HW/SW Co-Design Toolset for Customization of
Exposed Datapath Processors

Pekka Jaaskeldinen, Timo Viitanen, Jarmo Takala, Heikki Berg

Abstract Customized processors are an interesting option for implementing soft-
ware defined radios; they bring benefits of tailored fixed function hardware while
adding new advantages such as reduced implementation verification effort and in-
creased post-fabrication flexibility. To reduce the engineering costs and the time-
to-market of platforms with new computing devices, the processor customization
process should be supported with automated design flows that include tools such
as automatically retargeting compilers, instruction-set simulators, and RTL genera-
tors. This chapter presents an open source processor co-design toolset that is based
on a computation resource oriented design methodology where the primary design
choices are the set of resources to include in the processor at hand, instead of focus-
ing on instruction encoding details. The toolset is based on a retargetable high-level
language compiler and a scalable exposed datapath template which support different
styles of parallelism available in applications. In addition to various published aca-
demic processor design examples for SDR algorithms, the tools have been used to
design and program processors that have been implemented down to silicon layout
level and integrated in commercial grade chips.

1 Introduction

It is nowadays common to integrate multiple different computing devices in a single
chip, each device serving a different application domain or accelerating a specific
part of an application. While specialized fixed function hardware accelerators have
been shown to bring performance and efficiency gains, designing and implementing
new designs has remained a high-cost exercise. In addition, programmable cores are

Pekka Jadskeldinen - Timo Viitanen - Jarmo Takala
Tampere University of Technology, Tampere, Finland, e-mail: firstname.lastname @tut.fi

Heikki Berg
Nokia Technologies, Tampere, Finland, e-mail: heikki.berg @nokia.com

2 Pekka Jadskeldinen, Timo Viitanen, Jarmo Takala, Heikki Berg

often favoured to fixed-function accelerators for their post-manufacture flexibility
(e.g., on-the-field bug fixes or algorithm updates) and their ability to reuse com-
pute hardware in case multiple algorithms can be efficiently mapped to the same
accelerator.

Customized processors provide a middle ground between fixed function accel-
erators and generic programmable cores. They bring benefits of hardware tailoring
to programmable designs, while adding new advantages such as reduced implemen-
tation verification effort. The hardware of customized processor is optimized for
executing a predefined set of applications, while allowing the very same design be-
ing used to run other, close enough routines by switching the executed software in
the instruction memory.

The processor hardware tailoring is dictated by the use case. In case a processor
is customized to execute a single application efficiently, but still support software-
based functionality updates, terms Application-Specific Instruction-set Processor
(ASIP) or Application-Specific Processor (ASP) can be used to describe the end
result. A customized processor can also be optimized for classes of applications
such as Software Defined Radio (SDR), in which case the term Domain-Specific
Processor (DSP) is more suitable.

In any case, the processor customization process is demanding due to the abun-
dance of different parameters in the design space to choose from, and very error-
prone, which results in high non-recurring engineering costs. Moreover, as the de-
sign process of customized processors is usually iterative in nature, porting the re-
quired software program codes to new processor variations needs either manual
assembly language program rewrites or updating the compiler so it can generate
assembly code for each new processor variant. One approach to simplifying the
processor customization process is to compose the processor from a set of com-
ponent libraries and other verified building blocks, thereby reducing the required
verification effort. The software porting problem can be alleviated by automatically
adapting software development Kits.

In the rest of this chapter, we describe TTA-Based Co-Design Environment
(TCE), an open source processor design and programming toolset based on a pro-
cessor template that efficiently supports Instruction-Level Parallelism (ILP). TCE
enables rapid design of high-level language programmable cores ranging from tiny
scalar microcontrollers to wide VLIW-style machines with a resource oriented de-
sign methodology that emphasizes the reuse of predesigned and preverified compo-
nents.

2 Exposed Datapath Processor Template

To implement a design and programming toolset for customized processors, the de-
sign space of the supported customized processor alternatives needs to be limited.
This is done by defining a processor template that describes the set of customization
parameters within which the processors can vary. The parameters drive the retarget-

HW/SW Co-Design Toolset for Customization of Exposed Datapath Processors 3

ing of the software development toolchain, most importantly the compiler and the
simulator. Here we have selected exposed datapath as one of the characteristics of
the architectural template. The exposed datapath means that some additional pro-
cessor datapath details are visible to the programmer or compiler such that the pro-
grammer can directly control the additional details. Such architectures have been
discussed earlier, e.g., MOVE [4], MOVE-Pro [6], FlexCore [13], STA [6], and
ELM [5].

