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ABSTRACT 

Studies in Escherichia coli using in vivo single-RNA detection 

and time-lapse confocal microscopy showed that transcription is a 

multiple rate-limiting steps process, in agreement with previous in 

vitro measurements. Here, from simulations of a stochastic model 

of transcription validated empirically that accounts for cell-to-cell 

variability in RNA polymerase (RNAP) numbers, we investigate 

the hypothesis that the cell-to-cell variability in RNA numbers 

due to RNAP variability differs with the promoter rate-limiting 

steps dynamics. We find that increasing the cell-to-cell variability 

in RNAP numbers increases the cell-to-cell diversity in RNA 

numbers, but the degree with which it increases is promoter 

kinetics dependent. Namely, promoters whose open complex 

formation is relatively longer lasting dampen more efficiently this 

noise propagation phenomenon. We conclude that cell-to-cell 

variability in RNA numbers due to variability in RNAP numbers 

is promoter-sequence dependent and, thus, evolvable. 
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1. INTRODUCTION 
In Escherichia coli, major behavioral changes including 

metabolic, are driven by changes in the numbers of the molecules 

composing the transcriptional and translational machineries, such 

as RNA polymerase (RNAP) core enzymes and σ factors [1]. E.g., 

changes in σ factor numbers allow E. coli cells to quickly, and 

simultaneously, enhance and/or reduce the transcriptional activity 

of a large number of genes in a selective fashion [2]. 

This is made possible by the limited number of RNAP core 

enzymes [3]. As the numbers of a specific σ factor increase, the 

RNAPs carrying that σ factor increase, and thus the activity of the 

promoters associated to that σ factor is expected to increase by 

direct positive regulation. Meanwhile, the activity of the 

promoters associated to other σ factors is expected to decrease by 

indirect negative regulation.  

Interestingly, following changes in σ factor numbers, while these 

‘expectations’ based on present models of transcription do, in 

general, take place on a global scale, some genes’ activity is 

unaffected [3], and those that respond do so heterogeneously, i.e., 

they differ in degree of change, even in the case of genes 

associated to the same σ factor. 

This ‘behavioral’ diversity in responses is due to differences in the 

promoters' selectivity for σ factors [4], the action of transcription 

factors [3] and, according to a recent study, in the case of indirect 

negative regulation, due to differing dynamics of the multiple 

steps in transcription initiation [5][6], which were first observed 

by in vitro measurement techniques (for a review see [7]). In 

particular, it was shown that in promoters preferentially 

transcribed by σ70, the smaller the time-scale of the closed 

complex formation relative to the open complex formation, the 

weaker is the promoter's responsiveness to changes in σ38 

numbers. It was thus concluded that, in E. coli, a promoter's 

responsiveness to indirect regulation by σ factor competition is 

determined by the kinetics of the irate limiting steps in initiation. 

Given this observation, validated by various measurement 

techniques of RNA production dynamics applied to several 

promoters [6], we here hypothesize that the dynamics of the rate-

limiting steps in transcription initiation [7] influences also a 

gene’s degree of responsiveness to extrinsic noise sources. 

Here, we investigate this hypothesis by, first, establishing a 

stochastic model of transcription that accounts for cell-to-cell 

diversity in RNA polymerase numbers and whose parameter 

values are taken from state-of-the-art, single-cell RNAP levels 

and single-RNA microscopy measurements, and then performing 

stochastic simulations of model cells [8][9] carrying the multi-step 

stochastic model of transcription [10] and whose RNAP numbers 

are, while constant in time, initially randomly drawn from a 

normal distribution. By tuning this model’s parameter values, we 

assess to which extent variability in RNAP numbers, as function 

of transcription initiation kinetics, affects the cell-to-cell diversity 

in RNA numbers. 

2. METHODS 

2.1 Model of Transcription 
We consider a dynamically broad model of transcription initiation 

that allows RNA production kinetics to range from sub-Poissonian 

to super-Poissonian, depending on the rate constant values. This 

model was derived from data from multiple studies, including 

genome-wide studies of RNA numbers variability [11][12] and of 

the transcription dynamics of individual genes [13,14]. 
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The model includes the steps in transcription initiation in E. coli 

(e.g. open complex formation [15] and ON/OFF process [16]). 

Rate constant values were obtained by fitting the model to 

empirical data on RNA production kinetics at the molecule level 

of the Lac-Ara-1 promoter and from single-cell measurements of 

intracellular concentration of RNAPs reported in [5].  

