

Kvazzup: Open Software for HEVC Video Calls

Joni Räsänen, Marko Viitanen, Jarno Vanne, Timo D. Hämäläinen

Laboratory of Pervasive Computing

Tampere University of Technology, Finland

{joni.rasanen, marko.viitanen, jarno.vanne, timo.d.hamalainen}@tut.fi

Abstract— This paper introduces an open-source HEVC video

call application called Kvazzup. This academic proposal is the first

HEVC-based end-to-end video call system with a user-friendly

Graphical User Interface for call management. Kvazzup is built

on the Qt framework and it makes use of four open-source tools:

Kvazaar for HEVC encoding, OpenHEVC for HEVC decoding,

Opus codec for audio coding, and Live555 for managing

RTP/RTCP traffic. In our experiments, Kvazzup is prototyped

with low-complexity VGA and high-quality 720p video calls

between two desktops. On an Intel 4-core i5 processor, the VGA

call accounts for 17% of the total CPU time. Averagely, it requires

a bit rate of 0.31 Mbit/s out of which 0.26 Mbit/s is taken by video

and 0.05 Mbit/s by audio. In the 720p call, the respective figures

are 46%, 1.13 Mbit/s, 1.08 Mbit/s, and 0.05 Mbit/s. These test cases

also validate the feasibility of HEVC in different types of video

calls. HEVC coding is shown to account for around 34% of the

Kvazzup processing time in the VGA call and 45% in the 720p call.

Keywords—Video call; High Efficiency Video Coding (HEVC);

Real-time Transport Protocol (RTP); peer-to-peer; Kvazzup video

call application

I. INTRODUCTION

Globally, IP video traffic is forecast to grow threefold from

2016 to 2021 [1]. One of the drivers behind this growth is video

communications fostered by advanced video features in

consumer devices, faster IP networks, and popular Internet

video telephony services such as Skype [2] with 300 million

active users already. Particularly, two-party video calls and

multi-party video conferencing are increasingly used in the

business sector where IP traffic is expected to be three times as

high by 2021 [1]. Mitigating this exponential growth means

taking efficient video compression into use in video call

applications.

The latest international video coding standard, High

Efficiency Video Coding (HEVC/H.265) [3] reduces bit rate by

almost 40% over the preceding state-of-the-art standard

AVC/H.264 [4] for the same objective visual quality but at

around 40% encoding complexity overhead [5]. Thus, HEVC is

a promising candidate for video telephony applications to

deliver high-quality video content at low a bit rate.

Up to this date, many video telephony systems have been

released but most of them are commercial products whose

features and operating principles are confidential. Therefore,

this work only focuses on open-source solutions out of which

the most notable ones are Linphone [6], Ekiga [7], BareSIP [8],

Empathy [9], KPhone [10], Ring [11], Tox [12], yate [13], and

Jitsi [14]. Among these solutions, BareSIP is the only one that

supports HEVC, but it is only a command-line software without

a Graphical User Interface (GUI).

Kvazzup is another HEVC-based video telephony system

initiated and developed by our Ultra Video Group [15]. The

main motivation behind this academic open-source project is to

provide an end-to-end system with the latest video and audio

codecs for high-quality video calls at low bandwidth. In

addition, we seek to increase user friendliness with a clear GUI.

Kvazzup version 0.2 was used in this work and the source code

for it can be found on GitHub [16]. It is licensed under the ISC

license [17].

Kvazzup is written in C++ and built on Qt v5.9 framework

[18], which provides many features such as camera input, audio

input/output, and threading. Kvazzup also makes use of the

following open-source tools: Kvazaar v1.1 [19] for HEVC

encoding, OpenHEVC v2.0 [20] for HEVC decoding, Opus

Codec v1.21 [21] for audio encoding and decoding, and

Live555 Streaming Media v0.90 [22] for RTP/RTCP traffic

management. Currently, Kvazzup operates on Windows and it

can be compiled using MinGW.

The remainder of this paper is organized as follows. Section

2 presents the overall architecture of Kvazzup including its

main components and multimedia tools. Section 3 gives results

of experimental measurements. Section 4 concludes the paper.

