
Pyramid Encoding for Fast Additive Quantization

Anton Muravev1, Ezgi Can Ozan1, Alexandros Iosifidis1,2, Moncef Gabbouj1
1Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland

2Department of Engineering, Aarhus University, Aarhus, Denmark
1{anton.muravev, ezgi.ozan, alexandros.iosifidis, moncef.gabbouj}@tut.fi, 2alexandros.iosifidis@eng.au.dk

Abstract—The problem of approximate nearest neighbor

(ANN) search in Big Data has been tackled with a variety of recent

methods. Vector quantization based solutions have been

maintaining the dominant position, as they operate in the original

data space, better preserving inter-point distances. Additive

quantization (AQ) in particular has pushed the state–of–the-art in

search accuracy, but high computational costs of encoding

discourage the practical application of the method. This paper

proposes pyramid encoding, a novel technique, which can replace

the original beam search to provide a significant complexity

reduction at the cost of a slight decrease in retrieval performance.

AQ with pyramid encoding is experimentally shown to obtain

results comparable with the baseline method in accuracy, while

offering significant computational benefits.

Keywords—compact encoding; image retrieval; nearest

neighbor search; vector quantization

I. INTRODUCTION

The nearest neighbor (NN) search is a ubiquitous problem
encountered in many application areas. The recent emergence of
Big Data [1] has rendered many existing solutions obsolete. As
the dimensionality of the data increases, the computational costs
of traditional NN search techniques grow exponentially, making
them infeasible in practice [2]. This factor led to the introduction
of approximate nearest neighbor (ANN) search techniques,
which trades the accuracy of the solutions in favor of a
manageable complexity. Locality Sensitive Hashing (LSH) [3]
was among the first ANN approaches to achieve widespread
adoption [4], resulting in emergence of a large family of
hashing-based techniques [5][6]. Most recently quantization-
based approaches, such as Product Quantization [7] and
Residual Vector Quantization [8][9], have pushed the state-of-
the-art in ANN search by learning lossy representations of the
data, which allow for fast distance calculations.

Product Quantization (PQ) [7] performs a decomposition by
splitting the original 𝐷-dimensional data into 𝑀 subspaces of
𝐷 𝑀⁄ dimensions each. Vector quantization [10] can then be
applied independently within each subspace, using Lloyd’s
algorithm to learn K representative centroids. Thus M
codebooks of K codewords (also called codevectors) are formed.
The total number of possible representations is 𝐾𝑀, making PQ
very space-efficient. The computational costs are also moderate:
since the subspaces are by definition orthogonal, the codewords
can be optimally assigned by M independent NN searches,
requiring a total of 𝑂(𝐾𝐷) operations. Learning the codebooks,
as outlined above, can be performed independently in each

subspace, resulting in the total cost of 𝑂(𝑁𝐿𝐾𝐷), where 𝑁 is the
size of the training set and 𝐿 is the number of iterations. PQ
makes fast distance calculation possible by efficient use of table
lookups: estimating the distance between a given query and an
encoded vector takes 𝑂(𝑀) operations [7]. Unlike hashing-
based methods, PQ operates within the original data space,
retaining the original similarity measure (typically the squared
Euclidean distance), which further improves the accuracy.

PQ assumes that every subspace is roughly equivalent in
terms of information content, which is obviously not always the
case in practice. Optimized Product Quantization (OPQ) [11],
also known as Cartesian K-means (CKM) [12], addresses this
drawback by adaptively allocating dimensions to subspaces
instead of a simple splitting. This is achieved by learning a data-
specific rotation, represented by an orthogonal matrix. In a
general non-parametric approach, the rotation matrix is updated
after each PQ learning iteration by solving the orthogonal
Procrustes problem. Taking advantage of its formulation, OPQ
achieves a significantly better performance with an additional
cost. The computational complexity of learning an OPQ
quantizer is 𝑂(𝐿(𝑁𝐾𝐷 + 𝑁𝐷2 + 𝐷3)) in the non-parametric
case. Other suggested variants of product quantization include
Locally Optimized Product Quantization (LOPQ) [13] and
Optimized Cartesian K-Means (OCKM) [14].

Additive quantization (AQ) [15] is a generalization of both
PQ and OPQ. As the name implies, the codevectors are added
together instead of being concatenated to obtain the data
representation. The codebooks are fully D-dimensional, and
there is no subspace decomposition involved. The lack of
constraints results in a more powerful representation, which, in
turn, leads to a much more accurate search.