The main focus of the TCE toolset is on energy-efficient data-oriented com-
puting scenarios. Therefore, compiler-controlled static structures are favored over
hardware-controlled dynamic structures whenever feasible. This can be seen in the
choice of the basis for the processor template of TCE which exploits transport trig-
gering paradigm in form of Transport Triggered Architectures (TTA) [11, 2].

TTA processors have a programmer-exposed interconnection (IC) network. A
program is defined as a set of move instructions between the ports of the datapath
components, including function units and register files. The operations are triggered
as a side effect of transporting data to designated function unit ports. Fig. 1 presents
an example TTA processor with five transport buses, i.e., five data transports can
be executed simultaneously. In this processor, each instruction contains five move
slots, where each slot specifies the data transport carried out in each bus. The figure
illustrates execution of an instruction with three parallel moves:

#4 — ALUO.i0.ADD;
LSU1.10 — ALUO.i1;
RFO.r1 — LSUO0.i10.STW

On the first transport bus, an immediate value is moved to input port O of the func-
tion unit ALUO. The immediate value is actually obtained from the immediate unit,
which has only one output port. The move carries also information about the op-
eration to be executed; opcode ADD is transported to function unit along with the
operand. The second bus transports an operand from load-store unit LSUT1 to the
input port 1 of the ALUO. The actual load from memory has been specified by one
of the previous moves and this move simply transports the result of the memory
access. The third bus is used to transport a value from output port 1 in register file
RFO to the input port O of the load-store unit LSUO. The third move contains opcode
indicating that the transported word is to be stored to memory. The actual store ad-
dress has been defined by another move to port 1 of the LSUO. The remaining two
buses are not used in the example instruction, thus they can be considered executing
a NOP.

Figure 1 shows that the instructions control the operation of each transport bus
through the instruction unit. The connection to each bus convoys control informa-
tion, e.g., the source and destination of the transport move, possible opcode for the
operation to be executed, etc. The function units are connected to the transport buses
with the aid of sockets. The interconnection network in our architectural template
consists of buses and sockets. The concept of socket is illustrated in Fig. 2; each port
of a function unit has a socket, which defines the connections to the buses. When the

4 Pekka Jadskeldinen, Timo Viitanen, Jarmo Takala, Heikki Berg

Data Memory Instruction Memory

N A A

)) Vector Instruction || Immediate Float
Functional Unit—>| LSU 0 LSU 1 LSU2 Unit Unit ALUA
Triggering Port instruction per bus
Socket - ’ #4 ->ALU0.i0.ADD
LSU1.10 >ALUO.i1
Transport Bus —— § RFO.rt ->LSU0.i0.STW
Connection——"~
Port
Integer Float Vector Boolean Integer Vector
RFO RF1 RF2 RF3 ALUO ALU2

Fig. 1: Example of a TTA processor instantiated from the template. In TTA, data
transports between components are explicitly programmed. The example instruction
defines move instructions for three buses out of five, performing an integer summa-
tion of a value loaded from a data memory with a constant while simultaneously
storing a previously computed value to memory.

control information in a bus indicates that the port is the destination for the current
move instruction, data from the bus is passed to the port. In similar fashion, data
from the source port is forwarded to the bus.

In TTAs, operation execution is a side result of operand transport; when operands
are available in the function unit, the operation is triggered. In this sense, the execu-
tion model reminds static data flow machines. The architecture template used here
defines that that one of the input ports is a trigger port and a move to this port trig-
gers the operation. Fig. 3 illustrates the concept; the trigger port is indicated by a
cross in the input port. A move to this port will latch data from the bus to trigger
register and the operation execution starts with operands from trigger port and other
operand registers; the function unit in Fig. 3 expects two operands, thus there is
one trigger register and one operand register. The operand to the operand register
can be moved by an earlier instruction. The operand can also be moved in the same
instruction as the trigger port move if there are enough buses available.

