

HIGH-LEVEL SYNTHESIS IMPLEMENTATION OF HEVC 2-D DCT/DST ON FPGA

Panu Sjövall, Vili Viitamäki, Jarno Vanne, Timo D. Hämäläinen

Laboratory of Pervasive Computing

Tampere University of Technology, Finland

{panu.sjovall, vili.viitamaki, jarno.vanne, timo.d.hamalainen}@tut.fi

ABSTRACT

This paper presents the first known high-level synthesis

(HLS) implementation of integer discrete cosine transform

(DCT) and discrete sine transform (DST) for High Efficiency

Video Coding (HEVC). The proposed approach implements

these 2-D transforms by two successive 1-D transforms using

a well-known row-column and Even-Odd decomposition

techniques. Altogether, the proposed architecture is

composed of a 4-point DCT/DST unit for the smallest

transform blocks (TBs), an 8/16/32-point DCT unit for the
other TBs, and a transpose memory for intermediate results.

On Arria II FPGA, the low-cost variant of the proposed

architecture is able to support encoding of 1080p format at 60

fps and at the cost of 10.0 kALUTs and 216 DSP blocks. The

respective figures for the proposed high-speed variant are

2160p at 30 fps with 13.9 kALUTs and 344 DSP blocks.

These cost-performance characteristics outperform

respective non-HLS approaches on FPGA.

Index Terms— High Efficiency Video Coding (HEVC),

Discrete cosine transform (DCT), Discrete sine transform

(DST), High-level synthesis (HLS), Catapult-C, Field-
programmable gate array (FPGA)

1. INTRODUCTION

The latest video coding standard, High Efficiency Video

Coding (HEVC) [1], has been developed to meet the

transmission and storage needs of modern video applications.

Compared with its predecessor standard AVC [2], HEVC is

able to halve the bit rate for the same subjective quality, but

its encoding complexity tends to be at least doubled in

practical encoders.
 HEVC adopts the conventional hybrid video coding

scheme (inter/intra prediction, transform coding, and entropy

coding) [3] from the prior MPEG/ITU-T video coding

standards. As a new feature, the coding structure of HEVC

has been extended from a traditional macroblock concept to

an analogous block partitioning scheme that supports coding

tree units (CTUs) of up to 64 × 64 pixels [4].

This paper focuses on HEVC transform coding for which

the sizes of transform blocks (TBs) and associated core

transform matrices can be defined as N × N, where N ϵ {4, 8,

16, 32}. Extending the sizes of transform matrices from that

of AVC to N > 8 improves coding gain by around 5-7% but

it also introduces the majority of complexity overhead in

HEVC transform coding [5].

HEVC specifies two-dimensional (2-D) integer discrete

sine transform (DST) for intra coded luminance TBs of size

4 × 4 pixels [6] and 2-D integer discrete cosine transform

(DCT) for all other TBs [7]. Both of these 2-D transforms are

separable so they can be computed by applying two N-point

1-D transforms first row-wise and then column-wise [5]. This

indirect approach is called a row-column decomposition

technique and it is typically utilized by software [8]-[9] and
hardware implementations [10]-[16] of HEVC DCT/DST.

This work focuses on HEVC DCT/DST implementations

on FPGA. Contrary to previous works [12]-[16], our proposal

does not use traditional hardware (HW) description

languages (HDLs), but High-Level Synthesis (HLS) [17]

which is an emerging approach for raising the abstraction

level in HW description. HLS is a way of using well-known

programming languages such as C and C++ to describe the

designs at behavioral level and automatically generating the

HDL from it. This way, the code is more readable, design and

verification times are shorter, and the design reusability is far

better than with handwritten HDL equivalents.
To the best of our knowledge, this is the first paper to

describe an HLS implementation for HEVC DCT/DST. The

proposed designs include low-cost and high-speed variants of

the 8/16/32-point DCT unit for N ϵ {8, 16, 32} and a separate

4-point DCT/DST unit for N = 4. They are all implemented

on Arria II FPGA using Catapult C [18] HLS tool.

