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ABSTRACT 

 

This paper presents the first known high-level synthesis 

(HLS) implementation of integer discrete cosine transform 

(DCT) and discrete sine transform (DST) for High Efficiency 

Video Coding (HEVC). The proposed approach implements 

these 2-D transforms by two successive 1-D transforms using 

a well-known row-column and Even-Odd decomposition 

techniques. Altogether, the proposed architecture is 

composed of a 4-point DCT/DST unit for the smallest 

transform blocks (TBs), an 8/16/32-point DCT unit for the 
other TBs, and a transpose memory for intermediate results. 

On Arria II FPGA, the low-cost variant of the proposed 

architecture is able to support encoding of 1080p format at 60 

fps and at the cost of 10.0 kALUTs and 216 DSP blocks. The 

respective figures for the proposed high-speed variant are 

2160p at 30 fps with 13.9 kALUTs and 344 DSP blocks. 

These cost-performance characteristics outperform 

respective non-HLS approaches on FPGA.  

 

Index Terms— High Efficiency Video Coding (HEVC), 

Discrete cosine transform (DCT), Discrete sine transform 

(DST), High-level synthesis (HLS), Catapult-C, Field-
programmable gate array (FPGA) 

 

1. INTRODUCTION 

 

The latest video coding standard, High Efficiency Video 

Coding (HEVC) [1], has been developed to meet the 

transmission and storage needs of modern video applications. 

Compared with its predecessor standard AVC [2], HEVC is 

able to halve the bit rate for the same subjective quality, but 

its encoding complexity tends to be at least doubled in 

practical encoders. 
 HEVC adopts the conventional hybrid video coding 

scheme (inter/intra prediction, transform coding, and entropy 

coding) [3] from the prior MPEG/ITU-T video coding 

standards. As a new feature, the coding structure of HEVC 

has been extended from a traditional macroblock concept to 

an analogous block partitioning scheme that supports coding 

tree units (CTUs) of up to 64 × 64 pixels [4].  

This paper focuses on HEVC transform coding for which 

the sizes of transform blocks (TBs) and associated core 

transform matrices can be defined as N × N, where N ϵ {4, 8, 

16, 32}. Extending the sizes of transform matrices from that 

of AVC to N > 8 improves coding gain by around 5-7% but 

it also introduces the majority of complexity overhead in 

HEVC transform coding [5].  

HEVC specifies two-dimensional (2-D) integer discrete 

sine transform (DST) for intra coded luminance TBs of size 

4 × 4 pixels [6] and 2-D integer discrete cosine transform 

(DCT) for all other TBs [7]. Both of these 2-D transforms are 

separable so they can be computed by applying two N-point 

1-D transforms first row-wise and then column-wise [5]. This 

indirect approach is called a row-column decomposition 

technique and it is typically utilized by software [8]-[9] and 
hardware implementations [10]-[16] of HEVC DCT/DST. 

This work focuses on HEVC DCT/DST implementations 

on FPGA. Contrary to previous works [12]-[16], our proposal 

does not use traditional hardware (HW) description 

languages (HDLs), but High-Level Synthesis (HLS) [17] 

which is an emerging approach for raising the abstraction 

level in HW description. HLS is a way of using well-known 

programming languages such as C and C++ to describe the 

designs at behavioral level and automatically generating the 

HDL from it. This way, the code is more readable, design and 

verification times are shorter, and the design reusability is far 

better than with handwritten HDL equivalents. 
To the best of our knowledge, this is the first paper to 

describe an HLS implementation for HEVC DCT/DST. The 

proposed designs include low-cost and high-speed variants of 

the 8/16/32-point DCT unit for N ϵ {8, 16, 32} and a separate 

4-point DCT/DST unit for N = 4. They are all implemented 

on Arria II FPGA using Catapult C [18] HLS tool. 

The rest of this paper is organized as follows. Section 2 

describes the hardware-oriented DCT/DST algorithm 

implemented in this work. Section 3 proposes our HLS 

implementations for low-cost and high-speed DCT/DST 

computation. In Section 4, the proposed HLS 
implementations are compared with handcrafted prior-art. 

Section 5 concludes the paper. 