Function units can be pipelined independently, and there are several methods to
pipeline the function units in TTAs. In TCE, we use semi-virtual time latching [3]
where the pipeline is controlled with valid bits depicted in Fig. 3(b). The pipeline
starts an operation whenever there is a move to the trigger port, i.e., the o_load sig-
nal is active. The pipeline operation is controlled by valid bits, which imply that
a single pipeline stage is active only once for one trigger move. The result can be
read from the result register three instructions after the trigger move. However, the
pipeline operates only on the cycles when instructions are issued; if an external
or internal event has caused processor to be locked (glbl_lock signal is active), the
pipeline is inactive. The architectural template requires each operation in function

HW/SW Co-Design Toolset for Customization of Exposed Datapath Processors 5

| t_data 0_data r_data opcode |

o oo
B#o decode
B#3

a) B#4 b) B#0 B#2 B#3 B#0 B#1 B#3 B#1 B#2 B#4 control buses

Fig. 2: Principal socket interface for function units: a) high abstraction level repre-
sentation and b) structure. The result register in the output is optional.

units to have a deterministic latency such that the result read for the operation can be
scheduled properly. If the function unit faces an unexpected longer latency opera-
tion, e.g., a memory refresh cycle or a function unit has iterative operation of which
latency depends on the inputs, the unit can request the processor to be interlocked
(by activating the rgst_lock signal) until the on-going operation is completed.

SDR applications can often utilize a lot of computational parallelism in its var-
ious granularities, but at the same time their usage environment places limits to
the power consumption due to thermal design and battery constraints. Therefore, a
popular processor architecture choice for SDR applications is a static multi-issue
architecture with a simple control hardware. The traditional VLIW architecture ful-
fills these requirements by providing multiple parallel function units to support ILP
while not imposing the hardware complexity from out of order execution support.
The VLIW function units in SDR designs can also provide SIMD operations to ex-
ploit data level parallelism in the algorithm at hand, which together with ILP can
provide very high high operation per watt performance in SDR designs.

t_data o_data
o_load ,'””*i ******* B
tload __| frigger |L| operand |
opcode __. Y
P - C logic D

glbl_lock
rgst_lock .

C logic D)

pipeline register |

D)

1
I
I
|
1
pipeline register | 1
I
|
|
I
|
|
I
|
|
I

Fig. 3: Function units in transport triggered architecture: a) high-level abstraction
representation and b) principal block diagram.

6 Pekka Jadskeldinen, Timo Viitanen, Jarmo Takala, Heikki Berg

The use of the TTA paradigm to provide a more scalable alternative for tradi-
tional VLIW architectures has been studied extensively in [3]. One of the main
findings is that TTAs can support more ILP with simpler low-power register files
than “traditional” VLIWs because of the capability to route results directly between
function unit port registers, without accessing the larger general purpose register
files. In addition, the general ability to control the timing of the operand and result
data transports alleviates the parallel access requirements of the register files. The
simpler register files can remove the register file from the critical path and bring
savings in required chip area and power consumption.

The TTA instruction format resembles those of horizontal microcode program-
med architectures which are notorious for their poor instruction density. However,
our example designs and experiments indicate that the additional instruction bits due
to the exposed datapath control are negligible compared to the savings if the work-
load is data-oriented and the interconnection network is carefully optimized [14, 7].

The exposed datapath template also opens unique non-apparent opportunities.
For example, due to the explicit result transfers, the function units are indepen-
dently executing isolated modular components in the datapath. In the point of view
of processor design methodology, the modularity allows point-and-click style tailor-
ing of the datapath resources from existing processor component databases. It also
means the function units can have latencies and pipeline lengths from a single cycle
to no practical upper bound because the hazard detection hardware does not need
to account for the structural hazards resulting from concurrent completion of opera-
tion results. Likewise, there is no practical limit to the number of outputs produced
by operations. For example, there have been experiments where long latency fixed
function accelerators with tens of result words have been integrated to the processor
datapath in order to reduce accelerator communication and synchronization costs.

Using the TTA as a template in TCE means that it allows designing completely
new TTA processors from the scratch by allowing the user to define the sets of
basic TTA components to include. The customizable parameters are summarized in
Table 1. An interesting customizable aspect in TTA processors is the interconnection
network. As it is visible to the programmer, it enables carefully customizing the
connectivity based on the application’s need as will be discussed later in this chapter.
This can help in achieving implementation goals such as high clock frequency or
low power consumpion. Another useful feature is the support for multiple disjoint
address spaces: one can add one or more private address spaces for local memories
inside a core that can be accessed using address space type qualifier attributes in the
input C code.

3 Processor Description Formats

TCE uses several file formats and component libraries for setting the processor tem-
plate parameters for new designs. The roles of the different files and libraries are
designed to enhance processor design and verification effort reuse. These XML-

HW/SW Co-Design Toolset for Customization of Exposed Datapath Processors

Table 1: Configuration parameters in TCE’s processor template.