The rest of this paper is organized as follows. Section 2

describes the hardware-oriented DCT/DST algorithm

implemented in this work. Section 3 proposes our HLS

implementations for low-cost and high-speed DCT/DST

computation. In Section 4, the proposed HLS
implementations are compared with handcrafted prior-art.

Section 5 concludes the paper.

2. 2-D INTEGER DCT/DST ALGORITHMS IN HEVC

In this work, the C implementations of DCT and DST

algorithms are obtained from the open source Kvazaar HEVC

encoder [8]. Basically, Kvazaar implements the same

DCT/DST functionality than HEVC reference encoder (HM)

[9] but the hardware-oriented C source code of Kvazaar

provides a better starting point for HLS.

2.1 Even-Odd decomposition algorithm

In HEVC encoder, DCT and DST are used to convert spatial-

domain residual blocks into transform-domain coefficient

matrices. A well-known row-column algorithm [5] executes

these 2-D transforms with separable 1-D transforms in two

consecutive stages. An N-point transform is first applied 1) to

each row of a residual block of size N × N to generate an

intermediate matrix of size N × N; and then 2) to each column

of the intermediate matrix to generate a final transform

coefficient matrix of size N × N.

The number of arithmetic operations can be further
reduced by implementing these 1-D transforms with Even-

Odd decomposition algorithm, a.k.a., Partial Butterfly

algorithm [5]. It decomposes an input and core transform

matrices of size N × N into two matrices of size N/2 × N/2

according to even and odd rows/columns, respectively. The

core transform matrices for each N (CN) are specified in [7].

Now, an N-point transform can be computed for even and odd

cases separately with two N/2-point transforms.

For a residual vector X = [x(0), x(1), …, x(N-1)], the even

and odd vectors, E = [e(0), e(1), …, e(N/2-1)] and O = [o(0),

o(1), …, o(N/2-1)], can be computed as

𝑒(𝑖) = 𝑥(𝑖) + 𝑥(𝑁 − 1 − 𝑖) (1)

𝑜(𝑖) = 𝑥(𝑖) − 𝑥(𝑁 − 1 − 𝑖) (2)

where i = 0, 1, …, N/2 - 1. The output vector Y = [y(0), y(1),

…, y(N-1)] of 1-D transform coefficients could be directly

obtained by multiplying the vectors E and O by the associated

transform matrices at this stage. However, the arithmetic

operations can be further reduced by applying decomposition

recursively. In this approach, the largest transform matrix
also embeds the smaller transform matrices.

Fig. 1 depicts the phases of Even-Odd decomposition for

N = 32. First, the vectors E and O of size 16 are computed

according to (1) and (2). The latter is an input to C32 × O

multiplication and the former is recursively decomposed into

smaller even and odd vectors as in (1) and (2), i.e., the vector

E is divided into EE and EO vectors of size 8. The vector EO

is multiplied by C16 whereas EE is decomposed into EEE and

EEO vectors of size 4, and EEE to EEEE and EEEO vectors

of size 2. EEO is multiplied by C8, EEEO by C4/O, and

EEEE by C4/E. The corresponding structure can be used for

all N by starting at depth (log2N) - 1.

2.2 Proposed hardware-oriented algorithm optimization

In the case of 8-bit video, the residual vector X contains

9-bit signed integers for which the original Even-Odd

decomposition algorithm produces 9 + (log2N + 6) –bit signed
results [5] without any truncations. Our motivation is to

optimize the algorithm for 18 × 18 multipliers on Arria II

FPGA due to which 19-bit (N = 16) and 20-bit (N = 32) odd

and even values are saturated to 18-bit signed values.

The impact of this modification was tested with HM 16.12

using test sequences from HEVC common test conditions

(classes A-F) [19] and the average BD-rate overhead is

0.002%. This negligible loss is preferred to using 20 × 20 –

bit multipliers that would increment the number of needed

DSP blocks fourfold.

3. PROPOSED DCT/DST ARCHITECTURE

The proposed DCT/DST architecture is composed of 1) an

8/16/32-point DCT unit for TBs of size 8 × 8, 16 × 16, and

32 × 32; 2) a separate 4-point DCT/DST unit for TBs of size

4 × 4; and 3) a transpose memory for intermediate results.