However, the higher generality also has its drawbacks. The
lack of orthogonality between different codebooks complicates
the distance computations, as the dot products between
codewords are nonzero (unlike PQ or OPQ). In practice this
means that one distance estimation takes 𝑂(𝑀2) table lookups
instead of 𝑂(𝑀). Another important consequence of non-
orthogonality is the fact that learning cannot be split into several
simpler problems, making the k-means algorithm unsuitable for
codebook generation. The codebooks can instead be derived by
solving the systems of linear equations, given the data encoding.
Iterative learning is still possible by alternating between
codebook adaptation and data encoding. The latter step is of

utmost importance, as it drives both the representation accuracy
and the computational costs of the quantizer.

These drawbacks can be addressed by imposing additional
constraints on the representation. Tree quantization (TQ)
enforces orthogonality between certain pairs of codebooks, as
described by a dynamic graph structure [16]. Composite
quantization (CQ) minimizes the dot product between codebook
vectors, allowing for distance estimation with 𝑂(𝑀) required
operations, as in PQ [17][18]. This work instead focuses on the
optimization process in codebook encoding.

II. ENCODING IN ADDITIVE QUANTIZATION

Since additive quantization imposes no constraints on the
codebooks, optimal encoding for AQ is equivalent to inference
on a fully connected pairwise Markov Random Field (MRF),
which is an NP-hard problem [15][19]. Thus, local heuristics are
used instead of exhaustive search. The original AQ work [15]
suggested two possible solutions – Iterated Conditional Modes
(ICM) and Beam search. These are described in more detail
before the proposed approach is presented.

A. Iterated Conditional Modes (ICM)

Iterated Conditional Modes (ICM) is an algorithm for
approximate MRF inference that can be trivially adjusted to the
problem of AQ encoding. It seeks a locally optimal
representation by improving the current solution, one codebook
at a time. Random assignment is used to initialize the encoding;
then, one codebook is chosen and is searched through
exhaustively to locate a codeword which can reduce the error.
The other 𝑀 − 1 codewords are fixed during this search.
Repeating this once for each codebook yields a full ICM
iteration. The encoding can run for a fixed number of iterations
or until convergence is achieved.

The major benefit of ICM is its mild computational costs –
one iteration requires 𝑂(𝑀𝐾𝐷) operations in total. However, the
algorithm is found to be unsuitable for AQ, as it was found to
produce suboptimal encoding in most scenarios [15].

B. Beam Search

Beam search is proposed to be used for encoding by the
authors of AQ in [15] to allow for better encoding by drastically
expanding the search space. First, all codebooks are combined,
resulting in a set of 𝑀𝐾 codewords. From this set 𝐻 closest
matches to the target vector are chosen (𝐻 is a search depth
parameter). These are the initial solution candidates. Then 𝐻
current residuals are computed, and 𝐻 more codevectors per
residual are chosen from yet unused codebooks. The resulting
set of 𝐻2 candidate solutions is sorted based on the quantization
error, after which the top 𝐻 are kept. The beam search continues
until all 𝑀 codebooks are utilized in the candidate solutions, at
which point the single encoding with the smallest quantization
error is retained as a final result. The authors of AQ recommend
the values 𝐻 = 16 during codebook learning and 𝐻 = 64 for
encoding the actual data.

The beam search encoding vastly outperformed ICM and
allowed AQ to reach state-of-the-art ANN performance [15].
However, its prohibitive computational cost makes it

undesirable for practical purposes, as encoding a single vector
requires 𝑂(𝑀3𝐾𝐻 + 𝑀𝐾𝐷) operations. As the number of
codebooks is directly related to the representation power, the
cubic scaling of beam search with respect to 𝑀 is also
undesirable.

III. PYRAMID ENCODING

In this study, a novel encoding method called Pyramid
Encoding is proposed for AQ encoding. It utilizes a bottom-up
approach, consecutively merging the codebooks to obtain new
candidate solutions in a tree structure. Fig. 1 shows the proposed
scheme. The first merge results in 𝐾2 candidate solutions on
each of 𝑀/2 tree nodes. The contents of every node are
independently evaluated and truncated to the best 𝐻 solutions,
similarly to beam search. The following merges naturally result
in 𝐻2 solutions in each new node, from which only the top 𝐻 are
retained. This procedure continues until the root of the tree is
reached, meaning that all the codebooks are utilized and a single
best solution is taken as a final answer.

