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Abstract. In this paper, we study a vertically differentiated duopoly mar-
ket, where competitors (mobile service providers) offer mobile subscriptions to
customers, who diversify in their preferences regarding price and quality. We
consider a two-stage game where the players first select the quality and then
begin a competitive process for the price or quantity, which is widely known
as Bertrand or Cournot game, respectively. To capture the service provider
strategy, we first introduce variable costs to improve the quality, which are
linear in quality per a subscription, and then derive the market-related met-
rics of interest for the tractable uniform distribution of the customer’s taste
parameter. Further relaxing this strong assumption, we provide with a numer-
ical procedure that helps characterize an arbitrary taste distribution as well as
an arbitrary cost function. Finally, selected numerical examples report on the
comparison between the uniform and the truncated exponential distribution,
thus accentuating the importance of choosing an appropriate customer taste
model.

1 Introduction

The telecommunications industry has already entered a new phase of its evolution,
where the focus has shifted from the conventional multimedia transmission to the
ubiquitous connectivity and massive traffic volumes driven by growing human demand
for data as well as supported by the emerging innovations, such as the Internet of
Things, wearables, and more far-fetched autonomous vehicles [1]. On this market
that crossed the 100% penetration mark, competition of mobile service providers
for increased market share and retention of customers becomes a vital part of their
strategy.

One of the key marketing strategies for competitors to seek profitable niches is
product differentiation and pricing [2]. In particular, horizontal differentiation refers
to immeasurable distinctions in virtually identical products, such as in design or
color, which are not sufficient for the mobile service provider (SP) to attract new
customers, who are willing to acquire a better level of service. In contrast to that,
vertical market differentiation is objectively measurable and based on diverse quality
levels of the products [3]. Here, customers are sensitive with respect to the relation
between the quality and the price levels, and may have diverse preferences regarding
it [4].

Generally, the market and pricing models have already attracted significant atten-
tion of the wireless community across a wide range of various problems, from market
entrance decisions for mobile SPs [5] and competition over spectrum [6] to specific
studies of social welfare in case when SPs exploit unlicensed spectrum [7]. However,
to the best of our knowledge no prior work on vertical differentiation of mobile service
markets has been contributed so far. In this paper, we study a duopoly model where
mobile SPs first determine the specification of their offered services and then decide
on the prices or the quantities of services they offer according to the Bertrand or
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Cournot competition models [8] (the initial market entry [9] is assumed to have been
completed).

We consider both the price and the quantity competition as they lead to dissimilar
equilibrium points, while there is still no consensus in past literature as to which type
of competition should be preferred. We thus analyze both game models in order to
reveal the dependence of the corresponding results on the optimal choice of the SP
strategies, namely, whether SPs eventually offer a homogeneous product (as shown
by the Cournot game) or two differentiated products (as illustrated by the Bertrand
game). Since both situations may occur in the real market, one model cannot be
preferred over another upfront.

Further, in modeling the mobile service markets an important role belongs to
characterizing the costs of offering improved service quality. The majority of existing
studies as in [9], [10], and [11] assume zero or fixed quality improvement cost, as well
as adopt diminishing [12] or quadratic [13] formulations. This work assumes linear
costs of quality improvement per unit of product as this can be tackled easily while
being close to what the SPs may experience in practice.

As an indicator of customer preferences, we adopt the standard utility func-
tion [14], where the willingness of a customer to pay for a better quality service
is represented by a random taste parameter [14]. While most of the game-theoretical
references study the formulations by example of analytically tractable but arguably
unrealistic uniform distribution of the taste parameter from “poor” to “rich”, we
in this work offer guidance on how to handle an arbitrary taste distribution and an
arbitrary cost function.

The remainder of this paper is organized as follows. In Section 2, we outline our
system model as well as describe the two-stage game played to divide the market
and set the optimal price or quantity (in Bertrand or Cournot game, respectively).
Our contributions appear in Sections 3 and 4, where, correspondingly, we provide
analytical calculations for the conventional tractable example under the linear cost
assumption and then detail our flexible numerical procedure to cope with an arbitrary
formulation. Finally, we provide numerical comparison of the two considered options
based on representative examples.

2 System model

In this work, we study a vertically differentiated mobile service market under the
simplifying assumption of two operating SPs (service providers). In our formulation,
the SP i may be characterized by a pair “price-quality” (pi, si) and offer an uncon-
strained number of mobile subscriptions, each of which guaranteeing the announced
mobile service quality si for the price pi. Thus offered subscriptions (e.g., SIM-cards)
may be purchased by a potentially large number of consumers, hereinafter named cus-
tomers. Based on their preferences, customers may select only one SP or else refrain
from buying anything.

