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Abstract 

Measurements at the single cell level showed that monoclonal 
Escherichia coli cells differ widely in the numbers of 
components affecting gene expression dynamics. Using a 
stochastic model of a 2-genes symmetric toggle switch with 
realistic multi-step promoter initiation kinetics and empirically 
validated parameter values, we investigate the role of 
transcription initiation kinetics on the degree with which cell-
to-cell variability in cellular components generates cell-to-cell 
diversity in switch dynamics. We find that while the mean 
switching frequency is determined by the promoter kinetics, 
the cell to cell diversity of this frequency depends both on 
promoter kinetics and diversity in RNA polymerase numbers. 
At a microscale level, the main regulator of the cell to cell 
variability in protein numbers (of both genes in ON and OFF 
states) is the promoters kinetics, not the diversity in RNA 
polymerase numbers. We conclude that the promoters kinetics 
is a critical regulator of the toggle switch dynamics and that 
can be used as a regulatable filter of extrinsic noise. 

Introduction 

Escherichia coli executes major behavioral changes by tuning 
the numbers of the regulatory molecules of the transcriptional 
and translational machineries, such as RNA polymerase 
(RNAP) core enzymes, σ factors, and ribosomes (Jishage et al, 
1996)(Rahman et al, 2006). 

E.g., in the case of σ factors, due to the limited number of 
RNAP core enzymes (Farewell et al, 1998), as the number of a 
specific σ factor increases, the number of RNAPs carrying that 
σ factor increases and, thus, the activity of the promoters 
associated to that σ factor increases by direct positive 
regulation, while, the activity of the promoters associated to 
other σ factors is expected to decrease by indirect negative 
regulation (Jishage et al, 1996)(Rahman et al, 2006).  

Interestingly, the response of genes’ activity to these global 
changes is highly heterogeneous (Farewell et al, 1998). This is 
due the promoter-dependent selectivity for σ factors (Hengge-
Aronis 2002), the action of transcription factors (Farewell et 
al, 1998) and, in the case of indirect negative regulation, 

differences in the multi-step kinetics of transcription initiation 
of the promoters (Kandavalli et al, 2016). 

Given this, and making use of stochastic models, we 
recently hypothesized and showed that the dynamics of the 
rate-limiting steps in transcription initiation (Lloyd-Price et al, 
2006)(McClure, 1980) influences a gene’s responsiveness to 
extrinsic noise (Bahrudeen et al, 2017). 

Following this, and given that previous studies have shown 
that fluctuations in RNA numbers over time can strongly 
affect the kinetics of small genetic circuits, such as switches 
and clocks (Arkin et al, 1998)(Ribeiro 2007a)(Ribeiro 2007b), 
here we investigate the extent to which the kinetics of 
initiation of the component promoters of a genetic toggle 
switch affect its responsiveness to extrinsic noise, i.e., to cell-
to-cell number variability in the components associated to 
gene expression dynamics. 
 To assess this we implement a stochastic model of a genetic 
toggle switch that accounts for cell-to-cell diversity in RNA 
polymerase numbers and whose parameter values are all taken 
from state-of-the-art microscopy measurements of single-cell 
RNAP, single-RNA, and single-cell protein numbers. We then 
execute stochastic simulations of model cells (Gillespie, 
1977)(Lloyd-Price et al, 2012), each with a multi-step 
stochastic model of the genetic switch and whose RNAP 
numbers are, while constant in time, initially randomly drawn 
from a normal distribution.  

To assess the relevance of the cell-to-cell variability in 
RNAP numbers as a function of the kinetics of initiation of the 
component promoters on the macro-scale dynamics of the 
switch, we perform simulations differing in the rate constants 
controlling these two variables. 

Methods 

Model of the Genetic Switch 

We consider a dynamic model of the switch where 
transcription and translation allow RNA and protein 
production kinetics to differ widely in noise levels, depending 
on the rate constants. This model is the result of multiple 
studies, including genome-wide studies of the RNA numbers 
variability (Bernstein et al, 2002)(Taniguchi et al, 2010), of 
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the transcription dynamics of individual genes (Lloyd-Price et 
al, 2016), of the translation kinetics at the single protein level 
(Mitarai et al., 2008)(Bremer and Dennis, 1996)(Kennel, and 
Riezman, 1977), of protein folding and activation kinetics 
(Cormack et al, 1996), and of the structure of natural genetic 
switches (Neubauer and Calef, 1970)(Arkin et al, 1998).  