The advantage of the pyramid encoding arises from the
relative simplicity of error calculation when the solutions are
merged. Assume that two additive approximations for the target
vector x are available – 𝐶1 and 𝐶2, with known quantization
errors 𝐸1 = ‖𝑥 − 𝐶1‖2 and 𝐸2 = ‖𝑥 − 𝐶2‖2 respectively.
Combining these solutions will result in a new quantization error
value: 𝐸′ = ‖𝑥 − (𝐶1 + 𝐶2)‖2. The expression for 𝐸′ can be
expanded as follows:

𝐸′ = ‖𝑥 − (𝐶1 + 𝐶2)‖2 =

= ‖𝑥‖2 + ‖𝐶1 + 𝐶2‖2 − 2〈𝑥, 𝐶1〉 − 2〈𝑥, 𝐶2〉 (1)

Applying the properties of the norms and dot products yields
the following alternative formulation for E':

𝐸′ = ‖𝑥 − 𝐶1‖2 + ‖𝑥 − 𝐶2‖2 − ‖𝑥‖2 + 2〈𝐶1, 𝐶2〉 =

= 𝐸1 + 𝐸2 − ‖𝑥‖2 + 2〈𝐶1, 𝐶2〉 (2)

𝐸1 and 𝐸2 are known by assumption, while the norm of the
target vector can be easily precomputed and reused as necessary.

Fig. 1. The bottom-up approach as employed by pyramid encoding.

All the terms of expression (2) are thus known, excluding the dot
product. The fast computation of the latter can be achieved by
constructing a lookup table with all the dot products between the
different codebooks. As the contents of this table depend only
on the quantizer and can be reused for any target vector x, the
corresponding computational cost can be excluded from the total
estimate. The computational complexity of pyramid encoding
for a single target vector is thus 𝑂(𝑀2𝐻2 + 𝑀𝐾𝐷). It is
significantly faster than beam search, especially in scaling with
respect to 𝑀 and 𝐾. However, due to its tighter constraints, it
can be expected to produce less accurate representations. Due to
lower complexity, the value 𝐻 = 64 is deemed acceptable for
all scenarios.

As the proposed encoding approach searches a smaller
region of the solution space, the initial point becomes more
important. Two different approaches to pyramid encoding
initialization are considered. Random initialization is equivalent
to the one used for ICM and beam search. Orthogonal
initialization runs several iterations of PQ on the data and uses
the resulting set of codes and codebooks as an initial solution. In
the latter case the codebooks start out as orthogonal sets of
vectors by definition of PQ. However, as AQ formulation does
not enforce this constraint, orthogonality is gradually relaxed
during codebook adaptation.

Table I lists the encoding complexities for all methods
discussed in this study. Additive quantization even with pyramid
encoding is still significantly slower than PQ or OPQ; therefore,
a significant search performance benefit is required to justify the
approach. When orthogonal initialization is used, the suitable
number of PQ iterations to run was experimentally found to be
around 10–15. Thus the extra initialization costs do not affect
the asymptotic complexity estimate.

IV. EXPERIMENTAL RESULTS

Two datasets of image descriptors – SIFT1M and GIST1M
– are the de-facto standard for evaluating ANN search methods
[7]. Both datasets are comprised of a base set, where the actual
search is performed, a holdout set, which is used only to train
the quantizers, and a query set, for which the ground truth
(indices of 100 nearest samples from the base set) is provided.
Table II contains the quantitative information about the datasets.

Two measures are used to evaluate performance.
Quantization error is a natural indicator of compressed
representation accuracy and was empirically found to be related
to the ANN search performance [7]. We report the quantization
error values on the base set (after training). Recall@N is a
popular evaluation metric of ANN search, which gives an
estimate of the probability that the true nearest neighbor will be
present amongst the top N points returned by the search [7]. We

report the experimental results for N = 1, 10, 100 and 1000 (the
latter only on GIST1M).

The following baseline methods were used in the
experiments: PQ, OPQ/CKM, AQ. All of them have publicly
available implementations. For clarity, we denote the original
variant of AQ that uses beam search encoding as AQ-B. The
proposed solutions are denoted AQ-P and AQ-P(pq) for random
and orthogonal initializations, respectively. Table III lists the
parameters of the algorithms used during the experiments.

