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Abstract— An adaptive method for reliable and fast detec-
tion of muscle activity from surface electromyographic (sEMG)
signals is introduced. The aim of this research was to minimize
the delay of the onset and termination detection, while still re-
taining the reliability and simplicity of the detection algorithm.
The proposed algorithm is based on a double-threshold detector.
The algorithm applies the same principles as a constant false
alarm rate (CFAR) processor that is often used to distinguish
events from noisy environments with dynamic noise character-
istics. The algorithm was tested with different noise conditions
and frequencies. For each condition, a set of 1000 computer-
simulated EMG signals were processed multiple times with dif-
ferent processing parameters in order to find the optimal set-
tings for reliable muscle activity detection. The results for the
detection delays were comparable to previously published re-
sults, and for low-noise conditions the detection worked with-
out errors. The performance of the algorithm was verified using
real sEMG signals. Performance in termination detection that
has often been neglected in prior studies, is also reported. The
results show that the method could be applied in the targeted
real-time application: facial pacing.

Keywords— double threshold detector, electromyography, fa-
cial pacing

I. INTRODUCTION

The analysis of electromyographic signals and especially
the detection of the onset and termination points of muscle
activity is important in biomedical applications. One partic-
ular application field which benefits from fast and reliable
muscle activity detection, is prosthetic technology that uses
electromyography (EMG) to analyze the behavior of the sub-
ject for producing control signals. Facial pacing is an applica-
tion that applies real-time measurement and functional elec-
trical stimulation for reanimating unilateral facial paralysis.
In order to pace natural-looking, symmetrical facial expres-
sions, the delay of the muscle activation on the paralyzed side
compared to the healthy has to be low. In a study by Kim et

al., facial movements (excluding eye blinks) were perceived
as synchronous by the majority of a test group, when the de-
lay was less than 33 ms [1].

Several different approaches with varying complexity have
been developed for the detection of muscle activations from
surface electromyographic (sEMG) signals, but a gold stan-
dard for the task does not currently exist. A processing al-
gorithm which detects discontinuities in the wavelet domain
has produced excellent results for both onset and termination
detection [2]. Other methods for the detection include for ex-
ample a Teager-Kaiser operator [3], and a sequential gaussian
mixture model in an EMG learning framework [4]. Singu-
lar spectrum analysis (SSA) is said to be especially suitable
for neuroprosthetic applications because it can be directly ap-
plied to the raw signal in real-time, without any prior knowl-
edge of the signal properties [5]. A double-threshold algo-
rithm that works based on controllable values of detection
probability, false-alarm probability, and time resolution pa-
rameters has also been used to detect sEMG onsets and termi-
nations from raw myoelectric signals [6]. The onset and ter-
mination detection delays achieved with the aforementioned
methods varied from less than ten to hundreds of millisec-
onds. The best results are gained with more complex meth-
ods, which can account for the variability and stochasticity
of the EMG signals. On the other hand, the more complex
the method, the harder it is to integrate as a part of prosthetic
technology, and to maintain reasonably low processing time
with often limited computational resources.

The goal of this study was to develop, optimize, and vali-
date an EMG onset and termination detection algorithm that
is suitable for facial pacing. The proposed algorithm is based
on earlier work on double-threshold detectors. The termina-
tion detection delay and the accuracy of the detections that
are important in real-time prosthetic applications, but often
neglected in prior studies, are reported.



II. METHODS

A. The detection algorithm

The proposed detection algorithm can be considered to
have mediocre complexity. The algorithm applies the same
principles as a constant false alarm rate (CFAR) processor,
which is an adaptive method that maintains a constant false
detection rate for events in the observed signal, for exam-
ple saccades in electro-oculographic (EOG) signals [7]. The
CFAR processor can be applied to keep the probability for
noise induced false detections constant, when the noise char-
acteristics (e.g. gaussian distribution) of the observed signal
are known. The adaptive threshold for an event is calculated
by computing a statistical value, for example the average in
cell-averaging CFAR, for the reference samples, and multi-
plying it with a sensitivity parameter. The samples adjacent
to the test sample are excluded as guard samples and the ones
next to these are the reference samples. In the case of detect-
ing EMG activity, the properties of the CFAR processor are
favourable due to the stochastic nature of the signal [8].