 

2. 2-D INTEGER DCT/DST ALGORITHMS IN HEVC 

 

In this work, the C implementations of DCT and DST 

algorithms are obtained from the open source Kvazaar HEVC 

encoder [8]. Basically, Kvazaar implements the same 

DCT/DST functionality than HEVC reference encoder (HM) 

[9] but the hardware-oriented C source code of Kvazaar 

provides a better starting point for HLS.  



 

 

2.1 Even-Odd decomposition algorithm  

 

In HEVC encoder, DCT and DST are used to convert spatial-

domain residual blocks into transform-domain coefficient 

matrices. A well-known row-column algorithm [5] executes 

these 2-D transforms with separable 1-D transforms in two 

consecutive stages. An N-point transform is first applied 1) to 

each row of a residual block of size N × N to generate an 

intermediate matrix of size N × N; and then 2) to each column 

of the intermediate matrix to generate a final transform 

coefficient matrix of size N × N. 

The number of arithmetic operations can be further 
reduced by implementing these 1-D transforms with Even-

Odd decomposition algorithm, a.k.a., Partial Butterfly 

algorithm [5]. It decomposes an input and core transform 

matrices of size N × N into two matrices of size N/2 × N/2 

according to even and odd rows/columns, respectively. The 

core transform matrices for each N (CN) are specified in [7]. 

Now, an N-point transform can be computed for even and odd 

cases separately with two N/2-point transforms. 

For a residual vector X = [x(0), x(1), …, x(N-1)], the even 

and odd vectors, E = [e(0), e(1), …, e(N/2-1)] and O = [o(0), 

o(1), …, o(N/2-1)], can be computed as  
 

𝑒(𝑖) = 𝑥(𝑖) + 𝑥(𝑁 − 1 − 𝑖 )    (1) 

𝑜(𝑖) = 𝑥(𝑖) − 𝑥(𝑁 −  1 −  𝑖 )    (2) 

 

where i = 0, 1, …, N/2 - 1. The output vector Y = [y(0), y(1), 

…, y(N-1)] of 1-D transform coefficients could be directly 

obtained by multiplying the vectors E and O by the associated 

transform matrices at this stage. However, the arithmetic 

operations can be further reduced by applying decomposition 

recursively. In this approach, the largest transform matrix 
also embeds the smaller transform matrices. 

Fig. 1 depicts the phases of Even-Odd decomposition for 

N = 32. First, the vectors E and O of size 16 are computed 

according to (1) and (2). The latter is an input to C32 × O 

multiplication and the former is recursively decomposed into 

smaller even and odd vectors as in (1) and (2), i.e., the vector 

E is divided into EE and EO vectors of size 8. The vector EO 

is multiplied by C16 whereas EE is decomposed into EEE and 

EEO vectors of size 4, and EEE to EEEE and EEEO vectors 

of size 2. EEO is multiplied by C8, EEEO by C4/O, and 

EEEE by C4/E. The corresponding structure can be used for 

all N by starting at depth (log2N) - 1. 

 

2.2 Proposed hardware-oriented algorithm optimization  

 

In the case of 8-bit video, the residual vector X contains 

9-bit signed integers for which the original Even-Odd 

decomposition algorithm produces 9 + (log2N + 6) –bit signed 
results [5] without any truncations. Our motivation is to 

optimize the algorithm for 18 × 18 multipliers on Arria II 

FPGA due to which 19-bit (N = 16) and 20-bit (N = 32) odd 

and even values are saturated to 18-bit signed values.  

The impact of this modification was tested with HM 16.12 

using test sequences from HEVC common test conditions 

(classes A-F) [19] and the average BD-rate overhead is 

0.002%. This negligible loss is preferred to using 20 × 20 –

bit multipliers that would increment the number of needed 

DSP blocks fourfold. 

 

3. PROPOSED DCT/DST ARCHITECTURE 

 

The proposed DCT/DST architecture is composed of 1) an 

8/16/32-point DCT unit for TBs of size 8 × 8, 16 × 16, and 

32 × 32; 2) a separate 4-point DCT/DST unit for TBs of size 

4 × 4; and 3) a transpose memory for intermediate results.  

