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Abstract—The problem of approximate nearest neighbor 

(ANN) search in Big Data has been tackled with a variety of recent 

methods. Vector quantization based solutions have been 

maintaining the dominant position, as they operate in the original 

data space, better preserving inter-point distances. Additive 

quantization (AQ) in particular has pushed the state–of–the-art in 

search accuracy, but high computational costs of encoding 

discourage the practical application of the method. This paper 

proposes pyramid encoding, a novel technique, which can replace 

the original beam search to provide a significant complexity 

reduction at the cost of a slight decrease in retrieval performance. 

AQ with pyramid encoding is experimentally shown to obtain 

results comparable with the baseline method in accuracy, while 

offering significant computational benefits. 
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neighbor search; vector quantization 

I.  INTRODUCTION 

The nearest neighbor (NN) search is a ubiquitous problem 
encountered in many application areas. The recent emergence of 
Big Data [1] has rendered many existing solutions obsolete. As 
the dimensionality of the data increases, the computational costs 
of traditional NN search techniques grow exponentially, making 
them infeasible in practice [2]. This factor led to the introduction 
of approximate nearest neighbor (ANN) search techniques, 
which trades the accuracy of the solutions in favor of a 
manageable complexity. Locality Sensitive Hashing (LSH) [3] 
was among the first ANN approaches to achieve widespread 
adoption [4], resulting in emergence of a large family of 
hashing-based techniques  [5][6]. Most recently quantization-
based approaches, such as Product Quantization [7] and 
Residual Vector Quantization [8][9], have pushed the state-of-
the-art in ANN search by learning lossy representations of the 
data, which allow for fast distance calculations. 

Product Quantization (PQ) [7] performs a decomposition by 
splitting the original 𝐷-dimensional data into 𝑀 subspaces of 
𝐷 𝑀⁄  dimensions each. Vector quantization [10] can then be 
applied independently within each subspace, using Lloyd’s 
algorithm to learn K representative centroids. Thus M 
codebooks of K codewords (also called codevectors) are formed. 
The total number of possible representations is 𝐾𝑀, making PQ 
very space-efficient. The computational costs are also moderate: 
since the subspaces are by definition orthogonal, the codewords 
can be optimally assigned by M independent NN searches, 
requiring a total of 𝑂(𝐾𝐷) operations. Learning the codebooks, 
as outlined above, can be performed independently in each 

subspace, resulting in the total cost of 𝑂(𝑁𝐿𝐾𝐷), where 𝑁 is the 
size of the training set and 𝐿 is the number of iterations. PQ 
makes fast distance calculation possible by efficient use of table 
lookups: estimating the distance between a given query and an 
encoded vector takes 𝑂(𝑀) operations [7]. Unlike hashing-
based methods, PQ operates within the original data space, 
retaining the original similarity measure (typically the squared 
Euclidean distance), which further improves the accuracy. 

PQ assumes that every subspace is roughly equivalent in 
terms of information content, which is obviously not always the 
case in practice. Optimized Product Quantization (OPQ) [11], 
also known as Cartesian K-means (CKM) [12], addresses this 
drawback by adaptively allocating dimensions to subspaces 
instead of a simple splitting. This is achieved by learning a data-
specific rotation, represented by an orthogonal matrix. In a 
general non-parametric approach, the rotation matrix is updated 
after each PQ learning iteration by solving the orthogonal 
Procrustes problem. Taking advantage of its formulation, OPQ 
achieves a significantly better performance with an additional 
cost. The computational complexity of learning an OPQ 
quantizer is 𝑂(𝐿(𝑁𝐾𝐷 + 𝑁𝐷2 + 𝐷3))  in the non-parametric 
case. Other suggested variants of product quantization include 
Locally Optimized Product Quantization (LOPQ) [13] and 
Optimized Cartesian K-Means (OCKM) [14].  

Additive quantization (AQ) [15] is a generalization of both 
PQ and OPQ. As the name implies, the codevectors are added 
together instead of being concatenated to obtain the data 
representation. The codebooks are fully D-dimensional, and 
there is no subspace decomposition involved. The lack of 
constraints results in a more powerful representation, which, in 
turn, leads to a much more accurate search. 

