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Abstract. This paper reports governance practices of three profit ori-
ented companies that develop OSS software with the help of their respec-
tive open development communities. We explore how the companies allow
development contributions from external stakeholders, and what knowl-
edge they let out of their internal software development activities. The
results lay ground for further research on how to organize openness of
the software development process in hybrid setups where the needs of
different stakeholders are partly competing - yet complementary.
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1 Introduction

Open Source Software (OSS) projects are based on peer-production, self- organi-
zation of individuals, and consensus-based decision making [1]. They offer equal
opportunities for both long-term members and newcomers in contributing to the
development of the software product [2]. In the OSS environment, interactions
and development decisions can take place in the absence of market-based or man-
agerial models [1]. Still, active communities that are independent of commercial
influence are rare. When companies engage with OSS communities, their corpo-
rate direction must be aligned to that of the community’s peer production-based
approach [3]. In this hybrid environment, the Bazaar truly meets the Cathedral
[4], and the forces that drive the collaboration are partly defined by both.

Hybrid OSS collaborations can form around various kinds of software prod-
ucts [5], emerging organically when companies become interested in existing
OSS projects or when the projects are initiated by companies themselves by
releasing software source code out with an OSS-compliant license. This can be
done with the aim of attracting external contributors, increasing the innovative
capability of the company or by attracting a niche market that could later be
expanded [3,6]. Engagement with OSS communities can be a means for strength-
ening brand awareness [3]. The strategy can be especially important for small
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and medium sized companies, helping to diversify their product offerings, taken
that the companies have sufficient resources and technological competencies for
building effective and reciprocal collaborations [7]. As Hybrid OSS communi-
ties consist of a mix of companies and independent developers with varying
motivations [8], finding a mutually beneficial collaboration model poses various
challenges.

Several calls exist for further research on management practises in the hybrid
OSS arena (De Noni et al., 2013) [9]. Lin̊aker et al. (2015) pinpointed the gov-
ernance structures in open environments and the openness of the software prod-
uct development process as interesting topics for future endeavors [10]. Hussan
et al. (2016) invite research on practical implementations of the software devel-
opment process to complement the current work in the academic landscape
[11]. To address these calls, we investigate how three profit-oriented companies
develop OSS-based products with their respective open source software develop-
ment communities. We compare how they allow external contributors to access
their development process and what knowledge they let out of the priorities and
decisions that shape the future of the software. With this, we hope to provide
new understanding on how the hybrid OSS development model can be formed
and managed at the practical level and which factors can be used as design
elements when organizing the community’s collaboration model.

The rest of the paper is structured as follows. Section 2 describes typical
characteristics of hybrid OSS communities, shedding light on the different styles
of governance that companies can employ towards their communities. Section 3
presents our research approach for studying the collaboration practices of the
case companies that are introduced in Sect. 4. Section 5 presents our findings,
whereas Sects. 6 and 7 discuss and conclude the work.

2 Previous Work

Governance of OSS projects involves the means that are in place to steer the
efforts of an autonomously working developer community [12]. The governance
structure of a community should support collaboration in between the stakehold-
ers, to enable efficient work coordination, and to create an environment where
motivation of participants is fostered so that the community can operate in a
sustainable manner [12]. It is not straightforward to create a productive and
happy community - its boundaries and affordances must be consciously designed
and managed [3]. This can take form in different governance configurations that
can be mandated from a governing organization or emerge and evolve slowly as
a result of a collective learning process [9].

While in community-driven projects decision-making power is distributed
among the community’s members, in hybrid set-ups a strong leader for the devel-
opment project can emerge in the form of a non- or for-profit organization. This
host can act as a sponsor, providing for the infrastructure needed for developing
the software [8]. This role allows the host to control the community’s activities
to an extent [6]. Here, the host entity can define on what premises stakeholders
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can hold various positions, as well as what privileges and responsibilities these
roles bring [6]. Implementing these decisions requires careful consideration of the
versatile motivations of the contributors: if the community’s members feel their
values are being compromised or that their opinions are not being heard, their
motivation can deteriorate [13,14]. Distributing knowledge and decision-making
power aptly can help to achieve a symbiotic state where the community sees
the company as an active co-developer of the software, rather than a “parasitic”
business owner that outsources its selected tasks to the crowd [15].