 

3.1 8/16/32-point DCT unit  

 

Fig. 2 shows the block diagram of the 8/16/32-point DCT 

unit. It contains a control block (Ctrl8/16/32), 3-stage pipeline 

for DCT computation, and a transpose memory.  
 A 288-bit input to the Ctrl8/16/32 block is for up to 32 9-bit 

signed residuals. The Ctrl8/16/32 block sign extends each 9-bit 

residual to 16 bits and passes them through the 3-stage DCT 

computation via a 512-bit connection. The mapping of the 

v32[k][j] = c32[k][j] × o[j]

k, j ϵ [0, 15]

v16[k][j] = c16[k][j] × eo[j]

k, j ϵ [0, 7]

v8[k][j] = c8[k][j] × eeo[j] 

k, j ϵ [0, 3]

v4[k][j] = c4/E[k][j] × eeee[j]

v4[k+2][j] = c4/O[k][j] × eeeo[j]

k, j ϵ [0, 1]

y[i] += v32[k][j]

i ϵ [16, 31]; k, j ϵ [0, 15]

y[i] = (y[i] + round) >> shift

y[i] += v16[k][j]

i ϵ [8, 15]; k, j ϵ [0, 7]

y[i] = (y[i] + round) >> shift

y[i] += v8[k][j]

i ϵ [4, 7]; k, j ϵ [0, 3]

y[i] = (y[i] + round) >> shift

y[i] += v4[k][j]

i ϵ [0, 3]; k ϵ [0, 3]; j ϵ [0, 1]

y[i] = (y[i] + round) >> shift

D
C

T
 s

ta
g

e 
2

 

M
u

lt
ip

li
ca

ti
o

n

D
C

T
 s

ta
g

e 
1

D
ec

o
m

p
o

si
ti

o
n

e[i] = x[i] + x[31-i] o[i] = x[i] - x[31-i] i ϵ [0, 15]

ee[i] = e[i] + e[15-i] eo[i] = e[i] - e[15-i] i ϵ [0, 7]

eee[i] = ee[i] + ee[7-i]  eeo[i] = ee[i] - ee[7-i]

i ϵ [0, 3]

eeee[i] = eee[i] + eee[3-i]

eeeo[i] = eee[i] - eee[3-i]

i ϵ [0, 1]

O

EO

EEO

EEEE

D
C

T
 s

ta
g

e 
3

A
cc

u
m

u
la

ti
o

n

Depth 1

Depth 2

Depth 3

Depth 4

V4 V8 V16 V32

Y

X

E

EE

EEE

EEEO

 
Figure 1. Even-Odd decomposition algorithm (N = 32). 



 

 

Even-Odd decomposition algorithm to three DCT stages is 

illustrated in Fig. 1. 

The DCT stage 1 performs the recursive Even-Odd 

decomposition for the 16-bit residuals and computes all even 

and odd vectors (E/O, EE/EO, EEE/EEO, and EEEE/ 

EEEO). It is implemented in C code as a recursive template 

function which is synthesized by Catapult-C to an adder tree 
The DCT stage 2 is for multiplication between transform 

matrices and odd vectors (C32 × O, C16 × EO, C8 × EEO, 

C4/O × EEEO, and C4/E × EEEE). On FPGA, this 

functionality is mapped to multipliers of DSP blocks to save 

logic cells. Catapult-C facilitates instantiation of DSP blocks 

in C code by providing a library for DSP blocks as C++ 

templates for different FPGA architectures.  

The DCT stage 3 finalizes the 1-D transform by 

accumulating the individual products of multiplication and 

scales the coefficients to 16 bits.  

The 8/16/32-point DCT unit performs the 2-D DCT in two 
successive passes and the intermediate data is stored in the 

transpose memory. The latency for both passes is 3 cycles 

because of the DCT pipeline. Finally, the 2-D 16-bit 

transform coefficients (tcoeffs) are sent via 512-bit output. 

This work proposes two alternate 8/16/32-point DCT 

units with different parallelization strategies:  

1) A low-cost unit processes N residuals (one row/column of 

a TB) in parallel. In this unit, the residuals enter the DCT 

stage 1 at depth (log2N) - 1. In addition, the DCT stages 2 

and 3 operate at double clock frequency to be able to 

compute the largest TB in two phases with the reduced 

number of DSP blocks. This approach halves the width of 
the largest multiplier array, without increasing latency.  