However, the higher generality also has its drawbacks. The 
lack of orthogonality between different codebooks complicates 
the distance computations, as the dot products between 
codewords are nonzero (unlike PQ or OPQ). In practice this 
means that one distance estimation takes 𝑂(𝑀2) table lookups 
instead of 𝑂(𝑀). Another important consequence of non-
orthogonality is the fact that learning cannot be split into several 
simpler problems, making the k-means algorithm unsuitable for 
codebook generation. The codebooks can instead be derived by 
solving the systems of linear equations, given the data encoding. 
Iterative learning is still possible by alternating between 
codebook adaptation and data encoding. The latter step is of 



utmost importance, as it drives both the representation accuracy 
and the computational costs of the quantizer. 

These drawbacks can be addressed by imposing additional 
constraints on the representation. Tree quantization (TQ) 
enforces orthogonality between certain pairs of codebooks, as 
described by a dynamic graph structure [16]. Composite 
quantization (CQ) minimizes the dot product between codebook 
vectors, allowing for distance estimation with 𝑂(𝑀) required 
operations, as in PQ [17][18]. This work instead focuses on the 
optimization process in codebook encoding. 

II. ENCODING IN ADDITIVE QUANTIZATION 

Since additive quantization imposes no constraints on the 
codebooks, optimal encoding for AQ is equivalent to inference 
on a fully connected pairwise Markov Random Field (MRF), 
which is an NP-hard problem [15][19]. Thus, local heuristics are 
used instead of exhaustive search. The original AQ work [15] 
suggested two possible solutions – Iterated Conditional Modes 
(ICM) and Beam search. These are described in more detail 
before the proposed approach is presented. 

A. Iterated Conditional Modes (ICM) 

Iterated Conditional Modes (ICM) is an algorithm for 
approximate MRF inference that can be trivially adjusted to the 
problem of AQ encoding. It seeks a locally optimal 
representation by improving the current solution, one codebook 
at a time. Random assignment is used to initialize the encoding; 
then, one codebook is chosen and is searched through 
exhaustively to locate a codeword which can reduce the error. 
The other 𝑀 − 1 codewords are fixed during this search. 
Repeating this once for each codebook yields a full ICM 
iteration. The encoding can run for a fixed number of iterations 
or until convergence is achieved. 

The major benefit of ICM is its mild computational costs – 
one iteration requires 𝑂(𝑀𝐾𝐷) operations in total. However, the 
algorithm is found to be unsuitable for AQ, as it was found to 
produce suboptimal encoding in most scenarios [15]. 

B. Beam Search 

Beam search is proposed to be used for encoding by the 
authors of AQ in [15] to allow for better encoding by drastically 
expanding the search space. First, all codebooks are combined, 
resulting in a set of 𝑀𝐾 codewords. From this set 𝐻 closest 
matches to the target vector are chosen (𝐻 is a search depth 
parameter). These are the initial solution candidates. Then 𝐻 
current residuals are computed, and 𝐻 more codevectors per 
residual are chosen from yet unused codebooks. The resulting 
set of 𝐻2 candidate solutions is sorted based on the quantization 
error, after which the top 𝐻 are kept. The beam search continues 
until all 𝑀 codebooks are utilized in the candidate solutions, at 
which point the single encoding with the smallest quantization 
error is retained as a final result. The authors of AQ recommend 
the values 𝐻 = 16 during codebook learning and 𝐻 = 64 for 
encoding the actual data. 

The beam search encoding vastly outperformed ICM and 
allowed AQ to reach state-of-the-art ANN performance [15]. 
However, its prohibitive computational cost makes it 

undesirable for practical purposes, as encoding a single vector 
requires 𝑂(𝑀3𝐾𝐻 + 𝑀𝐾𝐷) operations. As the number of 
codebooks is directly related to the representation power, the 
cubic scaling of beam search with respect to 𝑀 is also 
undesirable.  

III. PYRAMID ENCODING 

In this study, a novel encoding method called Pyramid 
Encoding is proposed for AQ encoding. It utilizes a bottom-up 
approach, consecutively merging the codebooks to obtain new 
candidate solutions in a tree structure. Fig. 1 shows the proposed 
scheme. The first merge results in 𝐾2 candidate solutions on 
each of 𝑀/2 tree nodes. The contents of every node are 
independently evaluated and truncated to the best 𝐻 solutions, 
similarly to beam search. The following merges naturally result 
in 𝐻2 solutions in each new node, from which only the top 𝐻 are 
retained. This procedure continues until the root of the tree is 
reached, meaning that all the codebooks are utilized and a single 
best solution is taken as a final answer. 