Most importantly, all parameter values in the model are 
obtained from empirical data (Table 1). Note that, for 
simplicity, we assume a symmetric switch, with both genes 
having the same rate constant values. 

Multi-step transcription initiation of an active promoter is 
modeled by Reactions (1), with i = 1,2, PON

i (Saecker et al, 
2011). The closed complex (RPc) is formed once a RNAP (R) 
binds to a free promoter (Chamberlin, 1974). Next, 
subsequent steps follow that form the open complex (RPo

i) 
(Saecker et al, 2011)(Chamberlin, 1974). Finally, elongation 
starts (deHaseth et al, 1998), which clears the promoter and 
results in a produced RNA and the RNAP releasing. In (1), k1 
is the rate at which RNAPs find and bind to the promoter, k2 
is the open complex formation rate, k3 is the promoter escape 
rate, and k−1 is the rate of reversibility of the closed complex. 

Reactions (2) model the transitioning of promoter i to an 
inactive state (POFF

i) due to the binding/unbinding of a (active) 
repressor protein (Protj

folded), produced by gene j. Note that i, j 
= {1,2} with i ≠ j: 
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Reactions (3) and (4) model translation and subsequent 
protein folding and activation, respectively: 
 

Protrbski i i

unfoldedrna Rib rna Rib         (3) 

Prot Protfoldki i

unfolded folded            (4) 

Reactions (5) and (6) model degradation and dilution due to 
cell division of RNA and proteins, respectively: 

 
RNAkdirna                (5) 

Prot Pkdi

folded                (6) 

As the number of RNAPs differs between live sister cells of 
a genetically homogenous population (see e.g. (Bernstein et al, 
2002)(Lloyd-Price et al, 2016)), in our model, in each cell the 
number of RNAPs is set to constant but is initially randomly 
generated from a normal distribution, N(x,y), where x and y 
are obtained from empirical data (Lloyd-Price et al, 2016). 
This is the source of extrinsic noise of the model cell 
population considered here and is the main innovation of our 
model when compared to previous stochastic models of gene 
expression that account for the delays caused by the closed 
and open complex formations (Lloyd-Price et al, 
2016)(Roussel and Zhu, 2006)(Ribeiro et al, 2006). 

Stochastic Simulations 

We perform simulations using SGNS2 (Lloyd-Price et al, 

2012), a simulator of chemical reaction systems whose 

dynamics is driven by the Stochastic Simulation Algorithm 

(Gillespie, 1977) that allows multi-time-delayed reactions 

(Roussel and Zhu, 2006) as well as hierarchical, interlinked 

compartments to be created, destroyed and divided at runtime, 

a feature used here to generate independent model cells.  

Detection of Switches in the Dynamics of the Toggle 
Switch and Switching Frequency Quantification 

To detect switches in the protein numbers over time (where a 
switch is a change in which protein is ‘dominant’), at each 
time moment of the simulation, we calculate the difference 
between the numbers of Prot1 and Prot2.  

To filter out of short, transient switches, we then make use 
a simple filter: if the absolute difference between the numbers 
of Prot1 and Prot2 is smaller than 100, we set the difference to 
0. Finally, we count the total number of switches during the 
time series by obtaining the number of times the difference 
between the two protein numbers changes from positive to 
negative and from negative to positive. 

Finally, we define the switching frequency (F) as: 
 

1n
F

t





             (7) 

where n is number of switches and ∆t is observation time.  

CV2 of RNAP relative levels in individual cells 

The empirical values of the RNAP numbers in individual cells 
were extracted from RNAP fluorescence intensity values in 
individual E. coli RL1314 cells with fluorescently tagged β’ 
subunits (Lloyd-Price et al, 2016). From these, we set the 
mean RNAP fluorescence in individual cells arbitrarily to 1 
and obtain the fraction of cells with a given relative 
fluorescence level. The 2.5% cells with lowest and highest 
fluorescence intensity are discarded as outliers. Next, we 
obtain the CV2 of RNAP relative levels in individual cells by 
fitting a normal distribution to the data (MATLAB package 
Statistics and Machine Learning Toolbox™). The CV2 of the 
fit equals 0.03, in agreement with (Lloyd-Price et al, 2016). 

To validate the fitting, we performed a Kolmogorov-
Smirnov (KS) test between the empirical and best fit 
distributions. It shows that they cannot be statistically 
distinguished (p-value of 0.69). We thus use the best fit 
distribution to set random RNAP numbers in each model cell.  