2) A high-speed unit processes 32 residuals (32/N 

rows/columns of a TB) in parallel so that a constant data 

rate with full hardware utilization is achieved. In this unit, 

the residuals enter the DCT stage 1 at depth 4. In addition, 

all DCT stages operate at the same frequency and the 

DCT stage 2 contains a full-width multiplier array. 

3.2 4-point DCT/DST unit  

 

Fig. 3 depicts a 4-point DCT/DST unit that operates in 

parallel with the 8/16/32-point DCT unit. A 144-bit input to 

the Ctrl4 block accepts a single 4 × 4 residual block at a time. 

The 9-bit residuals are sign extended to 16-bits and passed 

row-wise to the respective four DCT/DST blocks. The 

intermediate matrix is ready in one cycle after which it is sent 

back to the same DCT/DST blocks by picking the 

intermediate values from the registers in a transposed order. 

After these two passes, the unit outputs 16 16-bit coeffs. 

A separate 4-point DCT/DST unit increases the occupied 

resources on FPGA. However, this overhead is compensated 
by better load balancing since the share of 4 × 4 TBs is 

relatively high compared to the other TBs. 

 

3.3 Transpose memory 

 

Fig. 4 depicts the structure of the transpose memory used in 

the 8/16/32-point DCT unit. On FPGA, it is made of 32 dual-

port on-chip memory modules without registers. Each 

memory module has a 512-bit write (N coefficients) and a 16-

bit (1 coefficient) read port. The structure supports block 

transpose for N ϵ {8, 16, 32}.  
The memory utilization of the low-cost 8/16/32-point 

DCT unit depends on N. The intermediate matrix is written to 

the memory modules row by row and the module number is 

incremented from 0 to N accordingly. The right module is 

identified by a one-hot write enable (wen) signal. A matrix is 

read from the memory column by column by accessing a 

single coefficient per each module and incrementing the read 

address (raddr) by one after each read (from 0 to N). 

The high-speed 8/16/32-point DCT unit utilizes the whole 

memory for each N. To enable simultaneous reading of 32/N 

columns of the matrix without any access conflicts, the same 

rows are written to (32/N)2 modules. Let us use N = 8 as an 
example. The first four rows are written in the modules 0-3, 

8-11, 16-19, 24-27 after which the last four rows are written 

to the remaining modules respectively. Eight columns can 

now be read in two cycles by using raddr and offset. 

 

4. PERFORMANCE ANALYSIS 

 

Table 1 reports the cost-performance characteristics of the 

proposed and the most competitive prior-art FPGA 

implementations. The comparison is simplified by deriving 

Dual-port RAM 0

Dual-port RAM 1

Dual-port RAM 31

512 data

16

16

16

offsetwen

. . .

...waddr

data 512 raddr
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Figure 4. Block diagram of the transpose memory. 
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Figure 2. Block diagram of the 8/16/32-point DCT unit. 
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Figure 3. Block diagram of the 4-point DCT/DST unit. 

 

 



 

 

normalized performance and cost figures for the 

architectures: sample rate as million tcoeffs processed per 

second (Mtcoeffs/s) and performance-cost ratio as logic cells 

per sample rate (cells/(Mtcoeffs/s)). The works in [12], [13], 

[15] only implement the 1-D transform. For fair comparison, 
their sample rates have been scaled (divided by two) to 

correspond to those of the 2-D transform architectures. 

 

4.1 Proposed architecture 
 

Table 1 tabulates the results for the proposed low-cost and 

high-speed variants of 8/16/32-point DCT units and for the 4-

point DCT/DST unit separately. Altogether, the combined 

resource usage of our proposal is (4.2 + 5.8) kALUTs = 10.0 

kALUTs and 216 DSP blocks in the low-cost case and (8.1 + 

5.8) kALUTs = 13.9 kALUTs and 344 DSP blocks in the 
high-speed case. The low-cost approach uses 28% less 

ALUTs and 37% less DSP blocks than the high-speed one 

which has, on the other hand, almost 2.4× better sample rate. 