The advantage of the pyramid encoding arises from the 
relative simplicity of error calculation when the solutions are 
merged. Assume that two additive approximations for the target 
vector x are available – 𝐶1 and 𝐶2, with known quantization 
errors 𝐸1 = ‖𝑥 − 𝐶1‖2 and 𝐸2 = ‖𝑥 − 𝐶2‖2 respectively. 
Combining these solutions will result in a new quantization error 
value: 𝐸′ = ‖𝑥 − (𝐶1 + 𝐶2)‖2. The expression for 𝐸′ can be 
expanded as follows: 

𝐸′ = ‖𝑥 − (𝐶1 + 𝐶2)‖2 = 

= ‖𝑥‖2 + ‖𝐶1 + 𝐶2‖2 − 2〈𝑥, 𝐶1〉 − 2〈𝑥, 𝐶2〉 (1) 

 

Applying the properties of the norms and dot products yields 
the following alternative formulation for E': 

𝐸′ = ‖𝑥 − 𝐶1‖2 + ‖𝑥 − 𝐶2‖2 − ‖𝑥‖2 + 2〈𝐶1, 𝐶2〉 =

= 𝐸1 + 𝐸2 − ‖𝑥‖2 + 2〈𝐶1, 𝐶2〉 (2)
 

 

𝐸1 and 𝐸2 are known by assumption, while the norm of the 
target vector can be easily precomputed and reused as necessary. 

 
Fig. 1. The bottom-up approach as employed by pyramid encoding. 



All the terms of expression (2) are thus known, excluding the dot 
product. The fast computation of the latter can be achieved by 
constructing a lookup table with all the dot products between the 
different codebooks. As the contents of this table depend only 
on the quantizer and can be reused for any target vector x, the 
corresponding computational cost can be excluded from the total 
estimate. The computational complexity of pyramid encoding 
for a single target vector is thus 𝑂(𝑀2𝐻2 + 𝑀𝐾𝐷). It is 
significantly faster than beam search, especially in scaling with 
respect to 𝑀 and 𝐾. However, due to its tighter constraints, it 
can be expected to produce less accurate representations. Due to 
lower complexity, the value 𝐻 = 64 is deemed acceptable for 
all scenarios.  

As the proposed encoding approach searches a smaller 
region of the solution space, the initial point becomes more 
important. Two different approaches to pyramid encoding 
initialization are considered. Random initialization is equivalent 
to the one used for ICM and beam search. Orthogonal 
initialization runs several iterations of PQ on the data and uses 
the resulting set of codes and codebooks as an initial solution. In 
the latter case the codebooks start out as orthogonal sets of 
vectors by definition of PQ. However, as AQ formulation does 
not enforce this constraint, orthogonality is gradually relaxed 
during codebook adaptation. 

Table I lists the encoding complexities for all methods 
discussed in this study. Additive quantization even with pyramid 
encoding is still significantly slower than PQ or OPQ; therefore, 
a significant search performance benefit is required to justify the 
approach. When orthogonal initialization is used, the suitable 
number of PQ iterations to run was experimentally found to be 
around 10–15. Thus the extra initialization costs do not affect 
the asymptotic complexity estimate. 

IV. EXPERIMENTAL RESULTS 

Two datasets of image descriptors – SIFT1M and GIST1M 
– are the de-facto standard for evaluating ANN search methods 
[7]. Both datasets are comprised of a base set, where the actual 
search is performed, a holdout set, which is used only to train 
the quantizers, and a query set, for which the ground truth 
(indices of 100 nearest samples from the base set) is provided. 
Table II contains the quantitative information about the datasets. 

Two measures are used to evaluate performance. 
Quantization error is a natural indicator of compressed 
representation accuracy and was empirically found to be related 
to the ANN search performance [7]. We report the quantization 
error values on the base set (after training). Recall@N is a 
popular evaluation metric of ANN search, which gives an 
estimate of the probability that the true nearest neighbor will be 
present amongst the top N points returned by the search [7]. We 

report the experimental results for N = 1, 10, 100 and 1000 (the 
latter only on GIST1M). 

