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Abstract—Electronic noses (eNoses) can detect and classify
a large variety of smells. They are, in general, much more
sensitive than the human nose. Could they identify different
indoor locations based on the locations’ characteristic combi-
nations of airborne chemicals? We study in this paper how well
location can be determined in an indoor environment using only
measurements from an ion mobility spectrometry eNose and a
K nearest neighbour (KNN) classifier. Based on the results of
test with real-world data eNose-based localisation seems to have
potential but there are several questions and issues that still have
to be addressed. This paper provides therefore a discussion of
questions and issues that have to be studied in the future, and
proposes potential solutions.

I. INTRODUCTION

Indoor localisation, the technology enabling people to navigate
in environments where satnav does not reach, has received a
lot of attention in the research community and in the industry
over the last decades. However, no single indoor localisation
technology has emerged to dominate the field. A variety of
radio signals, such as cellular networks, wireless local area
networks (WLAN), ultra-wideband (UWB), Bluetooth and
Bluetooth low energy (BLE), have been used. Alternative
sources of used measurements include data from, for example,
inertial measurement units (IMUs), laser range scanners, floor
maps, and magnetic fields [1], [2].

A source of measurements that to our knowledge so far
has not been investigated for localisation are electronic noses
(eNoses). They are used in artificial olfaction, which is the
science of gas sensing with sensors. An eNose mimics the
biological sense of smell and its communication with a bio-
logical brain [3]. An eNose consists of a sensor array, a signal-
processing unit, pattern recognition software, and reference
databases [4]. Traditional eNoses have gas sensor arrays, but
ion mobility spectrometry (IMS) technology can be used in a
similar way. IMS-based eNoses have the advantage, compared
with gas sensor-based eNoses, that their sensors and electrodes
do not age. Therefore, we focus in this paper on IMS-based
eNoses.

Electronic noses are rapidly becoming more portable,
cheaper, and more sensitive. They are already much more
sensitive than the human sense of smell, and also measure

airborne chemicals that are odourless. The question arises, are
they able to detect and distinguish different indoor locations
based on the locations’ existing characteristic scents? This
paper is a first exploratory look at this question.

There are reports in the literature about the use of eNoses
for localising gas sources, for example, on landfills using a
mobile robot (see [5] and references therein). This application
is different from the application studied in this paper, because
here we want to use the eNose to tell the user where they
are. In [5] (and other similar papers) the aim is to find the
source of a certain scent. Thus, it does not use eNose for (self-)
localisation. The three robots used for tests in [5] rely instead
on either laser range scanners or an IMU for localisation.

For localisation using eNose measurements we focus in this
paper on nonparametric fingerprint-localisation techniques.
These nonparametric methods use a database that contains
measurements taken at known locations, so-called fingerprints,
that are collected in the offline (aka training) phase [6]. In
the online (aka localisation) phase the measurements from the
user’s unknown location are compared to these fingerprints in
order to infer the user’s location. Common algorithms used
for localisation are nearest neighbour (NN) and K nearest
neighbour (KNN), which we will use in this paper. Overviews
on additional nonparametric fingerprint-localisation methods
can be found in [7] and references therein.

The contribution of our paper is twofold. First, we provide
test results that show that eNose-based localisation has po-
tential but requires still a lot of research. Second, we discuss
problems and questions that have to be solved in order to being
able to use eNoses for positioning. We also present potential
solutions for solving these issues.

This paper is organised as follows. In Section II we explain
briefly the eNose we use for our tests and how it works. Sec-
tion III describes the KNN and how it is used for localisation.
We present and discuss test results using real-world data in
Section IV. Finally, open questions and issues, and potential
solutions are discussed in Section V.

Notation: In this paper a denotes a scalar, b denotes a
vector, and C denotes a matrix.
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Fig. 1: ChemPro100i handheld chemical detector from Envi-
ronics with ruler showing values in centimetres.

II. CHEMPRO ENOSE

In this paper we use the ChemPro100i handheld chemical
detector (displayed in Fig. 1) from Environics, which is an
eNose based on ion mobility spectrometry. It was originally
developed for field detection and classification of chemical
warfare agents [8]. For example, it is been used by fire
departments to detect gas leaks and find hazardous objects
in buildings. We are using it for scent classification.

The ChemPro100i analyses the air in a certain location by
separating and identifying ionised molecules in the gas phase
based on their mobility. The ChemPro100i yields data from
16 ion electrodes. We use data from 14 of these 16 channels,
namely ceramic electrodes 1 to 7 and 9 to 15. Electrodes 8
and 16 are used only to control the air flow speed, and thus
cannot be used for analysing the air. More details about the
ChemPro100i can be found at [8].