3.1 8/16/32-point DCT unit

Fig. 2 shows the block diagram of the 8/16/32-point DCT

unit. It contains a control block (Ctrl8/16/32), 3-stage pipeline

for DCT computation, and a transpose memory.
 A 288-bit input to the Ctrl8/16/32 block is for up to 32 9-bit

signed residuals. The Ctrl8/16/32 block sign extends each 9-bit

residual to 16 bits and passes them through the 3-stage DCT

computation via a 512-bit connection. The mapping of the

v32[k][j] = c32[k][j] × o[j]

k, j ϵ [0, 15]

v16[k][j] = c16[k][j] × eo[j]

k, j ϵ [0, 7]

v8[k][j] = c8[k][j] × eeo[j]

k, j ϵ [0, 3]

v4[k][j] = c4/E[k][j] × eeee[j]

v4[k+2][j] = c4/O[k][j] × eeeo[j]

k, j ϵ [0, 1]

y[i] += v32[k][j]

i ϵ [16, 31]; k, j ϵ [0, 15]

y[i] = (y[i] + round) >> shift

y[i] += v16[k][j]

i ϵ [8, 15]; k, j ϵ [0, 7]

y[i] = (y[i] + round) >> shift

y[i] += v8[k][j]

i ϵ [4, 7]; k, j ϵ [0, 3]

y[i] = (y[i] + round) >> shift

y[i] += v4[k][j]

i ϵ [0, 3]; k ϵ [0, 3]; j ϵ [0, 1]

y[i] = (y[i] + round) >> shift

D
C

T
 s

ta
g

e
2

M
u

lt
ip

li
ca

ti
o

n

D
C

T
 s

ta
g

e
1

D
ec

o
m

p
o

si
ti

o
n

e[i] = x[i] + x[31-i] o[i] = x[i] - x[31-i] i ϵ [0, 15]

ee[i] = e[i] + e[15-i] eo[i] = e[i] - e[15-i] i ϵ [0, 7]

eee[i] = ee[i] + ee[7-i] eeo[i] = ee[i] - ee[7-i]

i ϵ [0, 3]

eeee[i] = eee[i] + eee[3-i]

eeeo[i] = eee[i] - eee[3-i]

i ϵ [0, 1]

O

EO

EEO

EEEE

D
C

T
 s

ta
g

e
3

A
cc

u
m

u
la

ti
o

n

Depth 1

Depth 2

Depth 3

Depth 4

V4 V8 V16 V32

Y

X

E

EE

EEE

EEEO

Figure 1. Even-Odd decomposition algorithm (N = 32).

Even-Odd decomposition algorithm to three DCT stages is

illustrated in Fig. 1.

The DCT stage 1 performs the recursive Even-Odd

decomposition for the 16-bit residuals and computes all even

and odd vectors (E/O, EE/EO, EEE/EEO, and EEEE/

EEEO). It is implemented in C code as a recursive template

function which is synthesized by Catapult-C to an adder tree
The DCT stage 2 is for multiplication between transform

matrices and odd vectors (C32 × O, C16 × EO, C8 × EEO,

C4/O × EEEO, and C4/E × EEEE). On FPGA, this

functionality is mapped to multipliers of DSP blocks to save

logic cells. Catapult-C facilitates instantiation of DSP blocks

in C code by providing a library for DSP blocks as C++

templates for different FPGA architectures.

The DCT stage 3 finalizes the 1-D transform by

accumulating the individual products of multiplication and

scales the coefficients to 16 bits.

The 8/16/32-point DCT unit performs the 2-D DCT in two
successive passes and the intermediate data is stored in the

transpose memory. The latency for both passes is 3 cycles

because of the DCT pipeline. Finally, the 2-D 16-bit

transform coefficients (tcoeffs) are sent via 512-bit output.

This work proposes two alternate 8/16/32-point DCT

units with different parallelization strategies:

1) A low-cost unit processes N residuals (one row/column of

a TB) in parallel. In this unit, the residuals enter the DCT

stage 1 at depth (log2N) - 1. In addition, the DCT stages 2

and 3 operate at double clock frequency to be able to

compute the largest TB in two phases with the reduced

number of DSP blocks. This approach halves the width of
the largest multiplier array, without increasing latency.

