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Abstract. Recent developments in live-cell microscopy imaging have led to the 

emergence of Single Cell Biology. This field has also been supported by the de-

velopment of cell segmentation and tracking algorithms for data extraction. The 

validation of these algorithms requires benchmark databases, with manually la-

beled or artifi-cially generated images, so that the ground truth is known.. To 

generate realistic artificial images, we have developed a simulation platform ca-

pable of generating biologically inspired objects with various shapes and size, 

which are able to grow, divide, move and form specific clusters. Using this plat-

form, we compared four tracking algorithms: Simple Nearest-Neighbor (NN), 

NN with Morphology (NNm) and two DBSCAN-based methodologies. We show 

that Simple NN per-forms well on objects with small velocities, while the others 

perform better for higher velocities and when objects form clusters. This platform 

for benchmark images generation and image analysis algorithms testing is openly 

available at (http://griduni.uninova.pt/Clustergen/ClusterGen _v1.0.zip). 

Keywords: Microscopy, Synthetic Time-lapse Image Simulation, Cell Track-

ing, Cluster Tracking 

1 INTRODUCTION 

Recent advances in live-cell microscopy imaging have enhanced images quality and 

triggered the development of techniques for detecting and observing cellular structures 

and their kinetics [1, 2]. 

Live-cell imaging entails the tasks before and during image acquisition at the micro-

scope, which includes image refinement, such as tuning illumination, focus, drift cor-
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rection, stage positioning and microscope components selection (e.g. shutter, lens, cam-

era, stage) [3]. It follows image processing (e.g., registration, segmentation, tracking, 

statistical quantification and background correction) [3, 4]. 

Microscopy software packages include automatic correction algorithms for noise at-

tenuation, contrast correction, illumination compensation, etc [5].  

The first step is usually image registration (overlay of two or more images of the 

same object at different instants, viewpoints or sensors) is a classical step with several 

methods available, which are based on modality, intensity, type of data, dimensionality, 

domain and type of transformation, and registration methodologies [6, 7]. 

The next step is the segmentation of cells or cellular structures of interest [8], where 

these segmented objects are detected, located, and separated from the background. The 

main challenge here is to automatize it with high specificity and sensitivity for a wide 

number of cases. Presently, there are various approaches, such as intensity thresholding, 

feature detection, morphological filtering, region accumulation, deformable model fit-

ting, etc. [8]. 

When handling a time series, one needs track the objects between frames, i.e., to link 

the segmented objects in the actual frame with the ones from the previous frame, so as 

to attain the object’s trajectory. With the information describing the target defined by 

the state sequence Xk, kϵℕ (where ℕ is the set of frames), and the measurements defined 

by Zk, the goal of tracking is to estimate Xk, given all measurements until the moment 

Z1:k [9]. This is made difficult by noise, occlusions, illumination changes, complex mo-

tions and object’s shape dynamics, which can enhance the misidentification of object 

tracks[10]. 

Currently available tools for tracking in different microscopy settings include the 

‘Cell-C’, based on DAPI staining and fluorescence in situ hybridization images [11],  

‘CellTracer’, which applies morphological methods to automatically segment bacterial 

cells, yeast and human cells [12], ‘MicrobeTracker’ and its accessory tool ‘SpotFinder’, 

which segment Escherichia coli and Caulobacter crescentus cells and detected fluores-

cent spots within [13], ‘Schnitzcells’, which segments and tracks E. coli cells in confo-

cal or phase contrast images [14] and, ‘CellAging’, which was developed for cell seg-

mentation and tracking in order to study the segregation and partitioning in cell division 

of protein aggregates [15]. 

The validation of these tools requires gold-standard images, usually manually anno-

tated by biology experts. However, this validation is problematic, as it is expert-de-

pendent (both inter-user and intra-user variability can be high) and is impractical in 

high-throughput data-sets [16]. To overcome this problem, a viable alternative is using 

artificial images of biologically inspired objects. These images, whose ground truth is 

known, can be used for the accurate quantitative evaluation of the image processing 

algorithms [4].  

Next, we provide a comprehensive literature review of existing tools for simulation 

of synthetic microscopy images and of recent developments on cell tracking algorithms. 

In Section 3 we present the contributions to the development of the image simulation 

tools (models and parameters) and the implementation of three different tracking algo-

rithms. In Section 4, the tracking results of several examples are presented using dif-



ferent parameters. Finally, in Section 5, we present our final remarks on the develop-

ment of simulation tool and the results of the three algorithms, along with a description 

of potential future endeavors. 

2 STATE OF THE ART 

2.1 Synthetic Image Generators 

There have been several contests and open challenges on microscopy image processing, 

usually requiring that each methodology is tested on the same benchmark data-sets (ac-

quired by an independent laboratory or created by artificial image generators) [8]. Such 

artificial image generators require realistic biological models, and commonly use theo-

retical and experimental information on the statistical distributions of the object’s be-

havior [17] and spatial and temporal data [18, 19]. If the object studied is a cell, these 

models should include morphology parameters such as cell shape and size, location of 

subcellular structures, kinetic and spatial statistics of cell growth, cell division, cell mi-

gration and models of internal cell functions. 

The architecture of microscopy image simulators based on biological models can be 

divided in three main stages: the digital phantom object generation, the simulation of 

the signal passing through the optical system and the simulation of the image formed 

on a specific sensor [20]. 

Simulators such as ‘SIMCEP’ [21] have provided a gold-standard platform to vali-

date and test image processing tools, such as the previously mentioned ‘CellC’ [11], 

the open-source and Java-based image processor ImageJ, and the commercially availa-

ble MCID Analysis (Imaging Research Inc., Catharines, ON, Canada; Evaluation ver. 

7.0), along with other image processing tools [22]. The phantom objects are generated 

with different cell parameters, such as probability of clustering, cell radius, and cell 

shape and with parameters related to the sensors and the optical system, such as back-

ground noise and illumination disturbance [22, 23]. 

‘CytoPacq’ is another toolbox specifically developed to simulate all three phases. 