The ChemPro100i is rather bulky and expensive, costing
around 8 000 EUR when it was purchased in 2016. However, it
is important to note that for localisation we only need its IMS
part. Recently substantial improvements in the development
of ion mobility spectrometers have been made, which have
reduced both the cost and the size of IMS chips significantly.
For example, Owlstone launched the field asymmetric ion mo-
bility spectrometer, which is ”fabricated on a single microchip
with dimensions under a centimetre” [9].

III. DESCRIPTION OF KNN-BASED CLASSIFICATION

For localisation in Section IV we use a K nearest neighbour
(KNN) classifier (see e.g. [10, p. 174 ff.] for a detailed
discussion). The idea behind the KNN classifier is to return
a location estimate based on a sample from the eNose at that
location by finding the K closest samples from a database
containing N IMS measurement samples xi = [xi,1 . . . xi,14],
i = 1, .., N with known locations.

This means, in our case the 14 IMS measurements x(UL) =
[x(UL)

1 . . . x
(UL)
14 ] from the unknown location (UL) of the

eNose are compared with the 14 IMS readings of each sample
in the database. The closeness between the new sample and
the ith training sample is computed as the Euclidean distance1

between the two, which is defined as

dE(x
(UL),xi) =

√

√

√

√

14
∑

j=1

(

xij − x
(UL)
j

)2
. (1)

Based on the locations to which the K closest samples
belong the location estimate is chosen. If the K nearest
neighbours belong to different locations then the estimate is
chosen by majority vote. In case of a tie we choose the label
of the nearest neighbour as location estimate.

The KNN classifier’s only parameter, besides the distance
function, is K . Because N is, in general, finite, we need to
find a compromise between all K neighbours being close to
x(UL), which favours small K , and the location estimate being
reliable, which favours large K [10, p. 184]. We therefore test
in Section IV with K = {1, 3, 5, 7}.

Because we use the Euclidean distance for measuring the
closeness between the UL’s sample and the training samples,
we have to standardise all samples. This has to be done
because the absolute values and the fluctuations of IMS
readings on the 14 channels differ significantly. Details on
the standardisation procedure are given in Subsection IV-B.

IV. RESULTS FROM CLASSIFICATION

This section assesses whether data from our electronic nose
could be used for localisation in indoor environments. For
localisation we use the K nearest neighbour classification
algorithm described in Section III.

1Other distance measurements such as Mahalanobis, Chebyshev or
Minkowski distances could be tested alternatively.



TABLE I: Location numbers, location types, and number of
measurements for (almost) empty buildings, for buildings in
which people were present, and in total.

loc. location measurements measurements measurements

no. type (empty) (crowded) (total)

1 office room 629 618 1 247

2 coffee room 643 631 1 274

3 open space 616 618 1 234

4 open space 609 614 1 223

5 corridor 630 646 1 276

6 open space 608 637 1 245

7 open space 626 611 1 237

Σ 4 361 4 375 8 736

A. Explanation of the data

Our data was collected in May 2017 with Environics’
ChemPro100i Handheld Chemical Detector in seven different
indoor locations at the campus of Tampere University of
Technology, Finland. One of them is a small office room
(location 1), one is a coffee room (location 2), one a corridor
connecting two buildings (location 5), and four are large open
areas (location 3, 4, 6 and 7). Locations 6 and 7 are next to
restaurants that have lunch buffets available during weekdays.

For each location two data sets of approximately 10 minutes
have been collected with a measurement frequency of 1 Hz.
The data sets for any specific location have been collected on
two different dates with a gap of 2 or 3 days respectively.
The first sets were collected on a Saturday, to ensure that
the buildings were (almost) empty. At locations 6 and 7 the
restaurants were closed and no food was on display. The
second sets were collected during weekdays when people were
present and walked by the eNose. In addition, at locations 6
and 7 food was on display. Table I summarises the locations,
their type and the number of samples. For each location we
have a similar amount of samples, which helps to avoid a
skewed class distribution.2

B. Validation Accuracy of the KNN classifier

In the first test we determine the validation accuracy of the
KNN classifier, i.e. how accurately our classifier will perform
on new data. We use all data sets, meaning that we train
the KNN classifier on data from both empty and crowded
locations.