This model is applicable to common promoters in E. coli, 

differing between promoters in the rate constant values, and it 

consists of the following reactions:  
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Reactions (1) represent the multi-step transcription initiation of an 

active promoter, PON [17]. First, the closed complex (RPc) is 

formed as the RNAP (R) binds to a free promoter [18]. Next, 

intermediate steps occur to form the open complex (RPo) 

[17][18]. Finally, elongation begins after promoter clearance [19], 

after which the promoter, the produced RNA, and the RNAP are 

released. In (1), k1 is the rate at which RNAPs find and bind to the 

promoter successfully. k2 is the open complex formation rate. 

Finally, k3 is the promoter escape rate. k−1 is the rate of 

reversibility of the closed complex. In this model, a promoter 

occupied by an RNAP is unavailable to other initiation events.  

Reactions (2) represent the intermittent transitioning of the 

promoter to an inactive state (POFF) due to e.g. binding/unbinding 

of repressors/activators [20], accumulation of positive DNA 

supercoiling [21], etc.  

As the number of RNAPs differs between live cells (see 

measurements below), in each model cell the number of RNAPs is 

constant but initially randomly generated from a normal 

distribution, N(x,y), where x and y are obtained from empirical 

data [1]. This is the source of extrinsic noise of the model cell 

population here considered and is the main innovation of our 

model when compared to previous stochastic models [5][10][22]. 

2.2 Stochastic Simulations 
Simulations are performed by SGNS [8], a simulator of chemical 

reaction systems whose dynamics is driven by the Stochastic 

Simulation Algorithm [9] that allows for multi-time-delayed 

reactions [10]. SGNS also allows hierarchical, interlinked 

compartments to be created, destroyed and divided at runtime, a 

feature used to generate dynamically independent model cells.  

3. RESULTS AND CONCLUSIONS 
Here, each model cell ‘contains’ one promoter and RNAP 

molecules, which interact via reactions (1) and (2). Parameter 

values of the ‘control condition’ are shown in Tables 1 and 2. 

The parameter values associated with RNAP numbers in 

individual cells (Table 1) are obtained from measurements of 

RNAP fluorescence intensities in individual E. coli RL1314 cells 

with fluorescently tagged β’ subunits reported in [5]. From these, 

we have set the mean RNAP fluorescence in individual cells 

arbitrarily to 1 and then obtained the fraction of cells with a given 

relative fluorescence level. The resulting distribution of relative 

RNAP fluorescence levels is shown in Figure 1. Note that the 

2.5% cells with lowest and highest total fluorescence intensity 

were discarded, as they were clear outliers. 

Next, to obtain the CV2 of these RNAP relative levels in 

individual cells, we fitted a normal distribution to the data using 

the MATLAB package Statistics and Machine Learning 

Toolbox™ [23] (Figure 1). The CV2 of the fit is shown in Table 1. 

 

Fig 1. Fraction of cells with a given relative RNAP-

fluorescence level as measured by microscopy in E. 

coli RL1314 cells with fluorescently tagged β′ 

subunits (bars) [1]. The mean absolute RNAP level 

in individual cells was set to 1. Also shown is the 

best fitting normal distribution (grey line). 

To validate the fitting, we performed a Kolmogorov-Smirnov 

(KS) test and verified that the two distributions (empirical and 

best fit) cannot be distinguished in a statistical sense (p-value of 

0.69). Thus, we use the best fit distribution to set random RNAP 

numbers in individual model cells. The mean and CV2 of RNAP 

numbers of the model cell population are shown in Table 1.  

Table 1. Parameter values of RNAP numbers in model cells in 

the control condition of the simulations 

Parameter Value Reference 

Mean RNAp available/cell 1* [5] 

CV2 of RNAp available/cell 0.03 [5] 

 

Table 2 shows the values of kON, kOFF, k1, k-1, k2, and k3 of the 

transcription model, which were inferred from empirical 

distributions of time intervals between consecutive RNA 

productions in individual cells, under the control of the Lac-Ara-1 

promoter in DH5-PRO E. coli cells [5]. For this statistical 

inference, it was assumed the same model of transcription as here.  

Table 2. Parameter values of the transcription model (control) 

Parameter Value Reference 

kON 0.01 s-1 [5] 

kOFF 281 s-1 [5] 

k1 6469 s-1 [5] 
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k-1 1 s-1 [5] 

k2 0.005 s-1 [5] 

k3  [5] 

 

Next, we ran simulations of model cells (control condition) using 

SGNS2 [8]. Example time series of RNA production events in 5 

individual model cells are shown in Figure 2. Visibly, most cells 

produced 2 RNAs during 2000 s, as expected [5]. 

 

Fig 2. Example time series of the number of RNAs 

produced by 5 individual model cells in 2000 s. 

These numbers are offset of each other on the y 

axis to distinguish between the lines of different 

cells (only integer RNA numbers are possible). 

Next, we study the overall cell to cell diversity in number of 

produced RNAs as a function of the cell-to-cell variability in 

RNAP numbers and as a function of the rate constants controlling 

the kinetics of closed (k1) and open (k2) complex formation.  

