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ABSTRACT
Progressive rendering, for example Monte Carlo rendering of 360◦
content for virtual reality headsets, is a time-consuming task. If
the 3D artist notices an error while previewing the rendering, he
or she must return to editing mode, do the required changes, and
restart rendering. Restart is required because the rendering system
cannot know which pixels are affected by the change. We propose
the use of eye-tracking-based optimization to significantly speed
up previewing the artist’s points of interest. Moreover, we derive
an optimized version of the visual acuity model, which follows the
original model more accurately than previous work. The proposed
optimization was tested with a comprehensive user study. The
participants felt that preview with the proposed method converged
instantly, and the recorded split times show that the preview is 10
times faster than conventional preview. In addition, the system does
not have measurable drawbacks on computational performance.
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1 INTRODUCTION
Virtual Reality (VR) devices are getting more and more common
for both work and entertainment applications. However, one of the
challenges of VR is how to easily generate 360◦ content, because
of its high resolution, and the requirement of having meaningful
interesting content in every direction. Rendering high resolution
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images with realistic-looking progressive rendering methods typi-
cally takes hours to complete. Noisy images of the rendering are
produced quickly. However, for example in Monte Carlo rendering,
reducing the error of the estimator to half at any point requires the
number of samples to be quadrupled [Pharr and Humphreys 2010].

If the artist notices during the preview that somethingwaswrong
in the scene, he or she must cancel the rendering, make the required
changes, and start the rendering all over again. Restart is required
because the system cannot know what pixels are affected by the
change. Typically, the artist can create a rough estimate of the
scene with a faster rendering method, but the error-free version
becomes visible only after the slow progressive rendering process,
especially if the scene has reflections, transparency, or soft shadows.
If the artist can preview the rendering faster, it directly transfers
to the speed of the whole content generation process. Compared
to conventional rendering, the high resolution of 360◦ content
makes the preview even slower, which makes its optimization more
important.

In this paper, we propose a method for optimizing preview of
progressive rendering by applying foveated rendering, i.e., reducing
the quality of rendering in the peripheral regions of vision. Quality
can be reduced because the human visual system cannot detect
fine detail outside the center of the vision. Moreover, it has been
predicted that more than 90% of real-time path tracing samples can

Figure 1: Results after two seconds of rendering with a static
point of interest from left to right: rendering buffer, preview,
and magnification of the point of interest. For the differ-
ences between the methods, see Sec. 4. Note how the point
of interest already starts to converge in FV, but the edges of
the preview have more noise than VP.
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be omitted by employing foveated rendering [Koskela et al. 2016].
This paper’s novel contributions are:

(1) We derive an optimized version of the human visual acuity
model, which can be followed to accurately generate path
tracing samples.

(2) We propose the use of foveated rendering to speed up pre-
view of progressive rendering, and validate with a user study
that the proposed method is 10 times faster than conven-
tional preview.

2 RELATEDWORK
There is a large body of work on real-time foveated rendering,
which is summarized by a recent comprehensive literature re-
view [Weier et al. 2017]. Foveated rendering is very appealing with
Head Mounted Displays (HMD), which typically have a wider field
of view than desktop monitors, and only a single observer per
display [Shibata 2002].

Current hardware supports only a fixed, predefined resolution
for rasterization. Therefore, foveated rendering can be implemented
more easily with ray-tracing-based techniques, because they sup-
port arbitrary sampling patterns in screen space. Consequently,
foveated ray tracing has gained academic interest [Murphy et al.
2009; Weier et al. 2016]. An intuitive idea would be to distribute
samples according to a model of the human visual acuity’s smallest
detectable spatial frequency:

m(e) =

{
1.0, e ≤ 5.79

7.49
(0.3e+1)2 , e > 5.79

, (1)

where e ≥ 0 and it is the eccentricity angle, i.e., the angle from the
gaze direction [Reddy 2001]. This model is derived from various
psychophysical studies. The equation describes just one radius of
the visual acuity, and the actual 2D model is obtained by taking a
solid of revolution of the equation.

Due to the complexity of the visual acuity model, linear denom-
inator models can be used instead of the quadratic denominator
model shown in Eq. 1. However, they are not as accurate on the
peripheral parts of the vision [Guenter et al. 2012]. A further sim-
plified version is to use a linear fall-off between full detail and the
minimum sampling probability [Stengel et al. 2016; Vaidyanathan
et al. 2014; Weier et al. 2016], or even a static probability with
respect to eye tracking [Pohl et al. 2016].

The context of previewing is closely related to real-time render-
ing, since the preview needs to be updated in real-time. Moreover,
preview of a region of interest needs to converge as quickly as
possible, because then the artist can cancel the rendering earlier,
and make the required changes faster. One way to vary the con-
vergence rates is to apply so-called guided preview, and have more
samples in an area chosen by the artist with a pointing device [Roth
et al. 2015]. Another idea is to select an area of the image where
the sample computation is concentrated [Pixar 2017]. Importance
masking [LuxRender 2013] is an advanced version of area selection.