We emphasize here that the products on a vertically differentiated market (in our
case, subscriptions) may differ in both their quality and price. Moreover, the customers
are not identical in their preferences due to diverse taste or budget restrictions, which
results in varying willingness to pay for the offer [15], [4].

2.1 Characterization of the customers

Utility function of customers For differentiated markets, it is typically assumed
that all of the customers agree on ranking the mobile service offers (subscriptions)
in the order of quality preference according to some utility function based on a taste
parameter [13]. The taste parameter θ reflects the customer’s preference i.e., the more
a customer agrees to pay for a better quality service – the higher the parameter θ
becomes. In our study, we adopt the following utility function of θ [15], given the price
pi and the quality si offered by the SP i:
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U(θ, si, pi) = θ · si − pi, (1)

where, si = s(Ti) is an increasing quality function of data volume or rate Ti guaranteed
by the SP. The function s(Ti) is typically non-linear and often represented in literature
by a logarithmic dependence, but may also be replaced by another, more appropriate
choice.

Strategy of customers All of the customers are assumed to be rational i.e., the
strategy of any customer is to maximize its utility U(θ, s, p) by choosing exactly one
subscription of the SP i characterized by a pair (pi, si) or, alternatively, refraining from
buying anything at all. We note that zero utility value U(θ, si, pi) ≤ 0 is equivalent to
not purchasing the product i, and the case U(θ, si, pi) = U(θ, sj , pj) yields customer’s
indifference to buying product i or j.

Distribution of customers In order to be able to apply the Cournot competition
model, we further assume that the considered market is not covered i.e., there always
are customers who never participate [11, 15]. Therefore, θ should be distributed over
the interval [0, θmax], where θmax corresponds to customers able to pay the most for
a better quality. We assume that within this interval θ is distributed according to a
certain probability density hθ(θ). Below, we compare two distinct distributions hθ(θ):
the conventional and analytically tractable uniform distribution as well as the more
realistic truncated exponential distribution, for which a numerical solution may be
produced.

Fig. 1. Illustration of the target market structure.

2.2 Characterization of the SPs

Demand of the SPs Without loss of generality, we reorder our SPs such that
s1 ≥ s2. Due to the assumption on the rationality of customers, prices should also be
rearranged in the non-decreasing order p1 ≥ p2. For the fixed price and quality levels,
we may obtain the following points of indifference for a tagged customer [13]:

– point of indifference to buying or not buying the service of the SP 2 is denoted
by the parameter θ∅,2 = p2

s2
(follows from U(θ, s2, p2) = 0),

– point of indifference to buying the service of the SP 2 or of the SP 1 corresponds
to the parameter θ2,1 = p1−p2

s1−s2 (follows from U(θ, s1, p1) = U(θ, s2, p2)).

The demand of the SPs may then be established as D1(s; p) =
∫ θmax

θ2,1
h(θ)dθ and

D2(s; p) =
∫ θ2,1
θ∅,2

h(θ)dθ, where h(θ) is the probability density function (PDF) of the

taste parameter θ.

Profit of the SPs When making their decisions, the SPs abide by the principle of
maximizing their profit, which is determined by the financial flow from the subscribed
customers and depends on the structure of the costs. We assume that linear costs
are incurred when improving the claimed quality si per user, so that the SP would
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be ready to support the respective quality of service (QoS) level for its subscribed
customers. Hence, the total costs depend both on the number of served customers
and on the selected quality level. These costs may reflect, for example, the initial
investments into a fixed-term spectrum lease and/or the amounts of spectrum that
could be resold (as e.g., in [16] or [17]).

Further, our profit function may be written asΠi(s,p) = Di(s,p) (pi − νsi), where
ν is the quality cost coefficient. The latter may be roughly estimated from the value
of the spectrum license costs to support the announced QoS, normalized by unit time
as well as the total number of customers in the region of interest. We note that our
assumption on the linear costs is relaxed in Section 4 and replaced by another suitable
function.

2.3 Two-stage differentiated market game

In this work, we model both alternatives: the price and the quantity competition,
which are known as the Bertrand and Cournot competition models, correspondingly.
We focus on a differentiated market game with the following two phases:

1. In the first phase, both SPs select the quality level si (equivalent to e.g., a data
rate package with the announced throughput). Importantly, at this stage the SPs
are aware of each other, but make their decisions sequentially.