For that, it is equipped with three different modules. The first module (‘3D-cytogen’) 

generates the digital object phantom, which imitates the cell structure and behavior 

generating microspheres, granulocytes, HL-60 Nucleus and images of Colon Tissue. 

The second module (‘3D-optigen’) simulates the transmission of the signal through the 

lenses, objective, excitation filter and emission filter (various sets of equipment can be 

simulated). The last module, ‘3D-acquigen’ is the digital CCD camera simulator of the 

image capture process (noise, sampling, digitization) by changing the camera selection, 

the acquisition time, the dynamic range usage and the stage z-step [20, 24]. The same 

group also introduced a novel versatile tool (‘TRAgen’), capable of generating 2D time-

lapses by simulating live cell populations as a ground-truth for the evaluation of cell 

tracking algorithms. In this work, they included models of cell motility, division and 

clustering up to tissue-level density [25]. Both simulators have been an important step 

in the simulation of cellular dynamics, such as intracellular protein or RNA levels or 

even cell migration, division and growth [2, 3]. 



Another toolbox, called ‘SimuCell’ [26], is capable of generating artificial micros-

copy images with heterogeneous cellular populations and diverse cell phenotypes. Each 

cell and their organelles are modeled with different shapes and distinct distributions of 

biomarkers over each shape, which can be affected by the cell’s microenvironment, 

demonstrating the importance of good cell placement (e.g. in clusters, overlapping ex-

isting cells) [26]. 

The ‘CellOrganizer’ toolbox was developed based on laboratory data and using ma-

chine-learning techniques to generate the entire cell, including structures such as the 

nucleus, proteins, cell membrane and cytoplasm components [27]. Although the learn-

based model was capable of extracting a very precise shape model, it cannot be de-

scribed in precise mathematical terms [28]. 

Most image generators have focused on the simulation of morphological features 

and spatial information of the cell. Morphological information can suffice to create 

multidimensional images, but it cannot simulate time-lapsed multimodal and functional 

images, where important time-dependent processes are present. To simulate such im-

ages of bacterial cells, the ‘miSimBa’ (Microscopy Image Simulator of Bacterial Cells) 

tool has been under development [29]. The simulated images can reproduce spatial and 

temporal bacterial time-dependent processes by modeling cell growth, division, motil-

ity and morphology: shape, size and spatial arrangement [29]. Relevantly, these simu-

lation tools can also be used to generate “null-models” [30], to study statistical patterns 

in absence of a particular mechanism (e.g. removing the nucleoid to study how it influ-

ences the spatial distribution of protein aggregates). 

2.2 Cell Tracking 

Several tracking methods have been proposed, differing on how they process available 

object features, type and number of tracked objects [10]. In order to decide which ap-

proach to follow, the object’s representation, defined during the segmentation process, 

must be taken into account. Objects can be represented through points, geometric 

shapes, silhouette and contour, articulated shape model or skeletal model, leading to 

different developmental approaches [10]. Tracking methodologies were divided into 

three main categories: Point Tracking, Kernel Tracking and Silhouette Tracking [10].  

Objects in Point Tracking are represented by points and tracked based on their posi-

tion and motion. The main issues of this methodology are the presence of occlusions 

and the entries and exits of objects in the field of view. This category has been divided 

in Deterministic and Statistical methods. Deterministic methods associate each object 

with the application of motion constraints, while statistical methods take into account 

random perturbations and noise during the tracking process [10]. The Nearest-Neighbor 

(NN) algorithm is the source of all deterministic approaches and uses only the distances 

between objects in k and k-1, matching the objects with the smallest distances. This 

distance can be based on position, shape, color and size [31]. 

An efficient visual object tracking algorithm was proposed by [32] that combines 

NN classification with descriptors based on the scale-invariant feature transform, effi-



cient sub-window search and an updating and pruning method to achieve balance be-

tween stability and plasticity. This method successfully handles occlusions, clutter, and 

changes in scale and appearance. 

The probabilistic data association filter (PDAF) and the joint probabilistic data as-

sociation filter (JPDAF) are the basis for the statistical methods. PDAF uses a weighted 

average of the measurements as input, modeling only one target and considering linear 

dynamics and measurement models. JPDAF is an extension of PDAF, allowing multi-

ple target tracking. The assumptions are the same when calculating the target’s associ-

ation probabilities jointly. In both methods, if the model is linear, then the Kalman Filter 

has a relevant influence. One of the problems of these methods is the incapacity to 

recover from errors, because only the last measurement is used [31]. The Kalman filter 

is an optimal estimator, which means that it assumes parameters from indirect, inaccu-

rate and uncertain observations and if all noise is Gaussian, the linear Kalman filter 

minimizes the mean square error of the estimated parameter. This filter is widely used 

to obtain the optimal state estimate [31]. 

A different method [33] combining the JDPAF and a particle filtering [34] was pro-

posed and was named ‘Monte Carlo JPDAF’. This method uses three models: the first 

with near constant velocity, the second with near constant acceleration and a third with 

both models, which achieved the best performance. 

Another statistical method is the multiple hypothesis tracking (MHT), which is one 

of the most used with point features, but has computational limitations both in time and 

memory [9]. This method postpones data association until enough information is avail-

able. The MHT starts by formulating all possible hypotheses, which develop into a set 

of new hypotheses each time new data arrives, generating a tree of hypothesis [31]. For 

each hypothesis, the position of the object in the next frame is predicted and then com-

pared with the measurements, calculating their distance. The associations are made for 

each hypothesis, generating new hypotheses for the next iteration [10]. The tree of hy-

potheses should be cut, because it grows exponentially with the measured data. This 

can be done by clustering, i.e., measurements are subdivided into independent clusters. 

If a measurement cannot be associated with an existent cluster, a new one is created. 

Another way of cutting the tree is pruning, meaning that as new iterations are added, a 

part of the tree is deleted [31].  

Unlike PDAF and JPDAF, the MHT method can deal with objects entering, exiting 

and being occluded from the field of view. Kernel Tracking can be done using templates 

and density-based appearance models or multi-view appearance models. Templates use 

basic geometric shapes, while multi-view models encode different views of the object. 