Register files
e number of register files
For each register file:

e number of registers
e width
e number of read/write ports

Function units
e number of function units
For each function unit:

operation set implemented by FU

number of input and output ports

width of the ports

resource sharing / pipelining

accessed address space (in case of a load-store unit)

Operation set For each operation:

number of operands

number of results

data type of the results and operands
operation state data

Instruction encoding
e number of instruction formats
For each instruction format:

e immediate (constant) support

Address spaces
e number of address spaces
For each address space:

e size
e address range
e the numerical id (referred to from program code)

Top level

e endianness

8 Pekka Jadskeldinen, Timo Viitanen, Jarmo Takala, Heikki Berg

based file formats are edited using graphical user interfaces without the toolset user
seeing the file contents, and if preferred, can be edited also using a text editor.

3.1 Architecture Description

An Architecture Description File (ADF) [1] stores the programmer-visible architec-
tural aspects of a designed processor, such as the number and type of register files
and function units, operation latencies and resource sharing of the operations inside
function units, and the connections between the processor components.

The function unit architectures described in an ADF file can refer to one or more
operation descriptions. An operation in TCE is a behavioral level abstraction sep-
arated from the function unit. Operation descriptions are stored in Operation Set
Abstraction Layer (OSAL) databases. The granularity of an OSAL operation can
range from basic operations to complex multioutput operations with internal state.

Operation descriptions in OSAL contain C++ or DAG-based models to simulate
the behavior of the operation in the processor simulator, and static metadata to drive
the high-level language compiler, such as the number of operands and results, the
semantics of the operations, whether the operation reads or modifies memory, or
has other effects to the program state. The automatically retargeting compiler needs
these properties together with the architecture data from the ADF.

OSAL and ADF enable processor design space exploration at the architectural
level. This allows fast exploration cycles with enough of modeling accuracy to drive
the selection of the components.

The separation of the concepts of a function unit (with programmer visible la-
tencies) and the behavioral operation descriptions is a key feature which enables
trial-and-error cycles with the operation set design without needing to describe the
operation candidates as detailed Register Transfer Level (RTL) descriptions.

3.2 Architecture Implementation

ADF and OSAL are not sufficient alone to implement the processor in hardware.
For example, each programmer-identical function unit or register file can be imple-
mented in multiple ways, emphasizing different goals such as small area or high
clock frequency.

Hardware implementation choices are defined using an Implementation Defini-
tion File (IDF). IDFs connect the architecture components described in ADF files to
component implementations stored in Hardware Databases (HDB). HDBs contain
RTL level VHDL or Verilog implementations of register files and function units,
along with their metadata. The component implementations can be easily reused in
future architectures, reducing the validation effort of new customized processors.

HW/SW Co-Design Toolset for Customization of Exposed Datapath Processors 9

4 HW/SW Co-Design Flow

Processor customization in TCE is usually conducted as a hardware-software co-
design process. The processor design is iterated by varying the processor template
parameters defined using the TCE file formats while adapting the software to better
exploit the features, such as by calling custom operation intrinsics or enhancing
parallelization opportunities from the program side.

The co-design process is supported by a set of tools, which are illustrated in
Fig. 4. Initially, the designer has a set of requirements and goals placed to the end
result. It is usual to have a real time requirement as the primary requirement, given
as a maximum run time for the programs of interest. A secondary goal can be to
optimize the processor for low power consumption or minimal chip area. In some
cases, there can be a strict area and/or power budget which cannot be exceeded, and
the goal is to design a processor that is as fast as possible and still goes below the
budget.

e ——
i Operation Set DH Hardware Databases|
Requirements PUGSAG

7Y

:
Che:cks UEsgi?s& o USES-—~ = — = m = mmmmmmmm oo ! Us:es
' !

(Architecture e — Retargetable Retargetable Processor
-Creates Customization Machine ADF Compiler Simulator RTL Generator
(ProDe) (tcecc) (ttasim/proxim) (ProGe)
HLL Program]

——————— (Creates '~ Target tech.
------------------------------------ Statistics Adds | 4 Sy?ﬁ e ioand |
\ i /

evaluation
Architecture design exploration loop NP S

J

Designer

sejeal)

sjen|ea- - -

A

Fig. 4: TCE processor customization flow.

The iterative customization process starts with an initial predesigned architec-
ture, which can be a minimal machine shipped with TCE that contains just enough
resources for the compiler to provide C programming language support for the de-
sign, or a previous architecture that is close to the placed targets, but needs further
customization to fully meet them.