II. KVAZZUP VIDEO CALL SYSTEM

Fig. 1 depicts the overall architecture of Kvazzup. It can be

divided into five main components: 1) GUI; 2) Call Control; 3)

Call Initiation; 4) Media Delivery; and 5) Media Processing.

A. Graphical User Interface (GUI)

Fig. 2 presents a snapshot of Kvazzup call between two

Figure 1. High-level architecture of Kvazzup.

Media Delivery Media ProcessingCall Initiation

GUI

Call Control

Kvazaar

OpenHEVC

Opus

Live555

participants. A GUI of a Kvazzup client can be seen on the

laptop screens. The GUI provides the user with the following

features: 1) starting a call to an IP address, 2) turning on/off the

microphone or the camera, 3) displaying a statistics window;

and 4) ending a call. The GUI includes a video widget of the

other call participant and a mirror-like preview for the user to

check the orientation of the camera. A pop-up appears when

someone attempts to call the user and the user can accept or

decline the call.

B. Call Control

Call control is responsible for managing the interactions

between the user and different components of the application.

Upon the user’s request, the Call Control instructs Call

Initiation to send a message to the contact of interest. If the

recipient accepts the call, Call Control is responsible for linking

Media Delivery and Media Processing together and terminating

them when the call ends.

C. Call Initiation

Call Initiation is responsible for Session Initiation Protocol

(SIP) communication. SIP [23] is an RFC standard that

describes a protocol for facilitating communication regarding

the start and termination of a video call. SIP is paired with

Session Description Protocol (SDP) [24] that describes video

call parameters such as ports and media types used.

The SIP implementation includes starting and ending a video

call using SIP requests and responses. Fig. 3 shows how these

messages and responses are processed within Call Initiation.

Call Negotiation keeps track of existing sessions and their state.

The messages are composed to a string using the SIP Composer.

Connection module maintains the Transmission Control

Protocol (TCP) connection via a socket. Outgoing SIP

messages are sent and incoming SIP messages are read using

this socket. In the receiving end, the SIP Parser parses incoming

SIP messages and the Call Negotiation checks their validity.

D. Media Delivery

Live555 is responsible for media delivery via Real-time

Transport Protocol (RTP) and delivery quality monitoring via

RTP Control Protocol (RTCP). The RTP and RTCP protocols

are specified in detail in [25]. Kvazzup sends and receives

separate RTP and RTCP streams for video and audio.

Fig. 4 presents how Kvazzup uses Live555 to stream RTP

and RTCP packets across a network. Framed Source gets its

input from the sending filter graph and Media Sink forwards the

received media to the receiving filter graph. There is one RTCP

Instance associated with both sending and receiving. Live555

applies RTP sinks to receive data and RTP sources to send data.

It operates in a separate thread and uses callbacks to

communicate when ready to send or receive data.

E. Media Processing

Kvazzup performs media processing with a filter graph in

which a series of filters are connected to each other in a

serialized way and each filter has an individual task. In video

filter graph, these tasks are: 1) generating samples; 2) changing

the format of samples; 3) encoding samples; 4) transporting

samples across a network; 5) decoding samples; and 6)

presenting them to the user. Audio processing also includes all

these tasks expect for the format conversion.

The Qt main thread handles the processing of input and

Figure 3. Call Initiation flow.

Figure 4. RTP/RTCP delivery flow with Live555.

Call Negotiation

SIP Composer

Connection

TCP Socket

Call Negotiation

SIP Parser

Connection

TCP Socket

Sending Receiving

Framed
Source

RTP Sink RTP Source Media Sink

RTCP
Instance

RTCP
Instance

RTP

RTCP

Figure 2. A two-way video call in Kvazzup.

SIP/SDP

RTPHEVC

RTPOpus

RTCPHEVC

RTCPOpus

output devices excluding the camera. The Live555 thread

processes the Live555 filters and the rest of the filters have a Qt

thread which continuously processes data. The filters in

Kvazzup have a list of output filters that define where a

generated or processed sample is sent for further processing.

When the filters do not have anything to process, they sleep.

The incoming sample is stored into an input buffer and the filter

wakes up to process samples from the buffer until the buffer is

empty.