The operation of the proposed algorithm for detecting the
onset and termination points of sEMG activity can be divided
to four main functional components: initial high-pass filter-
ing to remove baseline wandering, rectification of the filtered
signal, determining if an onset has occurred, and determin-
ing if a termination has occurred. The initial filtering is done
with a second order Butterworth high-pass filter. The signal
is rectified by taking the square of each input sample. This
also amplifies the high-amplitude values. In a conventional
CFAR algorithm the signal is usually only rectified. Next, the
number of reference samples (R) and guard samples (G), as
well as a sensitivity parameter (So) are defined by the user for
the onset detection with a cell-averaging CFAR. Only sam-
ples that precede the test sample are included as guard and
reference samples. Based on the number of R and G, the al-
gorithm creates a low-pass filtered reference signal (moving
average of the rectified signal) for the onset detection, which
when multiplied with the sensitivity parameter So, determines
the adaptive CFAR threshold. The algorithm first compares
the rectified signal to the CFAR threshold producing binary
output with true values when the threshold is exceeded. An
additional M-out-of-N sliding window detector is applied to
the binary signal to make the final onset detection. If an onset
is detected, the algorithm begins to search for the termination
point by determining the threshold value for the termination
detection by multiplying a user-selected sensitivity parame-
ter (St ) with the reference signal for the termination. In the
case of termination detection, the reference signal is also a
moving average of the rectified signal, but with a higher low-
pass cut-off frequency than for the onset detection. When the

sensitivity-corrected moving average is below the threshold
as detected with another M-out-of-N detector, the algorithm
marks it as a termination point. This type of termination de-
tection is fast, but might fail if the noise level rises signifi-
cantly during the muscle activation.

B. EMG simulation and processing of the simulated sEMG

An EMG signal can be considered as stochastic gaussian
noise, and thus, it can be simulated easily [8]. More sophisti-
cated and accurate methods for EMG simulation, involving
motor unit action potential (MUAP) modelling, have been
used in earlier studies [9], but for functionality testing of
the algorithm, a simpler method was considered justifiable.
The benefit of using simulated EMG, is that the actual onset
and termination times are predetermined, and the detection
delays can be evaluated precisely. In this project, EMG was
simulated by using an algorithm to produce a gaussian noise
signals with known signal-to-noise ratios (SNRs). The band-
width of the simulated signals was restricted to 20–200 Hz.

A total of six sets of simulated EMG signals with two dif-
ferent SNRs (9.54 dB and 20.0 dB) and three different sam-
pling frequencies (1024, 2048 and 10000 Hz) were processed
to test the functionality and performance of the detection al-
gorithm. These specific values for SNRs and sampling fre-
quencies were chosen based on previous studies on the detec-
tion of surface EMG activity. Furthermore, the 10 kHz sam-
pling frequency was included in order to help facilitate the
method to an already-built facial pacing system. A set of sig-
nals with one thousand activations per each condition were
generated and processed.

C. Measuring and processing of real sEMG signals

Real EMG data was gathered from 15 healthy participants
(8 females, 7 males), whose age ranged between 26 and 57
years (40.7 ± 9.6). Principles outlined in the Declaration of
Helsinki, were followed in the experimental study.

The experiment started with a one minute long resting
task, after which the participants were asked to perform three
facial movements: smiling, lip puckering and frowning. Each
movement lasted 6 seconds and 10 repetitions of each move-
ment were instructed to be performed in random order. The
EMG signals from these movements in zygomaticus major,
orbicularis oris and corrugator supercilii muscles were mea-
sured with pre-gelled and sintered Ag-AgCl electrodes. In
addition, signal from the orbicularis oculi muscle was mea-
sured, to find out if eyeblinks could be detected. The measure-
ment was bipolar and the electrodes were placed according to
the guidelines of Fridlund and Cacioppo [10]. The used mea-
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Figure 1: Onset and termination detection delays as boxplots for the 9.54 dB
and 20.00 dB SNR simulated signals with different sampling frequencies.

surement device was NeXus-10 physiological monitoring de-
vice (Mind Media BV) with a sampling rate of 2048 Hz. The
instructions were given via a screen and all movements were
instructed to be done as naturally as possible.

III. RESULTS AND DISCUSSION

A. Results with simulated signals

The average delays of the onset and termination detection
with each different signal sampling frequency, when using
the simulated EMG signals with 9.54 dB SNR, are gathered
in Table 1. The corresponding values for the 20.00 dB SNR
signals can be seen in Table 2. Also, a boxplot of the detec-
tion delays at different frequencies is presented in Figure 1.
The experimental iteration of optimum parameters for the de-
tection algorithm in each condition was done by testing dif-
ferent values for the first sensitivity parameters (So and St )
and for the number of samples (Rt ) for the moving average
filter of the termination detector. The other CFAR parameters
were: R = Fs/4 and G = Fs/10, where Fs is the sampling
frequency. Second threshold parameters for the M-out-of-N
detectors were Mo = 4 and No = 5 for onset detection, and
Mt = 32 and Nt = 40 for termination detection.

From Tables 1 and 2 it can be seen that the best results
for the detection of the EMG signals and their onset and ter-
mination delays, was achieved with the highest sampling fre-

Table 1: Results for 9.54 dB SNR simulated EMG signals. The values
represent optimized parameter values (So, St , Rt ) with a certain sampling

frequency (Fs), average onset detection delays with standard deviation
(OD), average termination detection delays with standard deviation (TD),

and detection-% (Det.-%)

Fs (Hz) So St Rt OD (ms) TD (ms) Det.-%
1024 8 1.5 26 23.7 ± 18.3 60.1 ± 13.2 99.3
2048 10 1.5 82 13.3 ± 10.3 53.0 ± 4.3 99.9

10000 20 1.5 400 13.0 ± 14.8 40.0 ± 4.3 99.9
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Figure 2: An EMG signal measured from the corrugator supercilii muscle
with the termination threshold value, and detected onset and terminations

points.

quency. The SNR of the signal has a significant effect on the
detection delays as well: the algorithm performs best, when
the processed signal has a high SNR.