2. Second, given the fixed quality level si the SPs compete in price or, alternatively,
in quantity. More specifically, in the Bertrand game the SPs decide on the prices
pi, i = 1, 2 that are announced to the customers purchasing their subscriptions.
In contrast to that, in the Cournot game the SPs decide on the quantity, which in
our modeling translates into the number of subscribed customers or, equivalently,
sold subscriptions.

Further, we aim at determining the Nash equilibrium of our game and to do so
we apply the principle of backward induction. Accordingly, we begin by finding an
equilibrium for the second phase (price/quantity competition for the fixed levels of
si) and then obtain the optimal values of si which are selected in the first phase.

3 Conventional example: uniform taste distribution

In this section, we consider a tractable example of the customer taste distribution
h(θ), namely, a uniform distribution hU (θ) = 1

θmax
over the said interval [0, θmax] and

thus the expressions for the demand may be rewritten as:

D1(s; p) = 1
θmax

(θmax − θ2,1), D2(s; p) = 1
θmax

(θ2,1 − θ∅,2). (2)

In what follows, we consider the Bertrand price competition and the Cournot quantity
competition models separately for both options.

3.1 Bertrand price competition for the uniform distribution

In the Bertrand game, the SP selects its own price pi in order to maximize the
profit Πi(s; p) = Di(s; p) (pi − νsi) for the selected quality function values si. By
differentiating Πi over pi, one may calculate the optimal prices (can be verified for
ν = 0 by [13]) for the fixed levels of quality, while the solution is readily obtained as
follows:

p∗1(s) = s1
2θmax(s1−s2)+v(2s1+s2)

4s1−s2
, p∗2(s) = s2

θmax(s1−s2)+3s1v
4s1−s2

. (3)

It can be easily demonstrated that the latter is a unique point of maximum for
0 ≤ s2 ≤ s1, which is achieved during the price competition if all of the partici-
pants maximize their profits. The solution (3) represents a result of long-term price
adjustment.
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At the next step of our backward induction, we consider the first phase of the
game, when the SPs select the quality si. Each of them maximizes the function Πi(s)
over the only varying argument si, where:

Π1(s) = 4s21
(θmax−ν)2(s1−s2)
θmax(4s1−s2)2 , Π2(s) = s1s2

(θmax−ν)2(s1−s2)
θmax(4s1−s2)2 . (4)

The first-order condition of maximum for these two independent optimization
problems may be formulated as follows:

4 s1 (θmax−v)2 (4 s1
2−3 s1 s2+2 s2

2)
θmax(4 s1−s2)

3 = 0, s1
2 (4 s1−7 s2) (θmax−v)2

θmax(4 s1−s2)
3 = 0. (5)

Denoting s1
s2

as x, we may then locate the maximum points for both SPs. We note

that due to the absence of roots for the first equation and the fact that ∂Π1

∂s1
> 0, the

maximum is located at the border s∗1 = smax, while the optimal quality s∗2 = smaxξ,

where ξ=4/7 (the second-order condition of maximum ∂2Π2

∂s22

∣∣∣
s∗1 ,s

∗
2

<0 could be verified

easily). The latter corresponds to the rule of 4/7 [11].

Theorem 1 The obtained solution for the Bertrand game is unique and represents
the Nash equilibrium.

Proof. The proof is fairly straightforward and is based on demonstrating that the
following holds:

Πi(s
∗
1, s

∗
2) ≥ Πi(s1, s

∗
2), for any s1 < s∗1,

and Πi(s
∗
1, s

∗
2) ≥ Πi(s

∗
1, s2), for any s2 6= s∗2,

(6)

which is based on the fact that the sought points are the points of maximum for the
respective functions. Uniqueness of the sought point follows from uniqueness of p∗(s)
and the solution (s∗1, s

∗
2).

Substituting the sought point (smax, ξsmax) into the price, demand, and profit
functions, we obtain the key indicators at the equilibrium point. Then, we additionally
calculate the consumer surplus by characterizing the integral benefit of all customers
as a difference between the maximum price that they could have paid for the quality
si (i.e., θsi) and what they actually spend (pi):

CS =
θmax∫
θ1,2

(θs1 − p1) 1
θmax

dθ +
θ1,2∫
θ∅,2

(θs2 − p2) 1
θmax

dθ = 7smax(θmax−ν)2
24θmax

. (7)

3.2 Cournot quantity competition for the uniform distribution

While in the Bertrand game the price pi is controlled by the SP i and the share of
connected customers is then determined through the demand function, in the Cournot
game the SPs control the quantity (i.e., the number of subscriptions) and then the
prices are derived through the inverted system of demand functions:

p1(s; D) = −θmax(D1s1 − s1 +D2s2),
p2(s; D) = −θmaxs2(D1 +D2 − 1).