4.1 Architecture Design Space Exploration

The designer can add, modify, and remove architecture components using a graph-
ical user interface tool called Processor Designer (ProDe). Each iteration of the
processor can be evaluated by compiling the software of interest to the architecture
using TCE’s retargetable high-level language compiler and simulating the resulting
parallel assembly code using an architecture simulator.

10 Pekka Jadskeldinen, Timo Viitanen, Jarmo Takala, Heikki Berg

The simulator statistics give the runtime of the program and the utilization of the
different datapath components, indicating bottlenecks in the design. The processor
simulator provides a compiled simulation engine for fast evaluation cycles, and a
more accurate interpretive engine for software debugging which supports common
software debugging features such as breakpoints.

The accuracy of the TCE processor simulator is at the instruction-set level, but
gives enough information to drive the architecture design process due to the static
TTA-based processor template. Because the instruction-set controls so fine details
of the processor as data transfers, the simulation is closer to a more detailed RTL
simulation, especially regarding the metrics of interest.

The architecture exploration cycle enables low effort evaluation of different cus-
tom operations. For a completely new processor operation, the designer describes
the operation simulation behavior in C/C++ to OSAL, estimates its latency in in-
struction cycles when implemented in hardware, and adds the operation to one of
the function units in the architecture. This way it is possible to see the effects of
the custom hardware to the cycle count, before deciding whether to include it in the
design or not. As the OSAL behavior description is C/C++, usually the designer can
just copy-paste the piece of program code that should be replaced by the custom
operation call to get it modeled.

4.2 Processor Hardware Generation

When a design point fulfilling the requirements has been found, or more accurate
statistics of a design point is needed, the designer uses a tool called Processor Gen-
erator (ProGe), which produces a synthesizable RTL implementation of the pro-
cessor. Thanks to the modular TTA template, the RTL generation is straightforward
and reliable; ProGe collects component implementations from a set of HDBs, pro-
duces the interconnection network connecting them, and the generates an instruction
decoder that expands the instructions to datapath control signals.

The designer has to implement only the new function units in VHDL or Ver-
ilog and add them to an HDB. Usually most of the more generic components in the
new processor designs are found in readily in previously accumulated HDBs, and
only the special function units that implement application-specific custom opera-
tions need to be manually implemented. To assist in the implementation process, a
tool is available to automatically validate the function unit implementation against
its architecture simulation model.

The generated RTL is fed to a standard third party synthesis and simulation flow.
This step generates more detailed statistics of the processor at hand, which can again
drive further iterations in the architectural exploration process. The detailed statis-
tics include timing; to verify the clock frequency target is met, chip area; to ensure
the design is not too large, and for low power designs, the power consumption when
executing the applications of interest.

HW/SW Co-Design Toolset for Customization of Exposed Datapath Processors 11

The detailed implementation level statistics map trivially back to the design ac-
tions at the architecture level. For example, the chip area can be reduced by re-
moving architecture components. Similarly, adding more pipeline stages to complex
function units, or reducing the connectivity of the interconnection network helps in-
creasing the maximum clock frequency.

5 Automated Architecture Design

We think that the best processor designs should involve some human designer effort
instead of attempting to completely automatize the process. After all, when describ-
ing a new architecture, what is actually being designed is a programmer-hardware
interface, a user interface of a kind. This applies especially to designs that will be
implemented with expensive ASIC processes, or are expected to be at least par-
tially assembly-programmed. Such designs are better to be iterated at least partially
manually in order to produce designs that are more understandable and logical for
programmers. We have found semiautomated design space exploration a good com-
promise in this matter; instead of aiming towards a fully automated processor design
process, the designer uses assisting tools for iterating different aspects of the design
at hand automatically.

One aspect of TTA designs that calls for automated architecture design support
is the interconnection network; connectivity between components in larger TTA de-
signs is hard to manage manually due to the huge space of options. Therefore, usu-
ally in the earlier phases of TCE design process the connectivity aspect is simply
ignored and a fully connected interconnection matrix is used in order to evaluate the
compute resource sufficiency. Only after the application of interest is saturated with
enough register file and function unit resources, the connectivity is pruned.

A redundant fully connected interconnection network can spoil TTA designs that
are usually otherwise very streamlined and energy efficient. In addition to increasing
the critical path, worsening the power consumption and expanding the required chip
area, the excessive connectivity results in bloated instruction words due to the large
number of sources and destinations to encode. Loose instruction words reflect in
larger instruction memory requirements and energy waste in instruction fetch and
decode.