Mean shift and KLT (Kenade-Lucas-Tomasi) are examples of template and density-

based appearance models [10]. 

In mean shift, the appearance of the objects being tracked is defined by histograms. 

Similarities are measured using the Bhattacharyya coefficient [35] and the Kullback-

Leibler divergence [36]. The process tries to increase similarity between histograms, 

by repeating each iteration until they converge [37].  

KLT is an optical-flow method, which uses vectors to show the changes in the image 

(i.e. translation). A version of this method was proposed in which the translation of a 

region centered on an interest point is iteratively computed. Then, the tracker evaluates 



the tracked patch, computing a transformation in consecutive frames [38]. These meth-

ods are effective while tracking single objects, but have problems dealing with multiple 

objects. Silhouette Tracking consists in using precise information about the shape of 

the objects, using Shape Matching and searching for an object silhouette and its model 

in each frame. Each translation from frame to frame is handled separately by finding 

corresponding silhouettes detected in two consecutive frames. Another approach is 

based on the evolution of the object contour, connecting the correspondent objects by 

state space models or by minimizing the contour energy [10].  

When tracking objects, one usually obtains multiple measurements. The incorrect 

ones are referred to as false measurements or clutter. The measurement with highest 

probability of being originated from the tracked object is then selected. If the algorithm 

selects the wrong measurement or if the correct measurement is not detected, a poor 

state is estimated. To solve this issue (reducing the computational cost), a validation 

region (measurement gate) is selected. The measurement gate is a region in which the 

next measurement has a higher emergence probability [31]. 

3 Methodologies 

3.1 Implementation of the Image Generator - Tool Interface and Basic 

Functionalities 

The image generator interface and the tracking methods were implemented using the 

C# language from Visual Studio 2015. This sub-section focuses on the implementation 

of the image generator and its basic features. In order to facilitate the analysis of the 

tracking algorithms an intuitive interface was designed. The time-series generator al-

lows the user to change a number of settings such as the number of objects, frames, 

clusters, and their features. The generator automatically creates a csv file containing the 

object’s properties (position in x and y coordinates and a shape-related factor called 

“morphology”, which is a rational number between 0 and 1 as defined in the Object 

Shape Sub-Section). The tool interface is shown in Fig. 1. At the top row of the window 

there are frame handlers, to advance forward and backward in the time-series, or to go 

directly to a specific frame. The “Time-Lapse” button reproduces the full time-series 

with a frame-rate of 25 frames/second. 

The left bar contains the boxes to write the desired width and height of images, in 

pixels. The user can also choose the number of objects in each frame, and the total 

number of frames. The “Maximum Velocity” is the maximum distance, in pixels, that 

an object can travel between frames, while the “Maximum Morphology Difference” is 

the maximum difference of the “morphology” factor that an object can have between 

frames, in percentage. The “Physical Move” button controls the option of giving objects 

physical limitations to their kinetics. If it is selected, each object has a velocity and 

orientation assigned to it, meaning that its position dynamics will depend on these two 

variables. If it is not selected, objects will move arbitrarily between frames.  

One can also select “Allow Entries/Exits”, to allow the objects to enter and exit the 

image limits. If unselected, objects collide and are reflected by the edges of the image 

when reaching them. When the option “Allow Occlusions” is selected, objects move 



without restrictions due to superposition between them. If it is not selected, objects 

collide between them similarly as when colliding with the edges.  

Objects clustering can also be forced checking the “Create Clusters” option. When 

selected, all objects of each cluster have the same physical features. In this setting, 

“Physical Move” is automatically selected and “Allow Occlusions” is deselected, 

blocking the correspondent checkboxes. The button “Cluster Properties” (shown in Fig. 

5) leads to a new window with the options for clusters’ creation. Here, the desired num-

ber of clusters, objects per cluster, and size of the clusters in pixels can be selected. It 

is also possible to choose between two types of objects’ kinetics: “Follow the Leader” 

and “Alternative Movement”. The application of “Cluster Centre Force” and its 

strength are shown in Fig. 6 and explained in the Sub-Section Cluster Creation. 

 

Fig. 1. Image Generator Tool interface. 

3.2 Object Modeling 

This sub-section focuses on the modeled features, namely object shape, movement, 

growth, division and clustering, which were improved from the previous toolbox to-

wards a realistic simulation of the bacterial cell spatial and temporal organization.  

Object Shape.  

To create a realistic simulation of bacterial cells, we first need to investigate how they 

are classified by their shape. Bacterial cells can have a spherical shape (coccus) a rod-

shape (bacillus), while other bacteria have shown a vast diversity of shapes, such inter-

mediate shapes (coccobacillus) or curved/corkscrew shapes (spirochete, spirillum and 

vibrio), or even square and star shapes, each of them with its specific purpose [39, 40]. 



Bacteria can also have a wide range of cell sizes (volumes that range from 0.02 to 

400 µm3), where even a vast variability can be observed within the same species [41, 

42]. These variations can be explained due to cell adaptation to external factors, such 

as lack of nutrients leading to starvation, situations of extreme temperatures (low and 

high) or of extreme dryness [42]. 

A typical bacterial cell envelope is mainly composed by a cytoplasmic membrane 

and peptidoglycan (also known as murein) cell wall. Bacteria can also be divided in 

two groups regarding a fundamental difference in the cell envelope: Gram-negative and 

Gram-positive bacteria. In the first group (which is the case of E. coli) a bacterial outer 

membrane is also present (with intercalating pore-forming proteins, called porins), with 

lipopolysaccharides connected to the exterior of that outer wall. The interior of the outer 

wall is then connected to a very thin murein wall by a lipoprotein [43]. In the second 

group (which is the case of human pathogenic bacterium Streptococcus pneumonia), 

the cell envelope consists of a very thick murein wall (sometimes more than 10 times 

thicker than the first group) with teichoic acids spread across the murein. The shape is 

maintained and determined by the way murein is incorporated during cellular elonga-

tion, especially in rod-shape organisms, such as E. coli [44] and B. subtilis [45], as the 

murein is the main cell wall structure that supports the stress from the outside [46], as 

computational physical models have been develop to study how defects in the murein 

can affect E. coli shape (and the shape robustness to murein damage) and how different 

murein defect patterns can build bacterial shape patterns such as curved rods and spi-

rochaetes [47]. Along with the cell wall, other cytoskeleton proteins are associated with 

bacterial shape, such as FtsZ (tubulin homologue), MreB (actin homologue) and cres-

centin [39, 45]. 