Fig. 5 and Fig. 6 describe the video and audio filter graphs of

Kvazzup, respectively. Each box in these graphs is a filter and

each arrow shows how the data moves. A data flow for sending

is shown on the left and a data flow graph for receiving on the

right. Both the video and audio use a Framed Source filter for

sending media over a network and a Media Sink filter for

receiving it.

The video graph starts at the Camera filter that captures

frames from a web camera using the Qt camera module. The

module outputs video in RGB32 format which is converted to

YUV420 format for Kvazaar. The Kvazaar filter encodes the

frames to HEVC video and Live555 sends them across the

network to OpenHEVC for decoding frames back to YUV420

format. Since Qt is not able to show YUV420 coded frames,

they have to be converted to RGB32 format for display. The

frame is upside down when it arrives at the Display filter, which

needs to mirror the image to the correct orientation before

passing it to a video widget for drawing the frame on a screen.

The output from the Camera filter is also attached to a second

Display filter to show the user’s own video feed.

The audio filter graph starts from the Audio Capture filter,

which uses Qt for audio input. The audio format is Pulse Code

Modulation (PCM) single channel audio with a sample rate of

48000 Hz. The Opus encoding and decoding is carried out by

the reference codec [21] and streaming is done using Live555.

The Audio Output filter plays the received sound samples.

III. EXPERIMENTAL RESULTS

Kvazzup was benchmarked by running a two-party video call

on two Windows 7 desktops powered by Intel i5-4570

processor and 16 GB of RAM. The same parameters were set

in Kvazzup clients at both ends. The video streams were shot

by Logitech c930s cameras in a well-illuminated room. Both

streams contained a single person with limited movement.

The complexity of video encoding is a large factor in video

call applications, and therefore the encoding parameters in

Kvazaar are relevant to the performance analysis. The Kvazzup

clients applied Kvazaar ultrafast preset for HEVC video

encoding. Kvazaar was parametrized to use wavefront parallel

processing [3] with four threads. One keyframe was inserted

every 64 frames and each keyframe included parameter sets.

The statistics window of Kvazzup remained hidden and the

viewed video was not scaled.

Performance evaluations were conducted with two call

configurations of Kvazzup: 1) a low-complexity setup with

VGA resolution (640 × 480) and a quantization parameter (QP)

value of 32 in Kvazaar; 2) a high-quality setup with 720p (1280

× 720) resolution and a QP value of 27. The frame rate was 30

frames per second (fps) in both setups.

The complexity analysis was done with Process Explorer

version v16.20 0 by taking three snapshots of the running

processes at 30 seconds intervals and then averaging them. On

average, the VGA call used 17.3% and 720p call 45.6% of total

available CPU time. Hence, Kvazzup can be run with 720p

resolution at 30 fps on a modest desktop without performance

limitations.

Fig. 7 and Fig. 8 present the CPU usage breakdown between

the most compute-intensive parts of Kvazzup in VGA and 720p

calls, respectively. The most notable responsibilities for the “Qt

main” include audio input/output and drawing the images on

screen. The “Other” category includes system libraries used by

Qt. The “Camera” category represents a Windows system

library which Qt uses to capture images. Live555 is responsible

for media delivery in its entirety along with RTCP. The rest of

the categories are filters in Media Processing. Opus encoding

and decoding have been combined under “Opus” and both

display filters are under “Displays”.

Camera, Kvazaar, OpenHEVC, format conversions, and

Display take 69% of the Kvazzup processing time in VGA call

and 84% in 720p call. If we assume that the rest of the

processing time is evenly distributed between audio and video,

the shares of the video and audio are 84 % and 16% in the VGA

call. In 720p call, the respective percentages are 92% and 8%.

The obtained results also validate the feasibility of HEVC in

Figure 5. Video Filter Graph.

Figure 6. Audio Filter Graph.

Kvazaar

Camera

Framed Source

Display

YUV to RGB32

OpenHEVC

Media Sink

RGB32 to YUV

Sending Receiving

Opus Encoder

Audio Capture

Framed Source

Audio Output

Opus Decoder

Media Sink

Sending Receiving

video call applications. HEVC coding (Kvazaar + OpenHEVC)

is shown to account not more than 33.9% of the Kvazzup

processing time in the VGA call and 45.3% in the 720p call.