Degradation and dilution of RNA and protein 
numbers due to cell divisions 

We assume a mean cell lifetime (div) of 1 hour (Lloyd-Price 
et al, 2016). The dilution rate (Dil) of RNA and proteins thus 
equals: 

 

   
1 log(2)Dil div               (8) 
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 Given the degradation rate (Deg), e.g. for RNA, the overall 

RNA decay rate (kd) will be: 

   
dk Dil Deg                (9) 

 The same formula is applied to proteins, using the 

appropriate rate constant (kdp) for the degradation process. 

Parameter values and control model 

Simulations use reactions (1)-(6) and the parameter values in 
Table 1 (unless stated otherwise). Simulations were initialized 
with only the two promoters of the switch (both in the ON 
state) (i.e. no proteins or RNAs). Figure 1 (left) illustrates the 
stochastic model switch and shows the resulting RNA (bottom 
right) and Protein numbers over time (top right) of an example 
simulation. Visibly, at the macroscale level, the circuit 
exhibits stochastic switching in protein and RNA numbers 
with a realistic time interval between switches (Neubauer and 
Calef, 1970). 

Figure 1: Illustrative image of a genetic toggle switch (left) 
and example time series of protein (top right) and RNA 
(bottom right) numbers from a stochastic simulation. 
 

Parameter 
Value 
(s-1) 

Reference 

kON 0.01 (Lloyd-Price et al, 2006) 

kOFF 281 (Lloyd-Price et al, 2006) 

k1 6469 (Lloyd-Price et al, 2006) 

k-1 1 (Lloyd-Price et al, 2006) 

k2 0.005 (Lloyd-Price et al, 2006) 

k3  (Lloyd-Price et al, 2006) 

kdrna 0.002 (Bernstein et al, 2002), Eq. (8) 

krbs 0.637 
(Mitarai et al, 2008)  
(Bremer and Dennis, 1996) 
(Kennel and Riezman, 1977) 

kfold 0.0024 (Cormack et al, 1996) 

kdp 0.0019 (Cormack et al, 1996), Eq. (8) 

Table 1: Parameter values of the model switch (control). k1 
and krbs values are set assuming that the number of available 
RNAP and Ribosomes equal 1 (but are never depleted). 

 
We study the macro-scale kinetics of genetic switches 

(mean and cell the cell diversity in switching frequency) as a 
function of the cell-to-cell variability in RNAP numbers and of 
the kinetics of the closed and open complex formation (here 
controlled by tuning k1 and k2 respectively, (1)). 

According to the model, e.g., increasing k1 shortens the 
closed complex duration. Increasing k2 shortens the open 
complex duration. We tuned k1 and k2 so that the mean RNA 
production rate is the same in all cases, using the following 
formula (Lloyd-Price et al, 2016): 

 

 
  ON OFF 1 2

1 2 ON 2 3

1 1k k k k
I R

Rk k k k k

 
         (10) 

 
Equation (10), derived from (1) and (2), defines I(R), the 

mean interval between consecutive RNA productions in 
individual cells, assuming infinite cell lifetime. In (10), we 
first set all parameter values to the controls values shown in 
Table 1, to obtain the value of I(R) in the control condition.  

Next, we again use this formula, by setting all parameter 
values as in Table 1, except k1 and k2,, and setting I(R) to the 
value calculated using the control. From the resulting 
equation, we set k1 to different values and calculate the 
corresponding value of k2, to obtain models differing in k1 and 
k2, but having the same value for I(R) as the control model. 

Note that, by changing k1 and k2, our goal is to change the 
mean time-length of the closed complex formation (cc) 
relative to the mean interval between consecutive RNA 
production events (∆t). This fraction of time between 
consecutive RNA production events spent in closed complex 
formation (cc/∆t), is given by: 

  ON OFF 1 2 1

1 2 ON

( )cc
k k k k

I R
t Rk k k

  
 

 


       (11) 

Also, the range of values of k1 and k2 was set within 
realistic intervals (empirical values in Table 2 for various 
promoters and induction schemes (Kandavalli et al, 2016)). 
 