(8)

Substituting the above into the expression for the SP profit Πi = Di(pi − vsi), we
may establish the quantity response functions that maximize the profit for the fixed
qualities s1 and s2:

D1(s) = (2s1−s2)(θmax−ν)
θmax(4s1−s2) , D2(s) = s1(θmax−ν)

θmax(4s1−s2) .

After substituting these functions into (8), we obtain the prices set by the SPs:

p1 = s1
2θmaxs1−θmaxs2+2s1ν

(4s1−s2) , p2 = s2
θmaxs1+3s1v−s2ν

(4s1−s2) ,



6 Olga Galinina et al.

and, correspondingly, characterize the resulting profit:

Π1(s)= s1(2s1−s2)2(θmax−ν)2
θmax(4s1−s2)2 , Π2(s)=

s21s2(θmax−ν)2
θmax(4s1−s2)2 .

(9)

In the second phase of the backward induction, we derive the optimal level of qualities
that maximize the profit (9) by finding the stationary points of the following equations:

∂Π1(s)
∂s1

=
(θmax−ν)2(2s1−s2)(8s21−2s1s2+s

2
2)

θmax(4s1−s2)3 , ∂Π2(s)
∂s2

=
(θmax−ν)2s21(4s1+s2)

θmax(4s1−s2)3 . (10)

Denoting s1
s2

as x, we may conclude that there exists no solution x > 1 for (10). Since

both ∂Π1(s)
∂s1

and ∂Π2(s)
∂s2

> 0, the point of maximum is located at the right border of
the interval for s, that is, s∗1 = smax and s∗2 = smax. Therefore, we have established a
candidate solution for the Cournot game and can formulate a theorem similar to the
one before.

Theorem 2 The obtained solution for the Cournot game is unique and represents
the Nash equilibrium.

Proof. The proof is easy to produce similarly to that of the above Theorem for the
Bertrand game.

Since the Cournot prices and qualities are equivalent, two SPs divide the corre-
sponding market in equal proportions, if we assume that there is no weighted prefer-
ence towards a certain brand. Hence, the consumer surplus in this case may be derived
as:

CS =
θmax∫
θ1,2

(θs1 − p1)h(θ)dθ = 2smax(θmax−ν)2
9θmax

. (11)

4 Arbitrary taste distribution and cost function

In this section, we contribute an algorithm that allows for establishing an equilibrium
point for an arbitrary taste distribution and cost function. As a particular example,
we refer to the truncated exponential distribution:

hU (θ) = λe−λθ

1−e−λθmax
, θ ∈ [0, θmax], HU (θ) = 1−e−λθ

1−e−λθmax
, θ ∈ [0, θmax]. (12)

The use of the exponential shape follows from [18], where the authors analyze a real
mobile service market by polling the consumers and processing the results. Further,
we truncate the exponential distribution by θmax to provide a better correspondence
with the parameter of the uniform distribution. Hence, the corresponding expressions
for the demand may be rewritten as:

D1(s; p) = C0

(
e−λ

p1−p2
s1−s2 − e−θmaxλ

)
, D2(s; p) = C0

(
e−

λp2
s2 − e−λ

p1−p2
s1−s2

)
,

where C0 = 1
1−e−λθmax

is a constant introduced for brevity. We build our numeri-
cal comparison later on in Section 5 on the example of the truncated exponential
distribution, which we believe to better represent the properties of the target mar-
ket. However, below we formulate the essential steps of our proposed procedure in a
general form as well as introduce an arbitrary cost function.

4.1 Bertrand price competition for an arbitrary distribution

The profit function in its general form is defined as Πi = Dipi − Difc(si), where
fc(si) is the cost per a subscription represented by the twice differentiable function
of quality si. In this general case, we therefore have:

Π1(s; p) =
(

1−H
(
p1−p2
s1−s2

))
(p1 − fc(s1)),

Π2(s; p) =
(
H
(
p1−p2
s1−s2

)
−H

(
p2
s2

))
(p2 − fc(s2)),

(13)
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where H (x) is the cumulative distribution function (CDF) of the taste parameter and
H (θmax) = 1. After differentiating both expressions separately by the corresponding
quality variable, we obtain a condition for further optimization:

∂Π1(s;p)
∂p1

= 1−H
(
p1−p2
s1−s2

)
− h
(
p1−p2
s1−s2

)
p1−fc(s1)
s1−s2 ,

∂Π2(s;p)
∂p2

= H
(
p1−p2
s1−s2

)
−H

(
p2
s2

)
− h
(
p1−p2
s1−s2

)
p2−fc(s2)
s1−s2 − h

(
p2
s2

)
p2−fc(s2)

s2
.