TCE provides multiple automated design space exploration tools for iterating
the interconnection network. One of them, called Bus Merger [14], starts by cre-
ating a connectivity matrix similar to VLIW designs with full FU bypass network
connectivity (see Fig. 5). This network is then gradually reduced by merging buses
(producing a bus with a union of the connections) that are rarely used at the same
time for data transports, on each iteration evaluating the program to the new archi-
tecture using the compiler and the simulator. Finally, the original overly complex
VLIW-like register files are simplified, thanks to the reduced need for RF ports.

The greedy Bus Merger finds rather good application-specific ICs quickly for
VLIW-style designs, but might not be efficient for smaller architectures with a small

12 Pekka Jadskeldinen, Timo Viitanen, Jarmo Takala, Heikki Berg

12-port RF i
Y vy Yy vy 47 [revecsu] o (oo | [e
r T vall

2 ! Write- | ¢ o

Smux /48 Bypass network } back i
ilj ‘ il_j ;/-\LIJ; iLU;] <fmm37]
+JU + MUL + MUL +LSU ’ALU+MUL‘ ’ ALU ‘ ’BOOLRF‘ ’ s

I I I I

(@) (b)

Fig. 5: (a) An example 4-issue VLIW datapath with a fully connected FU bypass
network, and (b) the corresponding TTA architecture with equal connectivity.

number of equally highly utilized buses. Another option provided by TCE for au-
tomated connectivity optimization is Connection Sweeper. As the name suggests,
it works in a brute force fashion, sweeping the interconnection network in a trial-
and-error fashion, removing connections and testing the effect to the cycle count,
stopping when the performance degrades more than a given threshold. It first tries
to remove RF connections as they often reside in the critical path.

Other automated design assisting exploration tools in TCE include Simple IC
Optimizer, a connectivity optimizer that simply removes all unused connections, a
useful tool for FPGA softcore designs; Machine Minimizer, a brute force tool that
tries to remove components until the cycle count increases above a given threshold
(Machine Grower 1is its counterpart) and Cluster Generator, that helps to produce
clustered-VLIW style TTAs. The automated exploration tools can be called from
the command line, enabling a design methodology where the machine is partially
constructed from a starting point architecture using scripts or makefiles.

6 Programming Support

Optimizing the code for the designed processor manually using its assembly lan-
guage might be a last step taken after the processor design has been frozen and the
programmer wants to squeeze off the last loose execution cycles in the application
of interest. During the design process, however, the use of assembly is not feasible
due to the changing target; whenever the architecture is changed, the affected parts
of the assembly code would need to be rewritten. This would make the fast itera-
tive evaluation of different architecture parameters practically impossible, or at least
heavily restrict the practical number of evaluated architectures.

Other motivations for using high-level programming languages or intermediate
formats as the application description format is to hide the actual instruction-set

HW/SW Co-Design Toolset for Customization of Exposed Datapath Processors 13

(which is very low level in TTAs) from the programmer. This avoids constraining
new designs with legacy backwards compatibility issues, and the design process is
simplified because instruction encoding specifics are pushed to the background.

In our experience, the benefits from using the assembly language in compari-
son to relying on an HLL compiler often stem from the inability of the compiler
to extract adequate parallelism from the program description to utilize all the par-
allel processor resources, or from the inability to use complex custom operations
automatically to accelerate the program. TCE attempts to alleviate this by taking
advantage of, in addition to the usual C/C++ languages, the parallel OpenCL stan-
dard. The explicit and implicit parallelism of OpenCL C helps in the utilization issue
while the automatically generated OpenCL vendor extensions of the TCE compiler
can be used to execute custom operations manually from the source code [8].

Due to making the high-level programming of the designed processors a priority,
a key tool in TCE is its retargetable software compiler, tcecc. The compiler uses
the LLVM [10] project as a backbone and pocl [9] to provide OpenCL support. The
frontend supports the ISO C99 standard with a few exceptions, most of the C++98
language constructs, and a subset of OpenCL C.