The following baseline methods were used in the 
experiments: PQ, OPQ/CKM, AQ. All of them have publicly 
available implementations. For clarity, we denote the original 
variant of AQ that uses beam search encoding as AQ-B. The 
proposed solutions are denoted AQ-P and AQ-P(pq) for random 
and orthogonal initializations, respectively. Table III lists the 
parameters of the algorithms used during the experiments. 

TABLE I 
COMPUTATIONAL COMPLEXITY OF ENCODING A SINGLE POINT 

 

Quantization method Complexity  

PQ  𝑂(𝐾𝐷) 

OPQ 𝑂(𝐾𝐷 + 𝐷2) 

AQ-B 𝑂(𝑀3𝐾𝐻 + 𝑀𝐾𝐷) 

AQ-P 𝑂(𝑀2𝐻2 + 𝑀𝐾𝐷) 

 

 

TABLE II 
PROPERTIES OF THE DATASETS 

 

 SIFT1M GIST1M 

Dimensionality 128 960 

Base set size 1 000 000 1 000 000 

Hold-out set size 100 000 500 000 

Query set size 10 000 1 000 

 

 TABLE III 

PARAMETERS OF THE QUANTIZERS 

 

Parameter Value 

Number of codevectors per 

codebook 𝐾 

256 

Number of codebooks 𝑀 4 and 8 

Representation codelength 32 bits for 𝑀 = 4, 64 bits for 𝑀 = 8 

Search depth 𝐻 AQ-B – 16 (training), 64 (encoding) 

AQ-P – 64 

Number of training iterations 30 for SIFT1M 

10 for GIST1M 

PQ iterations for AQ-P (pq) 15 

 

 

 
Fig. 2. Quantization error on SIFT1M base set. 
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Fig. 3. Quantization error on GIST1M base set. 
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Fig. 2 and Fig. 3 show the quantization errors obtained after 
the base set is encoded with trained quantizers. While randomly 
initialized pyramid encoding scheme proves inferior to beam 
search, orthogonal initialization allows for significant 
improvement upon baseline AQ on SIFT1M with 32-bit codes. 
The same conclusion holds for longer codes on SIFT1M, 
although the advantage is not as pronounced. However, the 
proposed approach is not as justified on GIST1M (regardless of 
initialization), as it barely surpasses PQ. This is due to the 
different internal structure of GIST descriptors, which are 
significantly less suitable for subspace decomposition. Note that 
SIFT descriptors are composed of 16 histograms with 8 bins 
each; GIST1M samples, on the other hand, are concatenations 
of three 320-dimensional subvectors, representing normalized 
orientation histograms with varying number of bins [7]. Since 
the number of PQ-initialized codebooks is a power of two, the 
corresponding subspaces cannot align well with GIST descriptor 
structure. Adaptive rotation of OPQ and a wider search space of 
AQ with beam search encoding make the respective quantizers 
preferable in the latter case, avoiding the rigid dimension 
allocation. It is worth noting that the baseline AQ provides 
extremely minor advantage over OPQ on GIST1M. 

Tables IV and V show the recall values for the 
aforementioned quantization-based ANN algorithms. It is 
apparent that the proposed approach is very close to the baseline 
AQ on SIFT1M, especially for shorter code lengths. GIST1M 
poses difficulties yet again, as simply providing a significant 
improvement upon OPQ is a challenge. The proposed approach 
demonstrates subpar performance here, converging to the same 
solution regardless of initialization. The optimization process 
ultimately proves to be too local to improve upon the poor 
starting point given by PQ. 

V. CONCLUSION 

The proposed pyramid encoding for additive quantization 
provides a significant complexity reduction compared to the 
standard beam search, resulting in a faster data processing 
throughout the ANN search pipeline. The effects of pyramid 
encoding on the search accuracy depend heavily on the internal 
structure of the data. If the PQ decomposition is aligned with 
semantic subspaces of the data, orthogonal initialization ensures 
highly competitive performance. Otherwise, the pyramid 
encoding fails to improve upon the initial guess, resulting in a 
poor solution. Adaptive rotation can be incorporated on different 
levels of the encoding pyramid to address this limitation, which 
is the subject of ongoing work. 
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