(14)

We note that an analytical solution of the system
(
∂Πi(s;p)
∂pi

= 0
)
i=1,2

may not

always be produced for complex distribution shapes of fc(si). In order to follow the
steps described previously in Section 3, for an arbitrary distribution we may apply
a numerical procedure to solve the system of non-linear equations (14) for any fixed
point s, 0 < s2 < s1. If the second-order condition of the local maximum holds, the
obtained solution p∗(s) is set as an output of the function FindOptimalPrices(s1, s2),
which corresponds to the second phase of our game (see Algorithm 1 below).

Continuing the search of the optimal solution, we consider again the second phase
(the quality competition) and maximize the profit Πi(s1, s2) by varying si. Impor-
tantly, the functions Πi(s1, s2) are numerical and produced by the proposed function
FindOptimalPrices(s1, s2). The optimization can be conducted via explicit search, but
the following theorem simplifies the needed calculations:

Theorem 3 Maximum of the profit function Π1(s1, s2) by s1 ∈ (0, smax] for the SP
that makes its decision the first is always located at the point smax, which means that
for any new SP the maximum quality yields the highest profit.

Proof. The proof is omitted here due to the space limitations.

Employing this result, it only remains to maximize the profit of another SP
Π2(s1, s2) by s2 ∈ (0, s1], which is a simple one-dimensional optimization that al-
ways has a solution. The entire procedure is briefly summarized in Algorithm 1. The
sought variables (s∗1, s

∗
2; p∗1, p

∗
2) correspond to the Nash equilibrium, where no player

could change its strategy (that is, price and quality for the SPs and SP choice for the
customers) without decreasing its profit. Based on the obtained equilibrium, we may
easily estimate the corresponding market shares D∗

i , the equilibrium profit Π∗
i , and

the consumer surplus CS as provided in Section 5.

4.2 Cournot quantity competition for an arbitrary distribution

In order to characterize the Cournot quantity competition for an arbitrary taste dis-
tribution and cost function, we follow the steps similar to those in Section 3. In
particular, we write down the expression for the SPs demands:

D1(s; p) = 1−H
(
p1−p2
s1−s2

)
, D2(s; p) = H

(
p1−p2
s1−s2

)
−H

(
p2
s2

)
, (15)

where H (x) is the CDF of the taste parameter. From the first equation, we may
establish p1(D) = F (1−D1) (s1 − s2) + p2, where F = H−1 is the function inverse
to the CDF. Substituting it into the second equation and calculating p2, we may
obtain the following:

p1(D) = F (1−D1) (s1 − s2) + p2, p2(D) = F (1−D2 −D1) s2. (16)
We substitute this produced expression for price into the profit functionΠi(s; D) =

Di(pi(D)−fc(si)). By analogy with subsection 4.1, we find the optimal prices after dif-

ferentiating the profit by the demandDi and then solving the system
(
∂Π1(s;D)
∂D1

= 0
)
i=1,2

as:
∂Π1(s;D)
∂D1

=p1(D1)−fc(s1)−D1(s1−s2)
h(1−D1)

, ∂Π1(s;D)
∂D1

=p2(D2)−fc(s2)− D2s2
h(1−D2−D1)

, (17)

where h(θ) is the given PDF. We note that the system (17) is equivalent to (14) for
the Bertrand competition. Assuming that the function FindOptimalQuantities(s1, s2)
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returns the solution of (17) and then replacing prices with qualities D in Algorithm 1,
we arrive at the final equilibrium (s∗1, s

∗
2;D∗

1 , D
∗
2) and may calculate all of the respec-

tive metrics.
Even though existence and uniqueness of the Nash equilibrium constitute an open

question for different classes of distributions, in case of our truncated exponential
example we can formulate the following Theorem.

Theorem 4 For the truncated exponential distribution, there exists a unique Nash
equilibrium for both the Bertrand and the Cournot game, so that the Bertrand com-
petition results in product differentiation, while equilibrium quality for the Cournot
competition is given by (smax, smax).

Proof. We leave this proof out of scope of this paper.