(Sfandard LLVMt60ls™ "~~~ """ 77T T T T ITTTTY, \ |TCE code generation

: S —T S —
C/C++, Bitcode libs: LLVM Passes Operaton
OpenCL C libc (newlib), etc| desgrsl%t;f)ns

Architecture
i
|
i
i
b
|

i
1
i description
;
;
i gg::g:zr code LLVM bitcode COde LLVM opumlzer Idl Retargetable TTA backend E Parallel
i linker (whole program) ! TT)
i lang, llvm-gcc,) prog ,' A program

bitcode ' Instruction Register 1N
selector allocator target opts,‘ |

Instruction
scheduler +
TTA specific opts,

TTA
program

Fig. 6: tcecc compiler internals.

The main compilation phases of tcecc are shown in Fig. 6. Initially, LLVM’s
Clang frontend converts the source code into the LLVM’s internal representation.
After the frontend has compiled the source code to LLVM bytecode, the utility soft-
ware libraries such as libc are linked in, producing a fully linked self contained
bytecode program. Then standard LLVM IR optimization passes are applied to the
bytecode-level program, and due to it being fully linked, the whole-program opti-
mizations can be applied aggressively. The optimized bytecode is then passed to the
TCE retargetable code generation.

To make custom operation evaluation easier, the automatically retargeting back-
end has the facilities to exploit custom operations automatically. Custom operations
can be described in OSAL as data-flow graphs of more primitive operations, which

14 Pekka Jadskeldinen, Timo Viitanen, Jarmo Takala, Heikki Berg

the LLVM instruction selector automatically attempts to detect and replace in the
program code.

Complex custom operations, such as those that implement long chains of primi-
tive operations, or those that produce multiple results, often cannot be automatically
found from intermediate codes produced from high-level language programs. For
this, tcecc produces intrinsics that can be used manually by the programmer from
the source code.

For example, this C code snippet calls a custom operation called ’ADDSUB?’ that
computes both the sum and the difference of its operands in parallel and produces
them as two separate results:

int a, b, sum, diff;

_TCE_ADDSUB (a, b, sum, diff);

The actual processor described in ADF must then include at least one function
unit that supports the operation, one of which is triggered by code generated by
the compiler. If the programmer wants to restrict the operation to be triggered in a
specific function unit (making the source code more target specific in the process),
another intrinsics version can be used:

_TCEFU_ADDSUB ("ALU1", a, b, sum, diff);

This instructs the compiler to generate code to call operation ADDSUB in a
function unit referred to as ALU1 in the targeted ADF.

7 Layered Verification

Using a component library based processor design with automated RTL generation
is helpful in reducing implementation and verification effort. As the processors can
be composed of preverified function unit and register file implementations, the effort
required for new designs should reduce gradually as the databases are augmented
with new validated components. However, additional verification is still usually pre-
ferred to gain trust on the produced processor implementation.

The approach TCE takes to verifying the designs is shown in Fig. 7. It uses a
layered top-down approach where each level in the implementation abstraction hi-
erarchy is compared against the previous one. At the first level, the designer, who
uses a portable high-level language program as an application description, can im-
plement and verify the software functionality using a desktop environment and the
work station’s CPU. Printouts to standard output can be used to produce the initial
“golden reference” data.

Each layer of implementation abstraction can be compared to the golden refer-
ence data by including a standard output instruction in the processor architecture,
used to produce the output at the different levels. In RTL simulation, the function
unit implementation uses the VHDL or Verilog file printout APIs, and at the FPGA

HW/SW Co-Design Toolset for Customization of Exposed Datapath Processors

Printout HLL Processor Bus Trace
Verification C, C++, OpenCL Verification
Reference Desktop

Printout Execution

Desktop
Execution

\
Console Architecture Reference
Printout Simulation Output
A\

Simulation Simulation
Printout RTL Simulation Output
Console System Execution
Printout Simulation Output

Fig. 7: Verification flow.

prototyping stage it may write to a JTAG-UART console. Further verification can
be done by comparing bus traces which contain values in each processor transport
bus at each instruction cycle.

Finally, the core is integrated to a system level model. TCE provides facilities
to help producing project files and other integration files to different FPGA flows.
System level simulation is supported via bindings for SystemC. The bindings al-
low plugging TTA instruction accurate core simulation models to larger SystemC
models to enable cycle accurate performance modeling and functional verification
simulations. The following is an example of how to integrate a TTA core simulation
model to a system simulation by connecting its clock and global lock signals:

#include <tce_systemc .hh>

int sc_main(int argc, charx argv[]) {
TTACore tta(”tta_core_name”
tta.clock(clk.signal ());
tta.global_lock (glock);

”processor.adf”, "program.tpef”);

The FPGA flow can produce the same standard output printouts using a develop-
ment board with a JTAG interface or similar. When using the system level simula-
tion, verification data is produced similarly to the architecture simulator.