According to the model, e.g., increasing k1 results in shorter time-

length closed complex. Meanwhile, increasing k2 results in shorter 

time-length open complex. Here, we change the values of both k1 

and k2 so that the mean RNA production rate remains unaltered. 

For that, we use the formula derived in [1], and reproduced here: 
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In (3), I(R) is the mean interval between consecutive RNA 

productions in individual cells. This equation, derived from 

reactions (1) and (2), assumes infinite cell lifetime. Here, we vary 

k1, and then, based on (3), vary k2 so as to maintain I(R) constant.  

Given this, we selected 10 values for k1 and, consequently, k2 [5]. 

From these, using (3), we calculate for each case the fraction of 

time between consecutive RNA production events (∆t) that is 

spend in closed complex formation (
cc t  ). The range of these 

values was set so as to be in agreement with recent measurements 

made for various promoters subject to various induction levels in 

cells whose RNAP numbers distribution is similar to that in Table 

1. These empirical values are shown in Table 3. 

Table 3. Empirical values of cc t   of various promoters 

subject to different induction levels 

Promoter and induction cc t   Reference 

PBAD with 0.1% arabinose 0.71 [6] 

PBAD with 0.01% arabinose 0.55 [6] 

PBAD with 0.001% arabinose 0.17 [6] 

Plac-O1O3 with 1 mM IPTG 0.55 [6] 

P lac-O1O3 with 0.05 mM IPTG 0.46 [6] 

P lac-O1O3 with 0.005 mM IPTG 0.12 [6] 

PtetA with no inducers 0.07 [6] 

Plac-O1 with 1 mM IPTG 0.05 [6] 

Plac-ara1 with 1 mM IPTG and 0.1% 

arabinose (full induction) 
0.49 [6] 

 

Also, we selected 7 different values of CV2 in RNAP numbers in 

individual cells, around the empirical value of 0.03 (Table 1). 

Based on these sets of parameter values, we produced 70 models 

of cells, combining in all possible ways the two parameter sets. 

For each model, we simulated 1000 model cells for 10000 s each, 

and extracted the number of produced RNAs per cell. The mean 

number of RNAs produced per cell in the various models equaled 

~10. In Figure 3, we show the values of the CV2 of the number of 

produced RNAs in individual cells in all conditions. 

 

Fig 3. CV2 of number of produced RNAs in model 

cells during their lifetime as a function of relative 

durations of closed and open complex formation 

and of the cell-to-cell variability in RNAP numbers. 

From Figure 3, as
cc t   increases, so does the cell-to-cell 

variability in RNA numbers. Similarly, the higher the cell-to-cell 

variability in RNAP numbers, the higher the CV2 in RNA 

numbers. Finally, increasing both these two parameters leads to a 

much higher increase in the cell-to-cell variability in RNA 

numbers, than if changing only one of these parameters. 

The conclusion from these results is that, while as expected the 

cell-to-cell variability in RNAP numbers ‘propagates’ to the cell-

to-cell diversity in RNA numbers, the degree with which it 

propagates is heavily promoter kinetics dependent. 

Also, there is an unexpected decrease in CV2 in RNA numbers at 

cc t   ~ 0.35, that will require further research to explain. 

4. DISCUSSION 
We explored the effects of cell-to-cell variability in RNAP 

numbers in the cell-to-cell variability in RNA production rates, as 

a function of the kinetics of transcription initiation of a promoter. 



For this, we simulated the dynamics of RNA production in model 

cells, making use of a detailed stochastic model that combines 

multiple steps in transcription initiation with cell-to-cell 

variability in RNAP numbers. All parameter values of the model 

were inferred from single-cell microscopy measurements. 

We observed that as the cell-to-cell variability in RNAP numbers 

increases, so does the variability in RNA numbers. However, 

genes are not entirely void of ‘filters’ of this phenomenon. 

Namely, within the range of realistic parameter values, we 

observed that different promoter kinetics results in different 

degrees of variability in RNA numbers in individual cells. 

Specifically, RNAs whose production is controlled by promoters 

with relatively slow closed complex formation will exhibit much 

wider variability in numbers between cells. 

As the initiation dynamics of promoters is both sequence-

dependent and subject to regulation (e.g. inducers and repressors), 

we expect the level of cell-to-cell diversity in RNA (and protein) 

numbers of a gene due to the variability in RNAP numbers to be 

both evolvable as well as adaptable. 

In addition, given the observed degree of changes in variability in 

RNA numbers as a function of the two parameter values changed 

in the course of the simulations, we expect this phenomenon to 

also be observable at the level of small genetic circuits. In the 

future, it would be of interest to investigate the extent to which 

this effect influences the behavior of such small circuits, such as 

genetic switches and clocks. 
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