Importantly, cooperative games for either price or quantity competition yield different
solutions e.g., product differentiation in the Cournot game.

Algorithm 1 Algorithm based on the Bertrand price competition
1: s∗1 = smax

2: s∗2 = MaximizeProfit2(s∗1)
3: p∗ = FindOptimalPrices(s1, s2)
4: function MaximizeProfit2(s∗1) . Maximize profit of the SP 2 by s2
5: return s∗2 = arg maxs2 Profit i(s∗1, s2)

6: function Profit i(s1, s2) . Profit of the SP based on the optimal prices
7: p∗ = FindOptimalPrices(s1, s2)
8: return Πi(s1, s2;p∗)

9: function FindOptimalPrices(s1, s2) . Prices maximizing the profit for fixed s
10: return p∗: solution of the system (14)

5 Numerical results and conclusion

In total, we analyze four scenarios: Bertrand and Cournot competition for both the
conventional and the realistic distribution each. Even though our approach is suitable
for any cost function, for the sake of comparison this section considers the same
linear costs for all of the cases. Minding a multitude of possible choices, below we
only provide several representative examples for comparison.

Fig. 2. Evolution of equilibrium indicators for maximum quality smax: (a) equilibrium quality
for both distributions, (b,c) equilibrium price and quality for UD and ED.

We remind that for a particular distribution we quantify the following parameters
in our model: the maximum quality smax (set by default to 100), the cost coefficient v

We remind that if s∗1 = s∗2 then p∗1 = p∗2, and the active customers with the positive utility
are indifferent to choosing either of the SPs. In this case, the demand is equally shared
between the SPs and leads to equal market indicators for them.
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(0.1), and the “richest” customer θmax (6.6). In Fig. 2a-c, we illustrate the evolution
of our market for varying smax. As it is demonstrated in Fig. 2a, the equilibrium
quality for both the uniform (UD) and the exponential (ED) distribution (with λ = 5)
behaves similarly and confirms an identical choice for the Cournot game as well as
a clear product differentiation for the Bertrand game. Importantly, we note that the
latter results in the same quality for both taste distributions h(θ).

Further, Fig. 2b,c highlight the difference in prices and profits of the SPs. Intu-
itively, on a market where the majority of customers are “poor” (ED) the equilibrium
prices as well as the profits appear to be much lower. The Cournot competition results
in prices that are generally higher than those in the Bertrand competition, but for the
ED market this difference diminishes together with the degree of price differentiation
between the SPs.

Fig. 3. Evolution of market shares vs. cost coefficient v: Bertrand and Cournot game for (a)
UD and (b) ED.

Then, we investigate the impact of costs on the total demand of the SP 1, the
SP 2, as well as the share of the market that is not covered. In Fig. 3a,b, we observe
the volume of the market that belongs to either of these three groups. While the
“wealthier” UD market is less sensitive to changes, on the ED market an increase
in costs entails a rise of the equilibrium price as well as a dramatic reduction in the
market shares of SPs. Customer churn eventually leads to a significant decrease in
the SP profits.

Fig. 4. Market evolution for variable restricting parameter θmax: (a,b) consumer surplus for
UD and ED, and (c) market shares.

Finally, we analyze all four scenarios in question by varying θmax, which determines
the “richest” customer on the market. As for the ED, the market shares stabilize with
the growing range of taste, whereas for the UD the market broadens significantly
by covering more and more customers (see Fig. 4c, where dotted lines correspond to
the ED market). Further, in Fig. 4a,b for the UD and the ED, respectively, we may
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observe the total consumer surplus and the separate components for customers of the
SP 1 and the SP 2. The relative differences are rather marginal and suggest that the
Cournot game is more beneficial for the market than the Bertrand game. However,
the absolute values indicate a considerable difference between the UD and the ED in
terms of the resultant benefits.

In summary, this paper considered both the price and the quantity competition
in a vertically differentiated market. In particular, we analyzed a tractable example
with linear costs of quality improvement and proposed a numerical procedure to relax
the restrictive assumptions. In contrast to most past studies, we not only evaluated
the mobile service market under more realistic assumptions on the customer taste
distribution, but also provided a detailed comparison of the key market indicators.
While demonstrating similar general behavior, the two considered distributions – the
uniform and the truncated exponential – indicate a dramatic difference in the resulting
market sensitivity to the changes. The latter confirms that the choice of appropriate
customer taste distribution is a crucial factor in analyzing a competitive market, while
the general market trends could be understood from simpler assumptions.
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