We standardise our data by centring it and dividing it by the
standard deviations of all measurements for any IMS channel.
This means, for IMS channel j we first compute empirical
mean µj and standard deviation σj using all measurements on
channel j. Then we compute standardised IMS measurement

x̄ij =
xij − µj

σj

, (2)

2Skewed class distribution means that the number of samples for each
location differ significantly. In extreme cases this can cause the KNN to pick
training samples belonging to a false location as nearest neighbours because
they are among the K closest samples to the UL’s sample just due to their
large amount [11].

TABLE II: Validation accuracies and classification losses for
test in IV-B.

K validation accuracy classification loss

1 99.98% 0.02%

3 99.91% 0.09%

5 99.87% 0.13%

7 99.84% 0.16%

TABLE III: Misclassification rates for tests in IV-C.

training data test data K misclassification rate

empty crowded 1 71.50%

3 71.61%

5 71.79%

7 71.75%

crowded empty 1 62.46%

3 62.62%

5 62.55%

7 62.55%

where xij is the original ith measurement on IMS channel j.

Because we have only a small amount of data for training
our KNN classifier, we use 10-fold cross-validation [10, p.
483 f.] to prevent over-fitting and to increase the validation
accuracy (aka lower the validation error).

We test the NN algorithm (i.e. K = 1) and the KNN
algorithm for K = {3, 5, 7}. Table II contains the values for
the validation accuracy and classification loss averaged over
the 10 folds by the corresponding KNN classifier.

As we can see, the value of K has no significant in-
fluence on validation accuracy and classification loss. More
importantly, the validation accuracy is almost 100%, which
means that eNose-based localisation by a KNN algorithm has
potential.

C. KNN-based localisation

Here we analyse how a KNN classifier with the same features
as in the previous subsection performs when it is used for lo-
calising new samples that are taken under different conditions
than the samples used for training the classifier. Therefore,
we divide our data described in Subsection IV-A into training
and test data. We first use the data from empty locations for
training and the crowded locations for testing the classifier.
In the second run we use data from crowded locations for
training and data from empty locations for testing.

We again test the NN algorithm (i.e. K = 1) and the
KNN algorithm for K = {3, 5, 7}, and normalise the training
samples using (2). For normalising the test samples we use
(2) with {µj}14j=1 and {σj}14j=1 computed from all training
samples.

Table III contains the misclassification rates for both runs
and all four values of K . As in the previous test, the in-
fluence of K on the misclassification rate is marginal. The
misclassification rates for both runs are disappointingly high.
Thus, let us check the results in more detail. Fig. 2 shows



Fig. 2: Relative confusion matrix using NN classifier for test
with empty training and crowded test data. Values in each row
sum up to 100%.

the relative confusion matrix of run 1 (empty training and
crowded test data) for K = 1. The confusion matrices for the
other values of K differ only insignificantly. For each row of
the matrix the values sum up to 100%. Ideally the elements on
the matrices’ main diagonal are 100% and all other elements
are 0%. However, in our first run this is not the case. We see
that only few samples from location 2, the coffee room, get
misclassified as location 1 (office room). For location 1 around
half of the samples are classified correctly, and the other half
gets misclassified as location 2. Both of these locations are
closed spaces that could only be entered through a door, and
for both locations there was only one person in the room when
training data was collected and several people when test data
was collected. This might explain why samples from these two
locations are not misclassified as being from locations 3 to 7,
which are larger open areas.

All test samples from location 5, the corridor between two
buildings, were misclassified, mostly as locations 6 and 3,
which are also open spaces. While in the training phase only
one person was static in the corridor, people moved through
the corridor all the time in the test phase. The samples from
open spaces (locations 3, 4, 6 and 7) are misclassified in
general as samples from other open spaces. The exception are
samples from location 3, of which 59.39% are misclassified
as location 2. One similarity between locations 2 and 3 is
that both contain coffee machines. Furthermore, location 3 is
somewhat smaller than the other three open spaces, which
might explain why such a large amount of test samples get
misclassified as samples from location 2.

The confusion matrices for run 2 (crowded training and
empty test data) for K = 1 is shown in Fig. 3 (confusion
matrices for the other Ks differ only slightly). Here we see
three major differences to run 1. First, all samples from the
office room are classified correctly. Second, the majority of
samples from the corridor (location 5) are classified correctly.
And third, all samples from location 6 (open space) are

Fig. 3: Relative confusion matrix using NN classifier for test
with crowded training and empty test data. Values in each row
sum up to 100%.

misclassified as samples from the corridor.
Thus, we can conclude that it is important to have training

data that is collected in various conditions to ensure that the
KNN algorithm can classify a location correctly with high
probability. A more thorough discussion of these results can
be found in the next section.