The bit rate analysis was done with Windows Resource

Monitor. Average video bit rates for the VGA and 720p calls

were 0.31 Mbit/s and 1.13 Mbit/s, respectively. The audio bit

rate was constant 50 kbit/s in both cases.

IV. CONCLUSIONS

This paper presented an end-to-end HEVC video call system

Kvazzup. It is the first open-source solution featuring the latest

video and audio codecs for economic communication as well as

a GUI for convenient call management. The proposed setup

uses Kvazaar for HEVC encoding, OpenHEVC for HEVC

decoding, Opus codec for audio coding, Live555 for media

delivery, and SIP for iniating and ending a call. The system also

validates the feasibility and benefits of HEVC in a video call.

Kvazzup is capable of running on a modest desktop at 720p30

resolution.

In the future, the proposed system will be extended to support

multi-party video conferencing and higher video resolutions.

This way, communication between larger number of

participants can be served with improved user experience.

ACKNOWLEDGMENT

This work was supported in part by the European Celtic-Plus

Project Virtuose and the Academy of Finland (decision no.

301820).

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2016-

2021, Jun. 2017.

[2] Skype [Online]. Available: http://www.skype.com/

[3] High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC

23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[4] Advanced Video Coding for Generic Audiovisual Services, document

ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), ITU-T and ISO/IEC,

Mar. 2009.

[5] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,

“Comparative rate-distortion-complexity analysis of HEVC and AVC
video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,

Dec. 2012, pp. 1885-1898.

[6] Linphone open-source voip software [Online]. Available:

http://www.linphone.org/

[7] Ekiga [Online]. Available: http://www.ekiga.org/

[8] BareSIP [Online]. Available: http://creytiv.com/baresip.html

[9] Empathy [Online]. Available: https://wiki.gnome.org/Apps/Empathy

[10] KPhone [Online]. Available: https://sourceforge.net/projects/kphone/

[11] Ring [Online]. Available: https://ring.cx/

[12] Tox [Online]. Available: https://tox.chat/

[13] Yet Another Telephony Engine [Online]. Available: http://www.yate.ro/

[14] Jitsi [Online]. Available: https://jitsi.org/

[15] Ultra video group [Online]. Available: http://ultravideo.cs.tut.fi/

[16] Kvazzup [Online]. Available: https://github.com/ultravideo/kvazzup

[17] ISC License [Online]. Available: https://opensource.org/licenses/ISC

[18] Qt [Online]. Available: https://www.qt.io/

[19] Kvazaar HEVC encoder [Online]. Available:

https://github.com/ultravideo/kvazaar

[20] OpenHEVC [Online]. Available:

https://github.com/OpenHEVC/openHEVC

[21] Opus Codec [Online]. Available: http://opus-codec.org/

[22] LIVE555 [Online]. Available: http://www.live555.com/

[23] IETF RFC 3261 SIP: Session Initiation Protocol [Online]. Available:

https://www.ietf.org/rfc/rfc3261.txt

[24] IETF RFC 4566 SDP: Session Description Protocol [Online]. Available:

https://www.ietf.org/rfc/rfc4566.txt

[25] IETF RFC 3550 RTP: A Transport Protocol for Real-Time Applications

[Online]. Available: https://www.ietf.org/rfc/rfc3550.txt

Process Explorer, Microsoft [Online]. Available:

https://technet.microsoft.com/en-us/sysinternals/processexplorer.aspx

Figure 7. Relative CPU usage with VGA resolution and QP 32.

Figure 8. Relative CPU usage with 720p resolution and QP 27.

28,6 %

15,6 %

13,0 %

12,1 %

9,4 %

7,5 %

5,3 %

5,3 %

2,1 % 1,0 %

Kvazaar Qt main Camera

Live555 YUV to RGB32 RGB32 to YUV

OpenHEVC Displays Opus

Other

37,7 %

11,6 %12,8 %3,3 %

10,7 %

8,6 %

7,6 %

6,6 %

0,7 % 0,4 %

Kvazaar Qt main Camera

Live555 YUV to RGB32 RGB32 to YUV

OpenHEVC Displays Opus

Other