TABLE I
COMPUTATIONAL COMPLEXITY OF ENCODING A SINGLE POINT

Quantization method Complexity

PQ 𝑂(𝐾𝐷)

OPQ 𝑂(𝐾𝐷 + 𝐷2)

AQ-B 𝑂(𝑀3𝐾𝐻 + 𝑀𝐾𝐷)

AQ-P 𝑂(𝑀2𝐻2 + 𝑀𝐾𝐷)

TABLE II
PROPERTIES OF THE DATASETS

 SIFT1M GIST1M

Dimensionality 128 960

Base set size 1 000 000 1 000 000

Hold-out set size 100 000 500 000

Query set size 10 000 1 000

 TABLE III

PARAMETERS OF THE QUANTIZERS

Parameter Value

Number of codevectors per

codebook 𝐾

256

Number of codebooks 𝑀 4 and 8

Representation codelength 32 bits for 𝑀 = 4, 64 bits for 𝑀 = 8

Search depth 𝐻 AQ-B – 16 (training), 64 (encoding)

AQ-P – 64

Number of training iterations 30 for SIFT1M

10 for GIST1M

PQ iterations for AQ-P (pq) 15

Fig. 2. Quantization error on SIFT1M base set.

0

5000

10000

15000

20000

25000

30000

35000

40000

32 bit 64 bit

PQ

OPQ

AQ-B

AQ-P

AQ-P (pq)

Fig. 3. Quantization error on GIST1M base set.

0

0,2

0,4

0,6

0,8

1

32 bit 64 bit

PQ

OPQ

AQ-B

AQ-P

AQ-P (pq)

Fig. 2 and Fig. 3 show the quantization errors obtained after
the base set is encoded with trained quantizers. While randomly
initialized pyramid encoding scheme proves inferior to beam
search, orthogonal initialization allows for significant
improvement upon baseline AQ on SIFT1M with 32-bit codes.
The same conclusion holds for longer codes on SIFT1M,
although the advantage is not as pronounced. However, the
proposed approach is not as justified on GIST1M (regardless of
initialization), as it barely surpasses PQ. This is due to the
different internal structure of GIST descriptors, which are
significantly less suitable for subspace decomposition. Note that
SIFT descriptors are composed of 16 histograms with 8 bins
each; GIST1M samples, on the other hand, are concatenations
of three 320-dimensional subvectors, representing normalized
orientation histograms with varying number of bins [7]. Since
the number of PQ-initialized codebooks is a power of two, the
corresponding subspaces cannot align well with GIST descriptor
structure. Adaptive rotation of OPQ and a wider search space of
AQ with beam search encoding make the respective quantizers
preferable in the latter case, avoiding the rigid dimension
allocation. It is worth noting that the baseline AQ provides
extremely minor advantage over OPQ on GIST1M.

Tables IV and V show the recall values for the
aforementioned quantization-based ANN algorithms. It is
apparent that the proposed approach is very close to the baseline
AQ on SIFT1M, especially for shorter code lengths. GIST1M
poses difficulties yet again, as simply providing a significant
improvement upon OPQ is a challenge. The proposed approach
demonstrates subpar performance here, converging to the same
solution regardless of initialization. The optimization process
ultimately proves to be too local to improve upon the poor
starting point given by PQ.

V. CONCLUSION

The proposed pyramid encoding for additive quantization
provides a significant complexity reduction compared to the
standard beam search, resulting in a faster data processing
throughout the ANN search pipeline. The effects of pyramid
encoding on the search accuracy depend heavily on the internal
structure of the data. If the PQ decomposition is aligned with
semantic subspaces of the data, orthogonal initialization ensures
highly competitive performance. Otherwise, the pyramid
encoding fails to improve upon the initial guess, resulting in a
poor solution. Adaptive rotation can be incorporated on different
levels of the encoding pyramid to address this limitation, which
is the subject of ongoing work.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
of the Academy of Finland, project no. 289364.

Alexandros Iosifidis was supported from the Academy of
Finland Postdoctoral Research Fellowship (No. 295854). He
joined Aarhus University on August 2017.

REFERENCES

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mob.
Networks Appl., vol. 19, no. 2, pp. 171–209, 2014.

[2] R. Weber, H. J. Schek, and S. Blott, “A Quantitative
Analysis and Performance Study for Similarity-Search Methods
in High-Dimensional Spaces,” Proc. 24th VLDB Conf., vol.
New York C, pp. 194–205, 1998.