2.1 Policies and Practices

The governance model of a community can vary from free-form and spontaneous
to institutionalized, well defined and hierarchical [16]. While the history of an
OSS project is reflected in the ways the community functions, fundamentals
of how the community can form and evolve are largely defined by the license
of the software source code [6]. A fully open licensing strategy increases the
project’s ability to attract new developers [6], increasing the attractiveness of
the software product in the eyes of its potential users [17]. However, if the open
development community is strong, this strategy may risk the host’s influence
on the software product [6,13], possibly creating an unclear legal relationship
between the company and its contributors [18]. This risk can be managed by
keeping selected software assets proprietary to the company, creating a “gate”
for the external developers [13]. This allows the company to limit the open
community’s possibilities to modify and re-use the software and also to choose
in which aspects of the development process it wants the open community to
participate in [13].

In autonomous OSS projects, a set of freely accessible online tools are used to
coordinate work, discuss its goals and deliver contributions [6,19]. These socio-
technical systems constitute ‘boundary objects’ of the community, helping its
members to create personalized views on the status quo of the project. Princi-
ples according to which contributors should engage them can be implicitly known
and embedded in the functionality the software platforms provide. Also, written
guidelines and contributor agreements are used to establish how the commu-
nity should work and what culture it should be built upon. When the devel-
opment tools and related communications are openly accessible, the processes
of requirements engineering, quality assurance and release management become
transparent to the public. This, on its part, allows the external stakeholders to
understand and practically influence the decisions that shape the software prod-
uct. In this context, describing means for practical boundary-setting comprises
the main contribution of this paper.
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3 Research Approach

Case studies investigate phenomena in their natural context [20] and aim to
generate case-grounded theory that can be extended, confirmed, or challenged
through replication in future studies [20]. For this aim, we describe a mixed-
method case study of practices that three for-profit companies use in building
commercial OSS software in collaboration with their respective, hybrid developer
communities. With this, we aim at answering the following research questions:

– RQ1: How can a software process be organized to allow a hybrid OSS collab-
oration model?

– RQ2: What factors can be used to affect openness of the collaboration model?

West and O’Mahony (2008), emphasize the role of accessibility of tasks and
transparency of knowledge as important building blocks of the participation
architecture in OSS communities [6]. Inspired by this, a research instrument of
nine questions (See Table 1) was composed. First five questions (A–E) address
accessibility, whereas the four additional questions (F–I) address what knowledge
host companies let out of their internal development process.

Answers to these questions were sought by exploring of freely available online
documentation, such as the project’s wiki pages. Validity of the findings was eval-
uated by interviewing an employee of each case company, using the nine question
research instrument as a basis for semi-structured interviews. Each answer was
coded with a three-step scale from 0 to 2 where number zero represented that the
matter is unconditionally closed from the open community. Number one was set to
describe that the topic was open to the community to a limited degree. Number
two was set to represent that the matter is fully open to the development com-
munity to know about or act upon independently. This triangulation of sources
and viewpoints, is hoped to increase validity and fitness of the study design for
replication in different environments [20].

4 Case Companies

This study focuses on the collaboration practices of three profit-oriented com-
panies that base their businesses on products created in close collaboration with
OSS communities. We describe how the companies have arranged their software
development processes to allow receiving contributions from external stakehold-
ers. The first case company, Qt Company Ltd., acts as a single vendor for the Qt
software, a framework that can be used to develop applications for desktop com-
puters, embedded systems and mobile devices. The Qt project was established in
1991 and was first incorporated by its original developers in 1993. After several
commercial acquisitions, the current set-up emerged in 2014. Qt is distributed
as free1 commercial versions. While the source code of Qt is open for anybody
to view, the commercial license grants full rights to develop and disseminate

1 GPL, LGPLv3.
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proprietary Qt applications. The company offers support and complementary
software assets for its paying customers. Size of the community that develops
the Qt framework is approximately 400 persons while the number of application
developers ramps up to approximately a million.

The second case company, Vaadin Ltd. produces an application development
framework that can be used to build interactive web applications that run on most
operating systems and browsers. The software (Later: Vaadin) is offered with the
Apache 2.0 license. Itwas initially developed as an add-on for an existingOSSprod-
uct in 2002 from which an independent release was made in 2006. The development
project has since been hosted by a company that offers online training, consultancy
and sub-contracting of application projects. Development of Vaadin is dominated
by the host company, and an application developer ecosystemof approximately 150
000 individuals exists. This is complemented by a developer community which has
produced approximately 600 add-ons for the software.