In this paper, we utilize the idea of guided preview, and use one
of the most intuitive ways for guiding, i.e., the point where the user
is looking at. Moreover, we use the quadratic denominator visual
acuity model instead of the significant simplifications of it.

3 PROPOSED METHOD
The idea of our preview method is to render images for VR and
to give the artist an instant preview. The method tracks the eye
of the user and generates more samples around the gaze direction.
Sampling according to the visual acuity model does not decrease the
user experience of previewing, because resolution can be reduced
significantly on the peripheral parts of vision without affecting
search task performance [Duchowski et al. 2009].

Sampling the world according to the visual acuity model requires
random positions to be generated with probability density equal
to Eq. 1. Note that the equation from Reddy [2001] is not consistent
with the definition of the probability density function because its
integral over the entire space is not equal to one. However, we will
fix the equation so that it follows the definition in Eq. 5.

As we show below, generating random numbers according to
the solid of revolution of Eq. 1 would have been too complicated
for the targeted real-time preview method. Therefore, we simplify
the generation by producing polar coordinates: one uniformly dis-
tributed for the angular coordinate ϕ, and another for the radial
coordinate r , which is the distance from the center of the vision. To
achieve correct distribution for r , the probability density of Eq. 1
must be slightly modified based on the circumference of circle 2πR
(where R is the radius):

д(e) = 2πem(e) =

{
2πe, e ≤ 5.79
14.98πe
(0.3e+1)2 , e > 5.79

. (2)

The angle can be generated by one of the many algorithms avail-
able for quickly generating uniformly distributed random numbers.
In addition, uniform distribution can be transformed to any other
distribution with the so-called inversion method [Devroye 1986]:

r = f −1(u), (3)

whereu is a uniformly distributed random number in interval [0, 1],
f is the desired cumulative distribution function, and r is a random
number that has a cumulative distribution f . The inversion method
requires us to derive the cumulative distribution function from the
probability density defined in Eq. 2 by taking the integral of д(e) in
interval [0,x]:

h(x) =

∫ x

0
д(e) de =


πx2, x ≤ 5.79
14.98
0.09

π
( 1
0.3x + 1

+

ln(0.3x + 1)
)
− 612.256,

x > 5.79
. (4)

We chose the upper limit of the function at 80◦, because the
model starts to reach zero around 80◦. Finally, the integral needs
to be modified to be consistent with the cumulative distribution
function definition that runs from 0 to 1 in y-axis:

f (x) =
h(x)

G(80)
, (5)

where G(e) =
∫
д(e) de .

Eq. 3 requires the inverse of f in Eq. 5. However, it cannot be
expressed in terms of standard mathematical functions and Lambert
W-function [Weisstein 2002] would be needed. We simplified the
function by approximating it with a fitted fourth-order polynomial
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Figure 2: Illustration of the single scene procedure in the
user study. Boxes are the states and arrows are the partici-
pant’s actions for transitioning to other states. Clocks rep-
resent points where the system saved split times.

that was determined numerically by least squares regression:

f −1(u) ≈ 80 ×


0.2330

√
u, u ≤ 0.0965

0.3136u4 + 0.0021u3+

0.3451u2 + 0.2984u + 0.0404,
u > 0.0965

. (6)

The maximum error of Eq. 6 to Eq. 1 is 1.8% and integral of their
difference is less than 0.04%, which are very small especially if
compared to approximations from previous work.

In the proposed method the users preview the results with a
VR HMD that has eye tracking capability, but also a desktop setup
could be used. We chose the HMD because a VR headset gives better
spatial awareness and enjoyment [MacQuarrie and Steed 2017] and,
therefore, it is likely that the artist wants to preview the scene with
a device similar to what the end users will use.

4 USER STUDY
To measure the subjective performance of our proposed instant
preview method, we conducted a user study. The study used five
different scenes and three different preview methods in random
order. We chose the scenes to represent different 360◦ rendering
scenarios. The preview methods were:

• Omnidirectional preview (OD): In this method samples were
distributed uniformly to every possible point in an equirect-
angular image. This method represents conventional base-
line rendering without any preview optimizations.

• Viewport preview (VP): This method distributed samples uni-
formly to the area currently viewable with the HMD. The
idea of this method was to simulate sampling similar to rec-
tangle area selection tool used in some rendering engines.

• Foveated preview (FV): This is the proposed method which
distributed samples according to the visual acuity model
centered on the gaze point of the eye-tracked user.

Procedure for each 3D scene can be seen in Fig. 2. In every scene,
we asked the participants to play the role of a 3D artist, and to
choose an object in the 3D world. They were told that the object
represents an object that they have just adjusted. Adjustment could

OD VP FV (proposed)

Outline Material
0.0

10.0

20.0

30.0

40.0

50.0

11.9

48.2

3.9

16.0

1.51.6 4.9

Figure 3: Geometricmean split times (less is better) over all 5
test scenes of the visible outline and visible material criteria
for each of the three preview methods.

have been, for example, changing the orientation of the object or
changing its material parameters.

