driven with a 70 kg load mass using each
observer to provide the estimates for the control equations
(30)–(31). The approximated arc length in each case was
compared with its respective camera measurement. Fig. 7
illustrates the same measurements with a 20 kg load mass.

Remark 1: The reference signals for the controller are not
presented for clarity, as the focus is in the state estimation.

Remark 2: A static error of 9.5 cm occurs in the visual
measurements due to restrictions in the marker placement.

Remark 3: The tip angle in (29) is not considered, as no
reliable measurement for its value could be achieved with the
OptiTrack setup used.

In Fig. 8, a sine wave of 0.5 Hz frequency and 0.1 m
amplitude was added to the reference signal. As it shows,



TABLE I
DETAILED CONFIGURATIONS FOR EACH MEASURED CASE.

Case 1 2 3 4 a / b

Observer input IMU 5 1 & 3 3 1 Load mass 70kg / 20kg

the amplitudes of the visual measurements and the arc length
approximations (28) match effectively. Based on the results,
only one IMU is sufficient in estimating the end-point position
for successful control. It is also significant that this method
requires no sensor at the tip.

Fig. 3. The boom was set to vibrate freely. The marker position is expressed
with respect to the Z-axis (see Fig. 2) of the camera. (a) Camera measurement
with a 70 kg load mass. (b) Estimated tip deflections in each case with a 70
kg load mass. (c) Camera measurement with a 20 kg load mass. (d) Estimated
tip deflections in each case with a 20 kg load mass.

V. DISCUSSION AND CONCLUSION

This study proposed an IMU-based state estimation scheme
using the FEM for a 1-DOF flexible long-reach manipulator.
A low number of FEs was deemed sufficient, making the
real-time control implementation of the observer simple. The
system was proven fully observable. The rigorous relations
between the inertia and the stiffness in the FE formulations
enable the estimation of deflection through velocity measure-
ments. The results of this initial study indicate that this method
is effective in estimating the end-point position. As expected,
however, diverging from the actual system parameters is re-
quired. Notably, the location of the IMU along the link appears
to be not very significant in estimating the tip deflection, as
long as the location is a nodal point of the FE model.

The performance of the estimated variables as feedback
signals in high-performance control was verified by incorporat-
ing the estimates to the model-based VDC control equations.
The proposed scheme of using strap-on, weatherproof (IP67),
and shock resistant IMUs with FEM may provide a reliable

Fig. 4. Estimated angular velocities at the tip using a 70 kg load mass. Results
for all four observers are presented and the measured angular velocity at the
tip (IMU5) is plotted with the estimates.

Fig. 5. Estimated angular velocities at the tip using a 20 kg load mass. Results
for all four observers are presented and the measured angular velocity at the
tip (IMU5) is plotted with the estimates.

solution for the state estimation for control purposes of long-
reach flexible multi-DOF manipulators, especially for those
used in outdoor environments. Future research will focus
on extending the state estimation for n-DOF flexible-link
manipulators and their contact force control.
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