 

Fig. 2. Example of bacterial cell shapes. Spherical shape (coccus) in dark gray, a rod-shape (ba-

cillus) in orange, intermediate shape (coccobacillus) in green and curved shapes (spirochete, spi-

rillum and vibrio) in blue. 

In the first version of this generator [48], objects were just represented by circles and 

the morphology factor (radius), which only represented coccus shaped bacteria. There 

was a conversion factor that determines the maximum radius of the objects (correspond-

ing to morphology value 1). By default, this factor was initialized at 30. The develop-

ment towards realistic bacterial cells will involve the representation of objects with this 

variables: Object_ID (identifies each object), MajorAxisSize (size of Major Axis), Ori-

entation (defines the orientation of the Major axis), MinorAxisSize (size of Minor 

Axis), Curvature (0 if you want to create line objects and 1 if both ends of the Major 



Axis touch, transforming the long bacteria into a circle)  IDPixelList (this variable pop-

ulates all pixels that correspond to the object), Centre (center of mass of the object), 

Division (this value starts at 0, changes to the time step where the division event oc-

curred), Parent (equal to its Object_ID in every time-step except in the time-step after 

a division event, which is equal to the parents Object_ID). With these new parameters 

we are able to change the shape of the cell towards more realistically bacterial shapes. 

Cells with similar MajorAxisSize as MinorAxisSize will have coccus shape, when we 

increase the MajorAxisSize, we will get intermediate shapes (coccobacillus) and with 

large increases of MajorAxisSize we will have bacillus shapes. Using the Curvature and 

large MajorAxisSize we will create curved shaped objects. These properties are popu-

lated for each time-step of the simulation and can be changed by events such as cell 

growth, division, motility and clustering, as explained in the next sub-sections. 

Object Growth.  

Bacterial cell cycle is normally divided in three stages, specifically a period between 

its “birth” and the initiation of DNA replication, a replication period when the cell in-

creases its mass and size (Cell Growth) and, finally, a binary fission process into two 

new daughter cells (Cell Division), which is repeated over the next generations [49]. 

The creation of new murein polymer can lead to cell growth through cell elongation, 

as murein is inserted in the sidewalls at the middle of the cell or at the poles. The crea-

tion of the division septum at the mid-cell then leads to a division event (this is also the 

main process for cell growth in spherical cells, where cell elongation does not occur), 

where two daughter cells are created [39]. Each of those processes have their own pro-

tein and enzymatic apparatus, working in specific places of the cell wall [39, 45]. The 

FtsZ cytoskeleton protein along with various other proteins create the division septum 

at the middle of the cell (as two proteins MinC and SlmA that are present in the rest of 

the cell, inhibit the assembly of the FtsZ ring required for division [50].  

In the first version of this generator [48], the morphology shape-related factor called 

was set at 0.05 (this value was chosen to emulate biologically inspired objects that 

slowly change their shape over time). Although this process emulates how other cell 

shapes (bacillus, coccobacillus, vibrio) change their cell size, this actually needs to be 

changed in truly spherical shaped cells (cocci) as they do not have an elongation process 

[51], but create a division septum at mid-cell, which allows them to create two daughter 

cells roughly of the same size of the parent cell due to entropic forces [39]. For the 

remaining shapes, we implement the creation of new pixels along the Major Axis as the 

growth process. 

Object Division.  

In the first version of this generator [48], no division process was implemented. This 

new version has implemented object division This feature is intended to be an approx-

imation to living cell proliferation, where a parent cell “splits” in half, originating two 

daughter cells. In this specific case, since objects are represented only by circles, not 



by complex shapes, division consists in splitting an object with a morphology factor m 

into two objects with a factor m/2. 

There was a factor named “Division Probability”, measured in percentile that defines 

the probability of occurring a division for each object, in each frame of the time-series, 

which happens stochastically. The daughter objects inherit from the parent the physical 

parameters share the same cluster force (if inside a cluster). An example of an object 

division is shown in Fig. 3. 

 

Fig. 3. Example of object division from frame (A) to frame (B) 

Object Motility.  

Bacterial growth as a colony can also be dependent on the capability to move in the 

direction of more favorable conditions, which at its basic form is normally associated 

with Brownian random movement or active movement towards a specific gradient, e.g. 

chemicals (chemotaxis) and temperature (thermotaxis) [52]. 

According to the user’s selection, objects can have movement respecting a number 

of physical rules. If this option is deactivated, objects will move arbitrarily through the 

image. In each frame, each object can move to a new x and y coordinates by an arbitrary 

distance that cannot be higher than the “Maximum Velocity” value in pixels. 

If entries and exits are deactivated and if an object is heading to the image boundary, 

it is reflected respecting Snell’s Law, as seen in Fig. 3 causing a change in the angle’s 

direction of movement. If occlusions are deactivated, when two objects are about to 

collide, they change to opposite orientations in an approximation to the reflection laws, 

but ignoring differences in their morphologies. 

 

Fig. 4. Collision between objects with "Physical Move". Objects in: (A) Frame 10; (B) Frame 

16; (C) Frame 19; (D) Frame 23. 