Promoter and induction cc/∆t 

PBAD (0.1% arabinose) 0.71 

PBAD (0.01% arabinose) 0.55 

PBAD (0.001% arabinose) 0.17 

Plac-O1O3 (1 mM IPTG) 0.55 

Plac-O1O3 (0.05 mM IPTG)  0.46 

Plac-O1O3 (0.005 mM IPTG) 0.12 

PtetA (no inducers) 0.07 

Plac-O1 (1 mM IPTG) 0.05 

Plac-ara1 (1 mM IPTG and 0.1% arabinose) 0.49 

Table 2: Empirical values of cc/∆t of various promoters 
subject to various induction levels. 

Given this range of empirical values, we opted for 
simulating models that differ in cc/∆t by +0.1, from 0.05 to 
0.95 (i.e. 10 conditions). Meanwhile, for the RNAP cell-to-
cell variability, the empirical data indicates a CV2(RNAP) of 
0.03. We opted for simulating models that differ in 
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CV2(RNAP) by +0.015, from 0 to 0.09 (i.e. 7 conditions). 
Overall, we simulate 70 models.  

Each model was simulated 100 independent times for 5x107 
seconds, with a sampling interval of 104 s. 

Results and Conclusions 

cc/∆t acts as a tunable filter of cell-to-cell variability 
in RNAP numbers effects on the switch dynamics  

We performed simulations for various values of cc/∆t 
(controlled by changing k1, k2) and of the CV2 of RNAP 
numbers (CV2(RNAP)), including the control condition (Table 
1). From the protein numbers over time, we first assessed the 
mean frequency of switching (F) (Methods) in each condition 
(Figure 2). 

 
Figure 2: Mean switching frequency as a function of cc/∆t 
and CV2(RNAP). 100 independent cells per condition. 

Figure 3: Cell-to-cell diversity (CV2) of the switching 
frequency as a function of cc/∆t and CV2(RNAP). 100 
independent cells per condition. 

 

 From Figure 2, the mean F is heavily affected by cc/∆t, 
Namely, increasing cc/∆t stabilizes the ‘noisy attractors’ of 
the switch (Ribeiro and Kauffman, 2007c), since it reduces the 
chances of finding the promoter of the ‘OFF’ gene in a state 
that allows the RNAP to transcribe it.   

Meanwhile, the mean F is not affected by the CV2 in RNAP 
numbers. This is expected, as the CV2(RNAP) of the cell 
population should not influence the mean behavior of the 
population, only its variability (as the variability in RNAP 
numbers is implemented by a symmetric normal distribution).  

Next, Figure 3 shows that, as the CV2(RNAP) increases, so 
does the CV2 of the switching frequency of the cell population 
(provided that cc/∆t is larger than ~0.35). Interestingly, cc/∆t 
also plays a strong role in the cell-to-cell diversity in switching 
frequency, as the effects of extrinsic noise are filtered out from 
the dynamics of the genetic switches for small values of cc/∆t. 

The CV2(RNAP) only affects the CV2(F) weakly for small 
values of cc/∆t for two reasons. The main one is that the 
CV2(RNAP) only affects the cell-to-cell variability of the 
mean duration of the closed complex formation. If this step is 
short-length, the effects on the overall variability in RNA 
production kinetics will be weak. Second, for relatively small 
values of cc/∆t compared to oc/∆t, the dynamics of the switch 
is less stable (i.e. noisier) (Bahrudeen et al, 2017), causing the 
effects of increasing CV2(RNAP) to become less visible. 

Micro-scale dynamics of the switch is controlled by 
cc/∆t 

Finally, we studied the extent to which cc/∆t and 
CV2(RNAP) control the cell to cell variability in protein 
numbers (micro-scale dynamics) of each individual gene 
integrated into a switch. As these numbers differ widely 
when the respective promoters are in ‘ON’ and ‘OFF’ 
states, we analyze them separately. Note that the cell to cell 
diversity in protein numbers is, in our context, equivalent to 
noise in protein numbers over time. 
 For this, from the simulations, for each condition, we 
collected both protein numbers in individual cells 1 million 
seconds after starting the simulation. Then, we determined 
which one was higher, and calculated the cell-to-cell 
variability (as measured by the CV2) in protein numbers of 
the genes in ‘ON’ and ‘OFF’ states, separately. Results for 
genes in ‘ON’ state are shown in Figure 4 (CV2(ProtON)). 

Figure 4: Cell-to-cell diversity in protein numbers in 
individual cells at a given point in time (CV2(ProtON)), as a 
function of cc/∆t and CV2(RNAP). 100 independent cells 
per condition. 
 