When comparing these results to some of the previously
studied methods, it can be deduced that for a method with
mediocre complexity, the algorithm performs extremely well.
Comparative values for earlier proposed methods can be seen
in Table 3. The termination times are often neglected in the
results, even though they are important especially in neuro-
prosthetics.

In this study, only the 20.00 dB SNR results in satisfactory
termination detection delay. Still, in regards of facial pacing
applications, the results for the onset detection with the sim-
ulated signals are good: the onset delays are well below the
33 ms that was the limit of perception of synchronous move-
ments in the study by Kim et al. [1]. In addition to the low
latencies in detecting the activation points of EMG, the reli-
ability of the detection algorithm is excellent. When process-
ing high SNR signals, the method can be considered flawless
in terms of detecting the EMG activity.

B. Results with real sEMG signals

An example of a real rectified EMG signal can be seen in
Figure 2.

The number of measured signals for each movement was
150, but some of the real EMG signals had to be discarded,
since even the visual inspection of the signal waveforms did
not reveal any distinguishable change in the EMG amplitude.
These cases might have been due to the failure of the partici-
pant to carry out the instructed movements or the fact that in

Table 2: Results for 20.00 dB SNR simulated EMG signals. For
abbreviations, refer to Table 1

Fs (Hz) So St Rt OD (ms) TD (ms) Det.-%
1024 15 10 20 7.8 ± 3.8 49.0 ± 3.3 100.0
2048 20 2 10 4.7 ± 2.9 28.4 ± 6.5 100.0

10000 25 1.5 182 1.6 ± 1.9 26.8 ± 5.1 100.0



Table 3: Onset and termination detection delays (ODs and TDs) of earlier
proposed methods. The values in the table represent the lowest detection
delay achieved. The abbreviations: wavelet transform method (WTM),

Teager-Kaiser (TK), sequential gaussian mixture modelling (SGMM), and
double-threshold (DT)

Method OD (ms) TD (ms)
WTM [2] 6.5 ± 6.5 4.1 ± 5.3

TK [3] < 19 ± < 3 Not specified
SGMM [4] < 5 ± < 3 Not specified

DT [6] < 3 ± < 2 Not specified

Table 4: The results for the real EMG processing. Measured muscle,
optimized parameters, false detection-% (FD-%), missed detection-%

(MD-%), and detection-% (Det.-%).

Muscle So St Rt FD-% MD-% Det.-%
Zygomaticus 20 0.9 82 10.7 0.8 87.7
Corrugator 25 1.1 82 5.7 0.7 93.6

Oris 20 1.1 82 15.8 0.8 83.3

real life, the SNR of the signal is sometimes simply too low.
The movements were chosen so that each of them activates a
specific measured muscle: smiling activates zygomaticus ma-
jor, lip puckering activates orbicularis oris and frowning ac-
tivates corrugator supercilii. The sEMG signals from the or-
bicularis oculi muscle were so weak that the eyeblinks were
not distinguishable in any of the signals. Different kind of
electrode placement might have produced stronger signals,
but usually eyeblink detection is not even done by utilizing
EMG, but rather EOG signals. For zygomaticus major a total
of 130 signal sequences were processed, and the correspond-
ing quantities for orbicularis oris and corrugator supercilii
were 120 and 140, respectively. The results are presented in
Table 4. The fixed parameters were the same as for the simu-
lated signals.

When comparing these results to previous studies, espe-
cially to the wavelet transform method (WTM) [2], the re-
sults are slightly worse, but still comparable. The WTM had
a false detection rate of 3-7% and it did not miss any activa-
tions [2]. However, the signals, which were processed with
the WTM were from leg muscles, so the signal SNR might
have been significantly better than what was obtained from
the facial muscles in our study.

The corrugator supercilii signals were the most proba-
ble signals to be processed without errors. Some of the sig-
nals, especially from the zygomaticus muscle, behaved oddly,
when compared to the simulated signals. The ending of the
muscle activation does not happen instantaneously, but grad-
ually instead, which causes problems for the termination de-
tection. When considering the target application, these prob-
lems in the termination detection must be taken into account.
The termination point could for example be estimated based

on the attenuation of the detected activity.

IV. CONCLUSION

A new, relatively simple method, suitable for embedded
real-time EMG activation and termination detection was in-
troduced. While the results with the simulated signals were
promising, the processing of real EMG proved to be more
challenging. The next logical step would be to test the method
in an actual physical application. In this study it is shown that
the proposed method produces satisfactory results and can be
seen as a good option, when considering an application that
needs real-time EMG detection, but which still has to retain
its simplicity.
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