16 Pekka Jadskeldinen, Timo Viitanen, Jarmo Takala, Heikki Berg

Post-fabrication verification is performed using suites of test programs that stress
the different aspects of the processor design. At this point, additional verification
and debugging can be done by using an automatically generated debug interface
which can be used to output verification data and single step the processor.

8 Conclusions

In this chapter, we described TCE, a processor customization toolset based on the
exposed datapath transport triggered architecture. TCE provides tool support for it-
erative processor customization starting from high-level programming languages,
producing synthesizable RTL implementations of the processors along with instruc-
tion parallel binary code.

TCE is available as a liberally licensed open source project and can be down-
loaded via the project web page [12]. The toolset is mature and it has been tested
with various design cases over the past decades, and is evolving with new develop-
ments focusing on the compiler code generation quality and energy saving features,
both in the produced hardware and those that can be achieved with the compiler.

References

1. Cilio, A., Schot, H., Janssen, J., Jadidskeldinen, P.: Architecture definition file: Proces-
sor architecture definition file format for a new tta design framework (2014). URL
http://tce.cs.tut.fi/specs/ ADF.pdf

2. Corporaal, H.: Transport triggered architectures: Design and evaluation. Ph.D. thesis, TU
Delft, Netherlands (1995)

3. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. John Wiley & Sons,
Chichester, UK (1997)

4. Corporaal, H., Mulder, H.: MOVE: A framework for high-performance processor design.
In: Proceedings of ACM/IEEE Conference on Supercomputing, pp. 692-701 (1991). DOI
http://doi.acm.org/10.1145/125826.126159

5. Dally, W., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R., Parikh, V., Park, J.,
Sheffield, D.: Efficient embedded computing. = Computer 41, 27-32 (2008). DOI
http://doi.ieeecomputersociety.org/10.1109/MC.2008.224

6. He, Y., She, D., Mesman, B., Corporaal, H.: MOVE-Pro: A low power and high code den-
sity TTA architecture. In: Proceedings of International Conference on Embedded Computer
Systems: Architectures, MOdeling and Simulation (SAMOS), pp. 294 -301 (2011). DOI
10.1109/SAMOS.2011.6045474

7. Jdaskeldinen, P., Kultala, H., Viitanen, T., Takala, J.: Code density and energy efficiency of
exposed datapath architectures. Journal of Signal Processing Systems pp. 1-16 (2014). DOI
10.1007/s11265-014-0924-x. URL http://dx.doi.org/10.1007/s11265-014-0924-x

8. Jdidskeldinen, P, de La Lama, C., Huerta, P., Takala, J.: OpenCL-based design methodology
for application-specific processors. Transactions on HIPEAC 5 (2011). Available online

9. Jdaskeldinen, P, de La Lama, C.S., Schnetter, E., Raiskila, K., Takala, J., Berg,
H.: pocl: A performance-portable OpenCL implementation. International Journal of
Parallel Programming pp. 1-34 (2014). DOI 10.1007/s10766-014-0320-y. URL
http://dx.doi.org/10.1007/s10766-014-0320-y

HW/SW Co-Design Toolset for Customization of Exposed Datapath Processors 17

10.

11.

12.
13.

14.

Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis & trans-
formation. In: Proceedings of the International Symposium on Code Generation Optimization,
pp. 75-87 (2004)

Lipovski, G.: The architecture of a simple, effective control processor. In: 2nd Euromicro
Symposium on Microprocessing and Microprogramming, pp. 7-19 (1976)

TCE: TTA-based co-design environment (2015). URL http://tce.cs.tut.fi

Thuresson, M., Sjédlander, M., Bjork, M., Svensson, L., Larsson-Edefors, P., Stenstrom, P.:
FlexCore: Utilizing exposed datapath control for efficient computing. In: Proceedings of In-
ternational Conference on Embedded Computer Systems: Architectures, MOdeling and Sim-
ulation (SAMOS), pp. 18-25 (2007). DOI 10.1109/ICSAMOS.2007.4285729

Viitanen, T., Kultala, H., Jdiskeldinen, P., Takala, J.: Heuristics for greedy transport trig-
gered architecture interconnect exploration. In: Proceedings of the 2014 International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems, CASES ’14,
pp. 2:1-2:7. ACM, New York, NY, USA (2014). DOI 10.1145/2656106.2656123. URL
http://doi.acm.org/10.1145/2656106.2656123