With occlusions and “exits and entries” also deactivated, objects will avoid the posi-

tions where they collide with other objects or go out the image boundaries, searching 

for a position considering these limitations and the maximum distance they can move 

between frames. If the user chooses to give objects “Physical Move”, in addition to 

previous features, each object will have a velocity and an orientation assigned to it, 

meaning that their position dynamics will depend on these two values. In each frame, 

each object will have new x and y coordinates distanced “d” (no bigger than “Maximum 

Velocity”) from the previous frame coordinates, direction “o” (between 0 and 2pi radi-

ans), with both components using an independent random variable, consistent with the 

Brownian random movement. Collisions between objects might need to be reconsid-

ered as bacterial cells tend to create clusters when they bump with other cells, and not 

move away from those cells. 

Cluster Creation.  

In terms of spatial arrangement, bacteria can be organized in single forms or be grouped 

in pairs (diplo prefix), in chains (strepto prefix). Cocci bacteria can also organize in 

groups of 4 (tetrad), 8, 16 or 32 (sarcinae) or in grape-like clusters (staphylo prefix). 

Bacilli bacteria can organize in palisade structures (side by side) or can be in unstruc-

tured spatial clusters [40]. 

When selecting the option “Create Clusters”, the Generator will create a time-series 

with the number of clusters, objects and size of cluster chosen by the user. These op-

tions (shown in Fig. 5) must be consistent and take into consideration the image size. 

 

Fig. 5. Interface options for cluster properties. 

In “Alternative Movement” (as shown in Fig. 6-A) all objects of each cluster have the 

same physical parameters, which means that they move in the same direction with the 

same speed (with a small independent arbitrary component).  

In the “Follow the Leader” movement mode (as shown in Fig. 6-B), each cluster 

has a leading object. The characteristics of the other objects of the same cluster are 

dependent on the leader’s behavior. The leader “receives” the physical parameters at 

first frame (velocity and orientation) and at each frame the other objects of its cluster 

will move in the leader’s direction, minimizing the distance to it, but respecting the 

“non-collision” rule. If two objects from different clusters collide, one of them will start 

belonging to the other cluster. This may cause the “merging” of clusters. 



 

Fig. 6. Exemplificative frames of (a) ‘Alternative’ Movement (b) ‘Follow the leader’ Movement. 

The “Cluster Centre Force” feature is exclusively for “Alternative Movement” that cre-

ates an attraction force at the cluster’s center, with a selectable strength selected by the 

user. This force keeps cluster’s objects together, even when colliding with the image 

borders or other objects. Increasing the strength, the objects will move faster to the 

cluster’s center. In this mode of motility, when objects from different clusters collide, 

they will be “left behind” by their cluster until they can join it again. 

3.3 Tested Tracking Algorithms 

In this Section, we give a small introduction to Nearest-Neighbor Algorithms that were 

used to test our image generation tool, namely the Simple Nearest-Neighbor (NN) and 

the Nearest-Neighbor with Morphology (NNm) Algorithms. We also introduce the 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN), which is 

mainly used to track clustered objects. 

Simple Nearest-Neighbor Algorithm.  

The first tracking algorithm tested was the Simple NN. This method only takes into 

consideration the position of each object in each frame of the time-series, and uses the 

Euclidian Distance between points to find matching objects between frame n and n+1. 

Being dp the distance between two objects: 

 𝑑𝑝 = √(𝑥𝑛 − 𝑥𝑛+1)2 + (𝑦𝑛 − 𝑦𝑛+1)2 (1) 

Where 𝑥𝑛 and 𝑦𝑛 are the positions of each object in frame n and 𝑥𝑛+1 and 𝑦𝑛+1 are the 

positions in frame n+1. Having the distance between each object in frame n and all 

objects in frame n+1, correspondences are made based on the minimum distance. The 

object in frame n+1 closer to each object in frame n is assigned to it. If two objects in 

n+1 are assigned to the same object in n, the closer object is assigned, until all corre-

spondences between frames are unique [31]. 

Nearest-Neighbor with Morphology algorithm.  

The NNm algorithm accounts not only for the differences between the positions of each 

object in each frame, but also for a shape-related factor, called morphology. This algo-

rithm calculates the distance percolated by each object between frames n and n+1 using 



equation (1). Being 𝑚𝑛 the morphology of each object in frame n, and 𝑚𝑛+1 the shape 

factor in n+1, the difference, 𝑑𝑚, between these variables is calculated by: 

 𝑑𝑚 =  |𝑚𝑛 − 𝑚𝑛+1| (2) 

The total difference, 𝑑𝑡, between each object in  each frame pair is given by (3) with 𝛼 

and 𝛽 being the weights given to each partial distance. Here different weights are used 

(as presented in the Results section), in order to study the best way to combine them: 

 𝑑𝑡 =  𝛼 ∙ 𝑑𝑝 + 𝛽 ∙ 𝑑𝑚 (3) 

Cluster Tracking.  

Identifying clusters is one of the most complex issues of image characterization [53]. 

In this work, the problem lays in tracking objects knowing that they are grouped in 

clusters. Since bacteria often group this way, the goal is to find a method that improves 

tracking of clustered objects. One of the main problems of clustered objects is illus-

trated in Fig. 7-A. Using NN (or NNm) to track these frames, the algorithm will imme-

diately misidentify at least two of the objects of frame n+1. This will occur in objects 

1’ and 3’, and it happens because their position in n+1 is exactly the same that objects 

2 and 4 have in n. 

 

Fig. 7. (A) Example of a possible misidentification using the NN Algorithms. (B) ‘MinPts’ is 

defined as the minimal number of neighborhood objects, and Eps as the neighborhood radius, a 

core object (Red) is defined when its local density is higher than ‘MinPts’ and a border object 

(Orange) in its local density is less than ‘MinPts’. Two density-reachable objects are defined if a 

chain of core objects exists with distances between them smaller than Eps. Adapted from [54]. 

To solve this problem we implemented a tracking algorithm that considers the cluster’s 

features and its singularities. The first step of this method to track clustered objects is 

to correctly identify the clusters in the image and the objects belonging to each of them. 

The adopted method was the Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) [55] in its revised version [54]. This method formalizes the notion 



of “cluster” and “noise”, using the definition of density to characterize clusters, mean-

ing that to define a cluster, the density of the neighborhood of each point has to be 

higher than a given threshold. ‘MinPts’ is the minimal number of objects in the neigh-

borhood, and Eps is the neighborhood radius (see Fig. 7-B). 