TABLE IV
RECALL ON SIFT1M DATASET

64 bits

(M = 8)
R@1 R@10 R@100

32 bits

(M = 4)
R@1 R@10 R@100

PQ 0,2243 0,599 0,9243 PQ 0,0518 0,2297 0,5945

OPQ 0,2433 0,6384 0,9402 OPQ 0,06756 0,2725 0,6576

AQ-B 0,3114 0,7733 0,983 AQ-B 0,1066 0,415 0,8255

AQ-P 0,2051 0,5808 0,9115 AQ-P 0,0560 0,2438 0,6248

AQ-P (pq) 0,2846 0,7125 0,9661 AQ-P (pq) 0,1177 0,3983 0,7941

 TABLE V

RECALL ON GIST1M DATASET

64 bits

(M = 8)

R@1 R@10 R@100 R@1000 32 bits

(M = 4)

R@1 R@10 R@100 R@1000

PQ 0,076 0,218 0,504 0,8582 PQ 0,023 0,0675 0,1756 0,5045

OPQ 0,118 0,334 0,715 0,9465 OPQ 0,054 0,1419 0,3964 0,7905

AQ-B – – – – AQ-B 0,069 0,189 0,4666 0,809

AQ-P 0,097 0,268 0,563 0,88 AQ-P 0,047 0,157 0,382 0,726

AQ-P (pq) 0,097 0,268 0,563 0,88 AQ-P (pq) 0,047 0,157 0,382 0,726

[3] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
“Locality-sensitive hashing scheme based on p-stable
distributions,” in Proceedings of the twentieth annual
symposium on Computational geometry, 2004, pp. 253–262.

[4] Y. Jing and S. Baluja, “Visualrank: Applying pagerank
to large-scale image search,” Pattern Anal. Mach. Intell. IEEE
Trans., vol. 30, no. 11, pp. 1877–1890, 2008.

[5] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for
Similarity Search: A Survey,” arXiv:1408.2927, pp. 1–29, 2014.

[6] E. C. Ozan, S. Kiranyaz, and M. Gabbouj, “M-PCA
Binary Embedding for Approximate Nearest Neighbor Search,”
in 2015 IEEE Trustcom/BigDataSE/ISPA, 2015, vol. 2, pp. 1–5.

[7] M. Douze, C. Schmid, H. Jégou, M. Douze, and C.
Schmid, “Product quantization for nearest neighbor search.,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 117–
28, Jan. 2011.

[8] Y. Chen, T. Guan, and C. Wang, “Approximate nearest
neighbor search by residual vector quantization,” Sensors, vol.
10, no. 12, pp. 11259–11273, 2010.

[9] L. Ai, J. Yu, Z. Wu, Y. He, and T. Guan, “Optimized
residual vector quantization for efficient approximate nearest
neighbor search,” Multimed. Syst., pp. 1–13, 2015.

[10] R. M. Gray, “Vector quantization,” ASSP Mag. IEEE,
vol. 1, no. 2, pp. 4–29, 1984.

[11] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product
quantization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 4, pp. 744–755, 2014.

[12] M. Norouzi and D. J. Fleet, “Cartesian K-Means,” 2013
IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3017–3024,
2013.

[13] Y. Kalantidis and Y. Avrithis, “Locally optimized
product quantization for approximate nearest neighbor search,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 2321–2328.

[14] J. Wang, J. Wang, J. Song, X. Xu, H. T. Shen, and S. Li,
“Optimized Cartesian K-Means,” IEEE Trans. Knowl. Data
Eng., vol. 27, no. 1, pp. 180–192, 2015.

[15] A. Babenko and V. Lempitsky, “Additive quantization
for extreme vector compression,” Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., pp. 931–938, 2014.

[16] A. Babenko and V. Lempitsky, “Tree Quantization for
Large-Scale Similarity Search and Classification,” in The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[17] T. Zhang, J. Wang, and J. M. Com, “Composite
Quantization for Approximate Nearest Neighbor Search,” Proc.
31st Int. Conf. Mach. Learn., vol. 32, pp. 838–846, 2014.

[18] T. Zhang, G. J. Qi, J. Tang, and J. Wang, “Sparse
composite quantization,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 2015, vol. 07–12–June, pp. 4548–4556.

[19] G. F. Cooper, “The computational complexity of
probabilistic inference using Bayesian belief networks,” Artif.
Intell., vol. 42, no. 2, pp. 393–405, 1990.