The sample rate of our low-cost solution is adequate for 

transform coding of 4:2:0 1080p (1920 × 1080) video at 60 

fps. The speed is computed for the worst case where the 

DCT/DST is needed once for all TBs in a CTU. It is also 

assumed here that there are always residual blocks available 

for the architecture. A practical HEVC intra/inter encoder can 

meet these conditions by coding successive CTUs in parallel 

without rate-distortion optimization. Respectively, the high-

speed case is for 4:2:0 2160p (3840 × 2160) video at 30 fps.  
On FPGA, the functionality of the proposed design was 

validated as a part of Kvazaar HEVC intra encoder. 

 

4.2 Comparison with prior-art 

 

The architecture proposed by Jeske et al. [12] is limited to 

N = 16 whereas the work of Darji et al. [13] supports all TBs 

but results are given for N = 16 only. Hence, the features of 
these two works are not directly comparable with our 

proposal. Furthermore, Zhao et al. [14] support all TB sizes 

but with non-competitive cost-performance figures.  

The remaining approaches make also use of DSP blocks 

whose impact on the overall logic cell count is taken into 

account in Table 2. For the proposed designs, the total cell 

count is obtained by synthesizing them without the DSP 

blocks. The same cost per DSP block (72.5 ALUTs) is used 

when estimating the respective count for the related works. 

The fastest prior-art solution is presented by 

Arayacheeppreecha et al. [15] whose overall cell count is also 

the smallest. However, including the missing DST unit and 
transpose memory would add overhead in their cost-

performance figures. Furthermore, the cell counts of our both 

architectures are smaller if DSP blocks are available. Our 

high-speed architecture is also almost 1.5× faster.  

Pastuszak et al. [16] present an approach similar to ours 

by implementing separate units for N = 4 and N ϵ {8, 16, 32}. 

However, our low-cost architecture is slightly faster and 

consumes still 14% less resources. Our high speed approach 

needs around 31% more resources but is around 2.4× faster. 

 

5. CONCLUSIONS 
 

This paper presented the first known HLS implementation for 

HEVC 2-D DCT/DST on FPGA. The presented architecture 

implements a hardware-oriented even-odd decomposition 

algorithm whose C code is synthesized to HDL with HLS. A 

low-cost variant of the architecture is able to support 1080p 

video up to 60 fps and a high-speed variant 2160p video up 

to 30 fps. HLS reduces design and verification times over 

traditional handwritten approaches. This work shows that 

these benefits do not come at the cost of implementation 

overhead but our HLS solution outperforms the prior-art 

approaches in terms of performance and cost. 
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Table 1. Comparison of the proposed and related work. 

 

Architecture Transform N FPGA DSPs Freq. Mtcoeffs/s Cells/(Mtcoeffs/s)

Proposed (low-cost) 2-D DCT 8/16/32 Arria II 4 263 ALUTs 216 100 MHz 515 8.3

Proposed (high-speed) 2-D DCT 8/16/32 Arria II 8 114 ALUTs 344 160 MHz 1 224 6.6

Proposed (4×4) 2-D DCT/DST 4 Arria II 5 775 ALUTs 0 160 MHz 1 280 4.5

Jeske et al. [12] 1-D DCT 16 Stratix III 5 168 ALUTs 0 88 MHz *701 7.4

Darji et al. [13] 1-D DCT 16 Spartan 3E 3 419 LEs 0 48 MHz *384 **7.1

Zhao et al. [14] 2-D DCT 4/8/16/32 Cyclone IV 40 541 LEs 0 125 MHz 238 **136.3

Arayacheeppreecha et al. [15] 1-D DCT 4/8/16/32 Spartan 3A 15 677 LEs 77 205 MHz *820 **15.3

Pastuszak et al. [16] 2-D DCT 8/16/32 Arria II 6 928 ALUTs 256 100 MHz 512 13.5

Pastuszak et al. [16] 2-D DCT/DST 4 Arria II 4 256 ALUTs 0 100 MHz 400 10.6

*Scaled sample rate (divided by two) **1.25 × LE  = ALUT

Logic cells

Table 2. Logic cells (DSP blocks replaced by logic). 

 

Architecture Cells w/o DSPs Cells/(Mtcoeffs/s)

Proposed (low-cost) 25 698 36.3

Proposed (high-speed) 38 829 23.0

Arayacheeppreecha et al. [15] 18 124 22.1

Pastuszak et al. [16] 29 744 42.3
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