Objects can be divided into three categories: core, border and noise (see Fig. 7-B). 

An object is a core object if its local density is higher than ‘MinPts’. It is considered a 

border object if its local density is less than ‘MinPts’ and it belongs to the neighborhood 

of a core object. An object is classified as noise if in its Eps radius there are less than 

‘MinPts’ objects and none is a core. Finally, we identify two density-reachable objects 

if there exists a chain of core objects between them (see Fig. 7-B), with distances be-

tween them smaller than ‘MinPts’ [54]. 

This approach improves clustering identification when the data has dense adjacent 

clusters [54]. They also introduced the concept of core-density-reachable objects, which 

is similar to the chain of density-reachable objects, but cutting border objects from 

chain’s ends and staying unclassified until all core objects are identified [54].  

The algorithm has two main steps: ‘dbscan’ and ‘ExpandCluster’. The first step lies 

in covering each object and running ‘ExpandCluster’ if the object is unclassified. Then, 

it returns all objects that are core-density-reachable from that one. If it is a core object, 

a cluster is produced. If it is a border object, it has no core-density-reachable objects, 

and proceeds to the next one. After all chains from the core object are known, it is 

assigned to its best density-reachable chain and all border objects. 

After identifying the clusters in all frames with DBSCAN, a novel algorithm for 

object tracking was developed. This algorithm assumes that objects are grouped and 

move in clusters, treating each cluster as a separate individual while tracking. The first 

step (with all clusters identified) is to isolate the clusters and calculate their centroid, in 

coordinates x and y: 

 𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =  
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
⁄  (4) 

After all centroids are calculated, they are processed as objects, since they have their 

own coordinates. The NN algorithm is then applied to these coordinates, tracking each 

cluster individually and resulting in a sequence of results similar to object tracking. 

4 Results and Discussion 

We generated several time-series that can be used as a benchmark to test tracking algo-

rithms. For this, we simulated examples with different starting number of objects (20 

to 160) and ‘Maximum Velocity’ (V=5, 10, 15, 20 and 30).  

The generated images have a 1000x500 pixel size (first and second experiment) and 

1500x100 (third experiment). The implemented Tracking Algorithms automatically 

processes the csv files with the objects’ true positions produced by the Image Generator. 

The detected object tracking is then compared with the gold standard. In this compari-

son, a False Positive (FP) is counted when one object is incorrectly tracked from one 

frame to another and a True Positive (TP) is accounted when one object is tracked cor-

rectly between two consecutive frames. It is important to notice that errors that occur 



in the beginning of the time series are typically propagated through the entire sequence. 

We present in the following tables the tracking error (false discovery rate), calculated 

as FP/(FP+TP). 

4.1 Simple Nearest-Neighbor algorithm 

We tested 10 time-series of 100 frames for each example with different objects and 

different maximum velocity. In Table 1, we present the tracking performance of the 

Simple NN algorithm, based on the ground-truth produced by the image generator. The 

tracking error is calculated on every frame and accumulated until the end of the time-

series. In this case, the morphology shape-related factor called was set to 0.05 (this 

value was chosen to emulate biologically inspired objects that slowly change their 

shape over time). The results from Table 1 show that this simple algorithm can handle 

the increase in the number of objects while keeping a small velocity, and that when 

raising the velocity to 20 and 30 the tracking performance was significantly reduced. 

Table 1. Tracking errors of the Simple Nearest-Neighbor Algorithm. 

Obj. V=5 V=10 V=15 V=20 V=30 

20 0,00 0,92 1,06 4,19 19,20 

40 0,26 1,27 3,23 5,93 24,01 

60 0,06 1,58 5,63 12,38 39,66 

80 0,24 1,84 6,62 15,74 45,06 

100 0,27 1,20 7,85 19,94 49,76 

120 0,22 1,69 10,57 21,16 51,86 

140 0,55 3,71 14,16 26,57 58,07 

160 0,42 4,12 14,91 33,74 63,89 

4.2 Nearest-Neighbor with Morphology Algorithm 

In this second experiment, we show how tracking taking into account the morphology 

of the object can be helpful in the worst case scenario of the last experiment. In Table 

2, we present the results of the tracking performance of the NNm Algorithm. In this 

case we also produced 10 time-series of 100 frames for each example with different 

objects and different maximum velocity, but also with distinct morphology factors.  

We tested the algorithm in two configurations; the first giving a 60% importance to 

the calculated distance between objects (α factor in equation 3) and 40% to the calcu-

lated morphology difference (β factor). For the second configuration we used 40% for 

α and 60% for β. The impact of the shape-related factor was also studied using both 

0.05 and 0.1. For this section we extended our results [48] to include lower velocities 

and less objects when comparing our analysis against the simple NN algorithm. From 

Table 2, we observe that tracking results are improved by using the NNm Algorithm 

(e.g. in the worst case scenario the error percentage was reduced from 64% to 47%) for 

the m factor =0.05 case, but at lower velocities, the Simple NN algorithm achieves 

similar results (compared with NNm) even with a large number of objects. 



Table 2. Tracking errors of the Nearest-Neighbor with Morphology Algorithm. 