2) A high-speed unit processes 32 residuals (32/N

rows/columns of a TB) in parallel so that a constant data

rate with full hardware utilization is achieved. In this unit,

the residuals enter the DCT stage 1 at depth 4. In addition,

all DCT stages operate at the same frequency and the

DCT stage 2 contains a full-width multiplier array.

3.2 4-point DCT/DST unit

Fig. 3 depicts a 4-point DCT/DST unit that operates in

parallel with the 8/16/32-point DCT unit. A 144-bit input to

the Ctrl4 block accepts a single 4 × 4 residual block at a time.

The 9-bit residuals are sign extended to 16-bits and passed

row-wise to the respective four DCT/DST blocks. The

intermediate matrix is ready in one cycle after which it is sent

back to the same DCT/DST blocks by picking the

intermediate values from the registers in a transposed order.

After these two passes, the unit outputs 16 16-bit coeffs.

A separate 4-point DCT/DST unit increases the occupied

resources on FPGA. However, this overhead is compensated
by better load balancing since the share of 4 × 4 TBs is

relatively high compared to the other TBs.

3.3 Transpose memory

Fig. 4 depicts the structure of the transpose memory used in

the 8/16/32-point DCT unit. On FPGA, it is made of 32 dual-

port on-chip memory modules without registers. Each

memory module has a 512-bit write (N coefficients) and a 16-

bit (1 coefficient) read port. The structure supports block

transpose for N ϵ {8, 16, 32}.
The memory utilization of the low-cost 8/16/32-point

DCT unit depends on N. The intermediate matrix is written to

the memory modules row by row and the module number is

incremented from 0 to N accordingly. The right module is

identified by a one-hot write enable (wen) signal. A matrix is

read from the memory column by column by accessing a

single coefficient per each module and incrementing the read

address (raddr) by one after each read (from 0 to N).

The high-speed 8/16/32-point DCT unit utilizes the whole

memory for each N. To enable simultaneous reading of 32/N

columns of the matrix without any access conflicts, the same

rows are written to (32/N)2 modules. Let us use N = 8 as an
example. The first four rows are written in the modules 0-3,

8-11, 16-19, 24-27 after which the last four rows are written

to the remaining modules respectively. Eight columns can

now be read in two cycles by using raddr and offset.

4. PERFORMANCE ANALYSIS

Table 1 reports the cost-performance characteristics of the

proposed and the most competitive prior-art FPGA

implementations. The comparison is simplified by deriving

Dual-port RAM 0

Dual-port RAM 1

Dual-port RAM 31

512 data

16

16

16

offsetwen

. . .

...waddr

data 512 raddr

. . .

Figure 4. Block diagram of the transpose memory.

Ctrl8/16/32

DCT stage 1

Decomposition

DCT stage 2

Multiplication

DCT stage 3

Accumulation
512

288 residuals

Transpose memory
512 tcoeffs

512

Figure 2. Block diagram of the 8/16/32-point DCT unit.

DCT/DST 0

DCT/DST 1

DCT/DST 2

DCT/DST 3

Ctrl4

64

64

64

64

64

64

64

144

64
64

64

64
residuals

64

256 tcoeffs

Figure 3. Block diagram of the 4-point DCT/DST unit.

normalized performance and cost figures for the

architectures: sample rate as million tcoeffs processed per

second (Mtcoeffs/s) and performance-cost ratio as logic cells

per sample rate (cells/(Mtcoeffs/s)). The works in [12], [13],

[15] only implement the 1-D transform. For fair comparison,
their sample rates have been scaled (divided by two) to

correspond to those of the 2-D transform architectures.

4.1 Proposed architecture

Table 1 tabulates the results for the proposed low-cost and

high-speed variants of 8/16/32-point DCT units and for the 4-

point DCT/DST unit separately. Altogether, the combined

resource usage of our proposal is (4.2 + 5.8) kALUTs = 10.0

kALUTs and 216 DSP blocks in the low-cost case and (8.1 +

5.8) kALUTs = 13.9 kALUTs and 344 DSP blocks in the
high-speed case. The low-cost approach uses 28% less

ALUTs and 37% less DSP blocks than the high-speed one

which has, on the other hand, almost 2.4× better sample rate.