Our third case is the Linux-based operating system Sailfish OS for mobile
devices. Its history originates from a software that was released from Nokia as
open source in 2011. The current host of Sailfish OS is Jolla Ltd., a startup that
sells both proof of concept mobile devices and distributor licenses for the OS.
The technical architecture of Sailfish OS is layered and parts of the software,
including user interface libraries, are proprietary to the host company. The rest
of the layers entail work from several OSS communities, such as Qt and the
independent, community-driven project Mer. The Mer software alone comprises
of packages that are using various FOSS licenses such as GPL, LGPL, BSD, and
MIT. The company uses several crowdsourcing tactics for acquiring feedback
about the quality of Sailfish OS. Even with only three projects, the cases reveal
the versatility of possible governance configurations.

5 Findings

The Qt, SailfishOS and Vaadin open source communities were found to share sig-
nificant similarities. For all, a central company acted as a host for the project,
sponsored development platforms and participated in development tasks. All
hosts advocated for dissemination of the software and arranged community-
building activities. In all cases, the host company controlled contents, scope and
timing of the software releases. All shared the practice of coupling an exter-
nal, peer production driven development community with a company internal
development process that was exposed to outsiders to a limited degree. Differ-
ences were found in which tasks external contributors can participate in and
which parts of the development process was transparent for outsiders. Table 1
and Fig. 1 summarize these differences.

5.1 Access to Development Tasks

Host companies welcomed code contributions from the open community to vary-
ing degrees. In the Qt project, any person could access the workflow coordination
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Table 1. Questions used for evaluating the collaboration models. 0 = The aspect is
closed/hidden from the open community. 1 = Open to the community to a limited
degree. 2 = The aspect is completely open to the community to know about or act
upon.

Qt Vaadin Sailfish

A Who can contribute to software code? 2 2 1

B Who can test code contributions? 2 2 1

C Who can accept code contributions? 2 0 1

D Who can verify defect reports? 2 1 1

E Who can impact prioritization of work requests 2 2 1

F Who knows about the integration process of code contributions? 2 2 1

G Who knows what is on the product roadmap? 1 1 0

H Who knows timing and content of releases? 1 1 0

I Who knows priorities of work issues? 2 0 0

Fig. 1. Comparison of the three models.

tool2 and assign oneself for a task. Also the tool that supported the code review
process3 was freely accessible. An approval from two humans was required for
accepting a code contribution. Typically the code reviewers were, but were not
required to be dedicated maintainers of the software. Partial automation of the
testing process facilitated the work of code reviewers.

Vaadin Ltd. presented a more restrictive approach. The work flow coordina-
tion tool4 was accessible for all, yet the company required code authors to write
extensive test cases for their submissions. From there, the code was reviewed by
dedicated employees of the host company. This arrangement limited community-
drivenness of the development process considerably.

Jolla Ltd. did not offer access to work flow coordination tools of the complete
Sailfish OS software. Instead it directed contributors to the Mer project’s issue

2 Jira.
3 Gerrit.
4 Git issues.
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management tool5. From there, developers themselves needed to identify which
part of the software’s architecture their improvement considered, which required
the developers to be moderately knowledgeable in terms of the software architec-
ture before being able to contribute. A significant part of the development process
was kept private by the host company, which did not let out knowledge about the
status of the code integration process. To yield input from non-technical users, the
company deployed a question and answer forum where users of the software could
report and triage defects related to the user experience of the software, yet without
any guarantees on the uptake or their work.

5.2 Influencing Development Priorities

As Qt and Vaadin received most of their requirements from users of their soft-
ware, their internal development efforts were directed towards fulfilling the needs
of their paying customers. In the Qt project, the openly accessible, detailed work-
flow management system6 made development priorities clearly distinguishable.
Development of Vaadin was largely carried out under the terms of the host com-
pany, however input for feature-level priorities were sought from the community
by voting on a pre-selected set of features. In the Sailfish project, the devel-
opment was driven by technical debts that become inherited from the software
architecture’s reliance on the external, independent OSS projects. The situa-
tion was largely focused on ensuring that the lower levels of architecture would
support decisions made for the proprietary user interface layer.