After the selection, the rendering started, and the participants
recorded split times. The first split was recorded at the point where
the participants thought that they could determine if transform or
rotation of the object was successful. The second split represented
the time when the participant was able to determine if the material
adjustment was successful. The idea was that at these points the
artist could cancel the rendering and go back to editing mode.

We chose unidirectional path tracing with importance sampling
as the progressive rendering method. AMD RadeonRays [AMD
2017] was used for ray traversal and the path tracer ran on an AMD
Fury X GPU. The FOVE 0 VR headset was used as a viewing device
in the study due to its eye tracking capability. The system generated
equirectangular images and the previewing used trilinear filtering
to cancel flickering near poles.

5 RESULTS
We conducted the user study with 16 participants, of whom 11
were male and 5 were female. The ages of the participants varied
between 22 and 37. Two of the participants knew details about the
test set-up beforehand, but their results were close to the average
of the other results.

The geometric means of all timings are shown in Fig. 3 and
arithmetic means of each scene over all participants are listed in
Table 1. The results show that the proposed method required only
around 10% time compared to the baseline method of OD. The
time saving translates directly to the speed of the artist’s feedback
loop, since he or she can quit the rendering and start making the
required changes 10 times faster. Equivalent comparison states that
previewing with VP takes around 30% time compared to OD.

In an open discussion after the test, many participants reported
that FV was so fast that it was hard to record the first split at
the right time. They also stated that it felt that the FV method
converged instantly. On the other hand, several participants stated
that slowness of OD might have caused them to get bored, inducing
them to mark a split time at a lower quality than with the other
methods. Most of the participants also stated that they did not



SA ’17 Technical Briefs, November 27–30, 2017, Bangkok, Thailand Koskela, et al.

Table 1: Arithmetic mean (µ) split times and their standard deviations (σ ) from the user study for each scene. The results
of the FV (proposed) and VP are compared to the OD and pp stands for percent point. Big σ values in OD are caused by the
participants selecting different kind of objects.

Split type Outline visible Material visible

Preview method OD VP FV OD VP FV
Value type µ (s) σ (s) µ (%) σ (pp) µ (%) σ (pp) µ (s) σ (s) µ (%) σ (pp) µ (%) σ (pp)

BMW 6.1 7.6 41.8 9.8 20.8 1.9 29.9 16.9 33.6 15.1 11.8 5.3
Classroom 15.6 7.7 27.1 3.1 11.6 2.1 67.9 79.2 30.8 35.7 7.9 4.6
Conference 41.9 59.7 29.7 8.6 7.6 2.3 137.2 197.4 33.9 46.0 8.2 8.6
Sibenik 24.7 20.8 29.5 9.2 11.4 3.9 76.7 55.2 34.3 29.0 10.9 10.1
Sponza 16.1 13.8 25.9 4.9 9.1 2.1 60.4 46.8 30.1 18.9 7.5 4.0

realize that eye tracking was used, and instead thought that the
actual rendering was somehow faster. Not noticing the eye tracking
means that the visual acuity model is a good way to distribute the
samples.

Measurement of the computational performance of the three dif-
ferent methods states that they are computationally equally good.
On the target machine, according to AMD CodeXL, it takes around
0.17 ms to launch 65,536 primary rays with all of the preview meth-
ods. The launch includes generating random pixel coordinates for
the rays and calculating the ray origin and direction based on them.
In the case of the proposed FV extra work is done to change the
random number distribution with the inversion method (Eq. 6). The
timing implies that the extra work is hidden by the latencies of
memory accesses and the kernel launch.

The ray tracing performance is dependent on the user’s gaze
or head direction with the FV and VP methods, respectively. In
contrast, OD has the same ray tracing performance nomatter where
the user is looking at. While OD yields a larger number of samples
per second than the other methods, this result can be misleading
because many of the rays are sent to directions that are easier to
ray trace, e.g., straight to a skybox.

6 CONCLUSIONS
In this paper we presented a foveation-based preview system for
progressive rendering. The system tracks the user’s gaze and dis-
tributes samples according to a visual acuity model.

Thanks to our optimized visual acuity model, the image con-
verges at the user’s point of interest 10 times faster than with
conventional uniform sampling over the whole 360◦ image area.
Quick convergence enables the 3D artist to cancel the rendering 10
times earlier, reducing the length of the feedback loop significantly.
We recorded these timings in a user study with 16 participants. The
study measured when the users could detect both if a change in
the transformation of an object was successful, and if a change
in the material parameters was successful. Generating uniform
random numbers according to the visual acuity model did not have
a measurable difference on the computation performance.

The proposed system uses a head mounted display, but it could
be extended to support a desktop display with eye tracking. In the
future, we are interested in exploring more ways to make content
generation for virtual reality devices easier and faster.
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