The sample rate of our low-cost solution is adequate for

transform coding of 4:2:0 1080p (1920 × 1080) video at 60

fps. The speed is computed for the worst case where the

DCT/DST is needed once for all TBs in a CTU. It is also

assumed here that there are always residual blocks available

for the architecture. A practical HEVC intra/inter encoder can

meet these conditions by coding successive CTUs in parallel

without rate-distortion optimization. Respectively, the high-

speed case is for 4:2:0 2160p (3840 × 2160) video at 30 fps.
On FPGA, the functionality of the proposed design was

validated as a part of Kvazaar HEVC intra encoder.

4.2 Comparison with prior-art

The architecture proposed by Jeske et al. [12] is limited to

N = 16 whereas the work of Darji et al. [13] supports all TBs

but results are given for N = 16 only. Hence, the features of
these two works are not directly comparable with our

proposal. Furthermore, Zhao et al. [14] support all TB sizes

but with non-competitive cost-performance figures.

The remaining approaches make also use of DSP blocks

whose impact on the overall logic cell count is taken into

account in Table 2. For the proposed designs, the total cell

count is obtained by synthesizing them without the DSP

blocks. The same cost per DSP block (72.5 ALUTs) is used

when estimating the respective count for the related works.

The fastest prior-art solution is presented by

Arayacheeppreecha et al. [15] whose overall cell count is also

the smallest. However, including the missing DST unit and
transpose memory would add overhead in their cost-

performance figures. Furthermore, the cell counts of our both

architectures are smaller if DSP blocks are available. Our

high-speed architecture is also almost 1.5× faster.

Pastuszak et al. [16] present an approach similar to ours

by implementing separate units for N = 4 and N ϵ {8, 16, 32}.

However, our low-cost architecture is slightly faster and

consumes still 14% less resources. Our high speed approach

needs around 31% more resources but is around 2.4× faster.

5. CONCLUSIONS

This paper presented the first known HLS implementation for

HEVC 2-D DCT/DST on FPGA. The presented architecture

implements a hardware-oriented even-odd decomposition

algorithm whose C code is synthesized to HDL with HLS. A

low-cost variant of the architecture is able to support 1080p

video up to 60 fps and a high-speed variant 2160p video up

to 30 fps. HLS reduces design and verification times over

traditional handwritten approaches. This work shows that

these benefits do not come at the cost of implementation

overhead but our HLS solution outperforms the prior-art

approaches in terms of performance and cost.

6. ACKNOWLEDGMENT

This work was supported in part by the European Celtic-Plus

Project 4KREPROSYS and the Academy of Finland

(decision no. 301820).

Table 1. Comparison of the proposed and related work.

Architecture Transform N FPGA DSPs Freq. Mtcoeffs/s Cells/(Mtcoeffs/s)

Proposed (low-cost) 2-D DCT 8/16/32 Arria II 4 263 ALUTs 216 100 MHz 515 8.3

Proposed (high-speed) 2-D DCT 8/16/32 Arria II 8 114 ALUTs 344 160 MHz 1 224 6.6

Proposed (4×4) 2-D DCT/DST 4 Arria II 5 775 ALUTs 0 160 MHz 1 280 4.5

Jeske et al. [12] 1-D DCT 16 Stratix III 5 168 ALUTs 0 88 MHz *701 7.4

Darji et al. [13] 1-D DCT 16 Spartan 3E 3 419 LEs 0 48 MHz *384 **7.1

Zhao et al. [14] 2-D DCT 4/8/16/32 Cyclone IV 40 541 LEs 0 125 MHz 238 **136.3

Arayacheeppreecha et al. [15] 1-D DCT 4/8/16/32 Spartan 3A 15 677 LEs 77 205 MHz *820 **15.3

Pastuszak et al. [16] 2-D DCT 8/16/32 Arria II 6 928 ALUTs 256 100 MHz 512 13.5

Pastuszak et al. [16] 2-D DCT/DST 4 Arria II 4 256 ALUTs 0 100 MHz 400 10.6

*Scaled sample rate (divided by two) **1.25 × LE = ALUT

Logic cells

Table 2. Logic cells (DSP blocks replaced by logic).