 𝛼 = 60% and 𝛽=40% 

 m factor= 0.05 m factor= 0.1 

Obj. V=5 V=10 V=15 V=20 V=30 V=5 V=10 V=15 V=20 V=30 

20 0.00 0.92 0.00 2.27 11.28 0.00 0.00 1.43 0.37 14.17 

40 0.00 0.46 2.45 3.36 18.10 0.00 0.33 2.00 8.71 21.06 

60 0.06 1.08 3.20 8.82 30.61 0.34 0.31 4.10 8.27 27.12 

80 0.24 1.43 4.66 11.00 34.27 0.00 0.88 5.40 13.76 34.87 

100 0.27 1.47 6,02 14.71 41,60 0.20 1.96 6,03 17,79 40,55 

120 0.00 1.10 6,27 14,92 42,05 0.13 1.74 9,24 19,68 44,45 

140 0.22 2.19 9,29 18,34 48,96 0.27 2.66 8,34 21,59 48,90 

160 0.13 3.32 10,32 25,49 55,35 0.19 3.03 10,26 25,39 55,32 

Obj. 𝛼 = 40% and 𝛽=60% 

20 0.00 0.66 0.00 2.63 6.99 0.00 0.00 1.43 0.02 8.90 

40 0.00 0.46 1.50 3.16 14.92 0.00 0.48 0.45 5.52 15.66 

60 0.06 0.84 1.62 6.66 24.02 0.34 0.02 2.41 7.13 22.69 

80 0.24 1.37 3.10 7.30 26.65 0.00 0.65 4.00 9.90 27.80 

100 0.19 0.84 4,26 10,57 33,37 0.20 1.07 3,96 12,07 32,44 

120 0.00 0.84 4,53 10,80 33,95 0.13 0.79 6,39 14,07 37,09 

140 0.18 0.89 6,36 14,58 39,30 0.25 1.61 5,34 15,18 41,36 

160 0.13 1.88 7,27 20,78 46,81 0.19 2.03 8,06 18,93 49,38 

It is important to note that, as most of bacterial cells in live-cells imaging are placed 

in agarose gel, where they do not move very fast, but they are able to grow and create 

large clusters of cells, in cells that have large movement capabilities, other tracking 

algorithms need to be used and compared. We also should note that the second config-

uration (40% for 𝛼 and 60% for 𝛽) gave better results than the first one, so giving more 

importance to the morphology factor, improved the results (comparing the results for 

the same number of objects and same velocities). Results might still be improved by 

using different configurations of the 𝛼 𝛽 parameters, so this is will be one of our future 

efforts in the improvement of tracking algorithms. 

4.3 Cluster Tracking 

The Create Clusters property was used to test the same tracking algorithms (Simple NN 

and NN with Morphology Algorithms with 𝛼=40%). The simulated parameters were: 

number of clusters (1, 5 and 10), number of objects per cluster (10 and 15), maximum 

velocity (5 and 10), Alternative Movement, Center Force (4) and morphology factor (0 

and 0.05). The tracking results are presented in table 3. For the Cluster creation, we 

used 10 time-series (and averaged the results) of 200 frames and calculated the object 

tracking error on every frame accumulated throughout the time-series. 

The DBSCAN algorithm tries to separate each cluster in every frame. Therefore, if 

the number of clusters is the same between the actual frame and the previous one (t and 

t-1), then they are matched using NN, treating them as isolated objects and aligned 

using their centroids. If the number of clusters changes, the first step is skipped and the 

number of objects inside each cluster is checked. When, inside a cluster, there are more 

objects in t then in t-1, these ‘extra’ objects are labeled as ‘Possible Entry’. If there are 



fewer objects, they are labeled ‘Possible Exit’. This tagging is temporary and compares 

the "Possible Exit" features to the features of all other objects of the frame t-1, linking 

it to a "Possible entry" in another cluster (meaning that it left one cluster to join an-

other), classifying it as noise, or as an object leaving the image. The main difference 

between DBSCAN 1 and DBSCAN 2 algorithms is that, in the first, this classification 

is done after the tracking and in the second it is done before the tracking, equalizing the 

number of objects between the clusters. 

Table 3. Tracking errors, within clusters with different properties, using the Simple and Mor-

phology NN Algorithms with different number of clusters (1 to 10), different number of objects 

per cluster (5 to 15), and different maximum velocities (2 to 10). 

Simple NN Algorithm 

Nº of 

Clusters 

Obj. / 

Clusters 

m factor= 0 m factor= 0.05 

V=2 V=5 V=10 V=2 V=5 V=10 

1 

5 2.95 0.58 2.62 1.93 2.32 14.23 

10 3.32 7.79 30.42 0.93 9.88 23.33 

15 4.63 11.74 50.91 2.94 10.74 38.06 

3 

5 0.05 2.40 7.69 0.00 4.57 9.01 

10 1.07 7.11 27.83 2.20 9.07 30.08 

15 3.05 14.74 43.77 2.76 16.77 45.44 

5 

5 0.23 2.22 6.25 0.72 3.28 9.74 

10 0.70 7.48 34.71 1.57 10.95 31.89 

15 3.06 17.43 45.22 3.53 16.06 44.51 

7 

5 0.58 2.55 12.78 1.04 1.95 14.52 

10 1.58 11.21 33.76 1.81 11.78 40.35 

15 3.14 19.81 48.55 4.01 17.75 48.96 

10 

5 0.99 3.39 17.81 0.25 5.40 17.13 

10 1.95 12.20 38.26 1.52 11.64 42.47 

15 3.84 21.14 53.90 4.87 23.52 57.34 

NN with Morphology (𝛼 = 40% and 𝛽=60%) 

1 

5 0.00 0.00 0.00 1.93 0.00 7.92 

10 0.01 1.27 4.88 3.04 5.52 13.83 

15 0.18 3.76 21.14 1.75 4.63 20.76 

3 

5 0.38 1.08 1.66 0.00 1.23 4.08 

10 1.18 1.26 10.33 0.03 2.13 12.52 

15 1.81 5.29 20.24 1.92 8.12 22.44 

5 

5 0.00 1.78 2.58 0.10 0.68 5.77 

10 0.71 1.80 12.98 0.15 4.69 15.93 

15 1.54 7.16 20.77 0.93 5.95 22.07 

7 

5 0.20 0.41 2.82 0.41 0.35 5.13 

10 0.78 3.92 15.08 0.48 3.60 17.84 

15 1.22 8.14 25.78 1.99 6.86 27.11 

10 

5 0.04 0.97 6.93 0.15 2.31 7.20 

10 0.48 3.78 16.15 0.54 4.55 19.71 

15 1.11 8.73 28.36 2.22 10.13 34.12 

Results from both DBSCAN Algorithms are presented in Table 4 (m factor =0.00) and 

Table 5 (m factor =0.05). 