V. DISCUSSION AND OUTLOOK

This paper tries to provide initial answers to the question
whether electronic noses could be used for localisation. Based
on the results from Subsection IV-B localising with a KNN
classifier using IMS measurements from an eNose has po-
tential. However, the results in Subsection IV-C show that
there are still many issues that have to be resolved, and many
questions have to be answered before IMS measurements can
be used for reliable localisation.

First of all, we should check in detail differences of IMS
readings between full and empty buildings, but we could also
check the variations of IMS readings during different times
(e.g. morning, noon, afternoon and evening) of a working day.
It seems that the readings of some channels react more strongly
to people in the eNose’s vicinity. Thus, we will study if we can
reduce the misclassification rate by either using only sensitive
channels, which fluctuate strongly, or stable channels, whose
eNose readings differ only slightly or not at all for empty and
crowded buildings. This is crucial when we want to define
under which conditions training data should be collected. For
the latter case it might be enough to collect data in an empty
building, and still being able to localise the user correctly with
high probability inside a crowded building.

The second issue related to the channel readings is that the
KNN might be fooled by irrelevant channels. This means,
channels that display similar values for all locations. Further-
more, some of the IMS channels may be correlated. Thus,
feature transformation and/or feature selection methods should
be tested. As an example, the principal component analysis



(PCA) could be used to transform the measurements from the
IMS channels into measurements from artificial, uncorrelated
channels. PCA, in general, reduces the amount of channels
that are used for classification significantly, thus reducing the
computational demand notably. The drawback of PCA is that
it is more difficult to interpret the artificial channels.

In order to further reduce the computational demand for
classification one should study alternative methods for search-
ing the K closest training samples to a new sample from an
unknown location. Currently, we use the exhaustive search
algorithm, which compares the new sample to all training
samples. Obviously this will be too slow if our database of
training samples becomes larger. An alternative search method
is the k-dimensional (k-d) tree search [12]. In this method a
tree is generated from the training data in the offline phase and
the new sample is only compared to a small fraction of training
samples in the online phase, which speeds up the classification
process significantly. One of its drawbacks is that it works only
with low-dimensional data. Thus, it should be tested together
with the PCA, which would reduce the dimensionality of our
data from 14 to between 2 and 5. Another drawback of k-d tree
search is that it might miss the true nearest neighbour(s). Thus,
it remains to be tested if this will affect the misclassification
rate negatively.

An advantage of k-d tree search is that it possible to add
new nodes to an existing k-d tree [12], which means that we do
not need to retrain the whole tree when updating our training
database with measurements from new locations. Updating the
training database will be a major task, because for real-world
applications the flexibility to add data from new locations, and
remove or update data from existing locations in the training
database will be crucial. Therefore, using the KNN classifier
is a good choice, as it does not require any retraining as the
training database is modified. This does not hold, however, if
the data is transformed by PCA or if a k-d tree is used for
searching the nearest neighbours, as discussed before.

In addition, it should be investigated if the classification
accuracy can be improved by using a time series of IMS
samples instead of a single sample from the unknown location.
For positioning based on radio signal strength or magnetic
fingerprinting this approach proved to be successful [6], [13].

Furthermore, we could study if it is possible to improve the
positioning accuracy by using a denser grid of points in which
training samples are measured, and how other nonparametric
and parametric fingerprint-positioning methods (see e.g. [6]
for a recent survey) perform in this case. In addition, the
fusion with other information, for example, from an inertial
measurement unit, wireless area networks, and bluetooth low
energy networks should be studied.

Possible device heterogeneity is another issue that has to
be studied. We need to compare the IMS readings of different
eNoses at the same locations at the same time. If significant de-
vice heterogeneity is detected then we have to find calibration
methods that mitigate its influence. In the literature, manual
(e.g. [14], [15]) and automatic (e.g. [16], [17]) calibration
techniques for received signal strength heterogeneity have

been proposed. These methods might also work for IMS
heterogeneity, but at least we could use them as starting point
for finding a suitable calibration method for IMS devices.

Finally, we want to stress that this paper is an explanatory
study for the future when IMS chips will be cheaper and more
widespread. This future seems to be not that far away. For
example, Owlstone’s ion mobility spectrometer with dimen-
sions of less than a centimetre (see [9] for details) could in
principle already today be incorporated into mobile devices
such as smartphones.
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[16] C. Laoudias, R. Piché, and C. G. Panayiotou, “Device signal strength
self-calibration using histograms,” in 2012 International Conference on
Indoor Positioning and Indoor Navigation (IPIN). Sydney, NSW,
Australia, November 2012.
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