Architecture Cells w/o DSPs Cells/(Mtcoeffs/s)

Proposed (low-cost) 25 698 36.3

Proposed (high-speed) 38 829 23.0

Arayacheeppreecha et al. [15] 18 124 22.1

Pastuszak et al. [16] 29 744 42.3

7. REFERENCES

[1] High Efficiency Video Coding, document ITU-T Rec. H.265

and ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Apr.
2013.

[2] Advanced Video Coding for Generic Audiovisual Services,
document ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC),
ITU-T and ISO/IEC, Mar. 2009.

[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand,
“Overview of the high efficiency video coding (HEVC)
standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1649-1668, Dec. 2012.

[4] I. K. Kim, J. Min, T. Lee, W. J. Han, and J. Park, “Block
partitioning structure in the HEVC standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1697-1706,
Dec. 2012.

[5] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M.

Sadafale, “Core transform design in the High Efficiency Video

Coding (HEVC) standard,” IEEE J. Select. Topics Signal
Process., vol. 7, no. 6, pp. 1029-1041, Dec. 2013.

[6] A. Saxena and F. C. Fernandes, “CE7: Mode-dependent
DCT/DST without 4×4 full matrix multiplication for intra
prediction,” Document JCTVC-E125, Geneva, Switzerland,
Mar. 2011.

[7] A. Fuldseth, G. Bjøntegaard, M. Budagavi, and V. Sze “Core
transform design for HEVC,” Document JCTVC-G495,
Geneva, Switzerland, Nov. 2011.

[8] Kvazaar HEVC encoder [Online]. Available:
https://github.com/ultravideo/kvazaar

[9] Joint Collaborative Team on Video Coding Reference
Software, ver. HM 16.3 [Online]. Available:
http://hevc.hhi.fraunhofer.de/

[10] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, and C. Yeo,
“Efficient integer DCT architectures for HEVC,” IEEE Trans.
Circuits Syst. Video Technol., vol. 24, no. 1, pp. 168-178, Jan.

2014.
[11] G. Pastuszak, “Hardware architectures for the H.265/HEVC

discrete cosine transform,” IET Image Process., vol. 9, no. 6,
pp. 468-477, 2015.

[12] R. Jeske, J. C. de Souza, G. Wrege, R. Conceição, M. Grellert,
J. Mattos, and L. Agostini, “Low cost and high throughput
multiplierless design of a 16 point 1-D DCT of the new HEVC
video coding standard,” in Proc. Southern Conf.

Programmable Logic, Bento Goncalves, Spain, Mar. 2012.
[13] A. D. Darji and R. P. Makwana, ”High-performance

multiplierless DCT architecture for HEVC,” in Proc. Int. Symp.
VLSI Design and Test, Ahmedabad, India, Jun. 2015.

[14] W. Zhao, T. Onoye, and T. Song, “High-performance
multiplierless transform architecture for HEVC,” in Proc.
IEEE Int. Symp. Circuits Syst., Beijing, China, May 2013, pp.
1668-1671.

[15] P. Arayacheeppreecha, S. Pumrin, and B. Supmonchai,
“Flexible input transform architecture for HEVC encoder on
FPGA,” in Proc. Int. Conf. Electrical Engineering/
Electronics, Computer, Telecommunications and Information
Tech., Hua Hin, Thailand, Jun. 2015.

[16] G. Pastuszak and A. Abramowski, “Algorithm and architecture
design of the H.265/HEVC intra encoder,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 1, pp. 210-222, Jan.
2016.

[17] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An
introduction to high-level synthesis,” IEEE Des. Test. Comput.,
vol. 26, no. 4, pp. 8-17, Jul.-Aug. 2009.

[18] Catapult: Product Family Overview [Online]. Available:
http://calypto.com/en/products/catapult/overview

[19] F. Bossen, “Common test conditions and software reference
configurations,” Document JCTVC-J1100, Stockholm,
Sweden, Jul. 2012