Visibly, cc/∆t can be used to regulate CV2(ProtON): the 
higher is cc/∆t, the weaker is this quantity. Meanwhile, 
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CV2(RNAP) does not affect CV2(ProtON) significantly. This 
can be confirmed by calculating, from the 100 runs per 
condition, the Pearson correlation coefficient and respective p 
value between (CV2(Proteins) and CV2(RNAP). Results in 
Table 3 show that, in all cases, this correlation is not 
statistically significant (all p-values above 0.01). 

cc/∆t 

Pearson Correlation coefficient 
between CV2(ProtON) and 

CV2(RNAP) p value 

0.05 -0.553 0.198 

0.15 -0.650 0.114 

0.25 0.404 0.369 

0.35 0.495 0.258 

0.45 -0.066 0.888 

0.55 0.830 0.021 

0.65 -0.202 0.664 

0.75 -0.087 0.853 

0.85 -0.228 0.622 

0.95 0.285 0.536 

Table 3: Pearson correlation coefficient and p values between 
the (CV2(Proteins) and the CV2(RNAP) as a function of cc/∆t. 
The proteins considered are of the gene in the ON state. 

Similarly, we found no correlation between CV2(RNAP) 
and the CV2(ProtOFF) (Figure 5 and Table 4). Figure 5 further 
informs that, once more, the main regulator of the other 
component of the microscale dynamics of the switch (i.e. the 
protein numbers of the OFF gene), is cc/∆t. 

Figure 5: Cell-to-cell diversity in protein numbers 
(CV2(ProtOFF)) in individual cells at a given point in time, as a 
function of cc/∆t and CV2(RNAP). 100 independent cells per 
condition. 
 

We thus conclude that, under certain conditions the 
macroscale dynamics of the switch can be tuned by 
CV2(RNAP). Meanwhile, the microscale dynamics is mostly 
determined solely by cc/∆t. 
 
 

cc/∆t 

Pearson Correlation coefficient 
between CV2(ProtOFF) and 

CV2(RNAP) p value 

0.05 0.221 0.634 

0.15 -0.188 0.686 

0.25 -0.253 0.584 

0.35 -0.243 0.600 

0.45 -0.354 0.437 

0.55 0.052 0.912 

0.65 -0.439 0.325 

0.75 0.032 0.945 

0.85 -0.144 0.758 

0.95 0.408 0.363 

Table 4: Pearson correlation coefficient and p values between 
(CV2(Proteins) and CV2(RNAP) as a function of cc/∆t. The 
protein numbers considered are of the gene in the OFF state. 

Discussion 

We performed simulations of a stochastic model of a 2-gene 
toggle switch that includes the multi-step processes of 
transcription and  translation and uses only experimentally 
validated parameter values (Lloyd-Price et al, 2006)(Bernstein 
et al, 2002)(Mitarai et al, 2008)(Bremer and Dennis, 
1996)(Kennel and Riezman, 1977)(Cormack et al, 1996). 
 Interestingly, the behavior of the model switch (e.g. using 
the control rate constants (cc/∆t = 0.81, CV2(RNAP) = 0.03) 
is similar to that natural functional switches, with a mean 
switching frequency of ~ 52.6 days, i.e., 1262.4 cell lifetimes 
for a division rate of 1 hour (Neubauer and Calef, 1970). 
 Overall, we find that both the macrodynamics (switching 
frequency) and microdynamics (variability in protein numbers 
of both the ON and OFF gene) are more strongly regulated by 
cc/∆t than by CV2(RNAP). Importantly, in genes where the 
closed complex is short-length compared to the intervals 
between RNA productions, the effects of CV2(RNAP) become 
almost negligible. In that sense, we conclude that the cc/∆t of 
the component genes can act as filters of genetic circuits for 
extrinsic noise sources. 
 We found somewhat surprising that the cell-to-cell diversity 
in RNAP numbers has little to no effect on the cell-to-cell 
diversity in protein numbers. We believe that there are two 
reasons for this. First, it is likely due to the small empirical 
value of CV2 (RNAP) (empirical value of ~0.03 and all values 
tested below 0.1). Second, and related to the first reason, it is 
likely due to the significant amount of other noise sources and 
their strength, most being intrinsic, such as the exponentially 
distributed duration of the open complex formation, which 
render negligible the contribution from RNAP numbers 
variability. 

In the future, we plan to expand our research on how tuning 
the kinetics of initiation of the component genes may allow 
attaining desired levels of noise in the macrodynamics of 
various other genetic circuits, such as clocks and filters. 
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