5.3 Becoming an Actionable Developer

Practices on who can accept code contributions varied in between the projects.
In the Qt project, both the core developer- and maintainer teams consisted of
stakeholders of many organizational affiliations. These roles could be achieved
through gaining individual merit and were open for anyone to pursue. In the case
of Vaadin, the role was considered to be open for the community members, yet
in practice the strict requirements for contributions made it very hard to enter
the role. In the case of Jolla, the MerOS -community was genuinely community
driven, welcoming many types of contributions from outsiders. However, the Mer
consisted only a fraction of the Sailfish OS, and the host company’s software
developers occupied the many of the key positions in the community.

6 Discussion and Implications

The various hybrid OSS collaboration models assumed by the companies reflect
the mission of the company and its business models. While origins of the project
plays a role in how a hybrid community’s governance model is built [21], licensing,

5 Bugzilla.
6 Jira.
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technical architecture and development tools provide a framework in which the
participation architecture of a community can be built [6]. Based on our study,
we can provide some implications for the factors that can be used to affect the
ways in which a host company can manage its boundaries in terms of accepting
contributions from open communities.

The participation of external stakeholders can be restricted by licensing [6]
or by regulating access to the source code by keeping selected software assets
proprietary to the company [13]. Employing a distributed repository strategy
proved effective in limiting the possibility of less knowledgeable hobbyists to take
up development tasks. Opportunities for becoming a developer can be limited to
a specific group of people by requiring a certain level of personal merit and initial
or complementary contributions. At an extreme, contributors may be subject to
a personal selection by members of the community or even by the host company
before becoming an actionable developer.

An important design factor is what tasks a certain role withholds and who are
allowed to perform them. Prioritization of tasks can at be the sole responsibility
of the host company, or of a selected group of people such as maintainers who
have gained their position through personal merit. At an extreme, prioritization
can be open to anybody who can access the socio-technical systems or it can be
acquired from unrelated, non-technical users by establishing e.g. online customer
communities. In all cases, the host company can always define which input from
the community it will use in its internal processes.

Community-drivenness requires a critical mass of external contributors [22].
This requirement can be eased by partial automation of the development process
such as requirements prioritization or quality assurance. Even though testing
and integration processes are supported with automation, it can be required
that the final decisions are made in consensus by humans. Limiting this set of
people provides a means for adjusting community drivenness of these processes.
In this context, strength of the initiation rite for acquiring a certain role could
be an interesting topic for future research.

Considering the level of openness: While the Qt company clearly pushed
openness to the extreme, its community was found to be the most mature of the
three we studied. While Qt started as a community-created project – although
arguably with business reasons to do so – the company-created Vaadin project
migrated to the open development model only after the it had gained a com-
petitive edge. Sailfish, the newest entrant to the OSS market, was found to be
very restricted when dealing with contributions that come from outside of the
company. Vaadin represented the middle ground, although they put even more
weight on the developers’ views regarding direction of development and matu-
rity of the product. In align with Schaarsmidt et al. [21], we find that these
company-created projects seemed to maintain more control when compared to
their community-driven counterparts.
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Limitations. This study dealt with three OSS development communities that
were selected to be as different as possible in terms of both age and purpose of
their software products. Therefore, the generalizability of the results is limited
and further research on projects that are both more similar in nature and of a
larger scale is required. The question of representativeness limits the possibilities
to generalize the study results. However, this limitation neither invalidates the
findings nor prevents future studies from replicating the approach to evaluate
whether they apply fully or partially in other types of hybrid OSS communities.

7 Conclusions

In this paper, we have investigated how hybrid OSS communities can be built
to acquire contributors from company -external individuals. These communities,
relying on open source software but mixing commercial and volunteer-based
activities in their operations, have become an important way to create software
systems for various contexts.

Based on the findings, it is clear that companies that use the hybrid OSS
development model can act in different ways, leveraging either closed or open
practices to support their business interests. A trend in the cases we have studied,
it seems as the community matures, the level of openness increases, fostering
community-driven peer production. However, the number of companies in the
study is far too low to propose conclusive results.

The role of the open development community and the principles according
to which individuals can meaningfully participate in the development are essen-
tial design factors of the hybrid OSS development model. How these should be
defined and managed requires careful consideration on how much knowledge and
influence should be released to the open development community, how different
roles and privileges can be gained and how autonomously the community should
be allowed to steer the development of the software product.
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