Table 4. DBSCAN1 (DB1) and DBSCAN1 (DB2) tracking errors comparison for different num-

ber of clusters, objects per cluster, and maximum velocities, with m factor =0. 

mmd = 0.00 
 Vmax=2 Vmax=5 Vmax= 10 

Clusters 
Objects/ 

Cluster 
DB1 DB2 DB1 DB2 DB1 DB2 

1 

5 0.00 0.00 0.00 0.00 0.16 0.16 

10 0.00 0.00 5.55 4.67 2.97 2.97 

15 0.24 0.24 1.92 2.59 12.94 12.96 

3 

5 3.10 2.47 5.76 6.01 8.81 8.72 

10 0.70 1.02 4.86 4.89 11.28 10.70 

15 0.83 0.83 3.86 3.86 16.44 16.34 

5 

5 5.01 5.20 2.46 2.58 15.87 16.80 

10 1.44 1.04 5.43 5.54 13.71 14.56 

15 0.27 0.27 5.84 5.74 19.29 19.35 

7 

5 2.05 1.89 4.82 5.29 6.37 6.49 

10 2.47 2.23 4.52 4.81 16.18 16.51 

15 0.83 0.83 8.44 8.60 25.45 25.36 

10 

5 3.15 2.82 9.50 9.03 11.90 12.11 

10 2.45 3.33 5.81 6.00 17.55 17.57 

15 1.24 1.24 8.65 8.65 28.29 28.29 

Table 5. DBSCAN1 (DB1) and DBSCAN1 (DB2) tracking errors comparison for different num-

ber of clusters, objects per cluster, and maximum velocities, with m factor =0.05. 

mmd = 0.05 
 Vmax=2 Vmax=5 Vmax= 10 

Clusters 
Objects/ 

Cluster 
DB1 DB2 DB1 DB2 DB1 DB2 

1 

5 0.96 0.96 1.67 1.67 9.75 9.75 

10 0.00 0.00 9.64 9.64 9.14 7.82 

15 0.85 0.85 3.87 3.87 10.49 10.49 

3 

5 0.00 0.00 5.06 5.02 13.97 14.89 

10 5.45 5.43 3.06 2.81 9.91 9.83 

15 1.99 1.99 3.78 3.77 19.55 19.63 

5 

5 2.18 2.69 10.72 11.23 20.79 22.28 

10 1.94 2.33 6.42 7.55 16.61 17.37 

15 0.79 0.79 6.49 6.19 20.84 20.82 

7 

5 4.07 4.20 7.54 7.43 13.78 12.98 

10 3.37 4.06 4.63 5.46 18.29 18.54 

15 2.00 2.00 7.06 7.22 27.59 27.70 

10 

5 2.02 1.90 8.33 8.41 13.55 14.38 

10 1.81 2.30 6.42 6.43 21.07 21.42 

15 2.76 2.67 9.91 9.98 34.52 34.52 

Comparing Table 3 with Table 1, we can observe that the simple NN cannot handle 

clusters adequately (for V=10, m factor = 0.05 and 160 objects/cluster, we have a 4,12% 

error while for V=10, m factor = 0.05, 10 clusters and 15 objects/cluster, for a total of 



150 objects we have a 57.34% error rate). From Table 3, we can observe that the NNm 

algorithm handles much better the cluster creation, giving almost one half of the errors 

(worst case scenario of 34.12% versus 57.34% for the same configuration). 

From Table 4 and Table 5 we can conclude that DBSCAN Algorithms do not im-

prove significantly over the NNm algorithm (Table 3) for the same configuration. A 

strange behavior for lower velocities was identified in both DBSCAN algorithms, 

where increasing the objects actually decreased the tracking errors. This behavior is 

explainable by the higher movement restriction of objects belonging to clusters with 

larger number objects, but further studies are required to further analyze this behavior. 

This behavior has not been identified in both simple NN and NNm algorithms. 

5 Conclusions and future work 

To support high-throughput experiments of single cell imaging, reliable automated im-

age processing methods are required. Although most studies focus on automatic seg-

mentation of cells or cellular structures, in time-series proper object tracking is also 

necessary, especially because tracking errors propagate, meaning that even small track-

ing errors (particularly on the initial frames) lead to a high percentage of misidentified 

tracks overall.  

To validate Tracking Algorithms, it is necessary to use a labelled ‘ground truth’. 

Sometimes this ground-truth can be manually obtained, but this strategy is not feasible 

on a Big Data scenario. A more viable alternative is to generate artificial images by 

simulating biological cell models. To produce such artificial images, we developed an 

open source platform that can simulate biologically inspired bacterial systems, by cre-

ating cells that of different shapes and sizes, cells that can grow and divide and, cells 

that can move as a single objects or as clustered objects.  

Using this Platform, we evaluated three tracking algorithms (Simple NN, NNm and 

two variations of the DBSCAN Algorithm). The obtained results show that, for cases 

with lower maximum velocity, the Simple NN Algorithm was able to track objects even 

with a significant increase in the number of objects.  

Meanwhile, the NNm algorithm can help reducing tracking errors when the velocity 

is increased. In the example where we forced the creation of clusters, the Simple NN 

algorithm was unable to handle the increase of number of clusters and objects in a clus-

ter (even for a constant number of objects). On the other hand, the NNm and the 

DBSCAN algorithms showed similar, significant capabilities to handle large clusters. 

In the near future, we plan to study and compare other tracking methodologies in dif-

ferent cluster configurations using the proposed framework. Here, the newly developed 

object division module will be of use to test division tracking in dense clusters. 

We expect this open-sourced tool1 to help future endeavors in the development of 

new tracking algorithms, as it can produce huge amounts of benchmarked images.  

The next steps of our work will be to introduce a new module that generates sec-

ondary bodies inside the primary objects, simulating internal cell organelles and struc-

tures. A future application will also be made available as a web-based system to im-

prove usability and compatibility. 

                                                           
1 Tool available at: http://griduni.uninova.pt/Clustergen/ ClusterGen_v1.0.zip 
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