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Abstract—Sophisticated computational imaging algorithms re-
quire both high performance and good energy-efficiency when
executed on mobile devices. Recent trend has been to exploit
the abundant data-level parallelism found in general purpose
programmable GPUs. However, for low-power mobile use cases,
generic GPUs consume excessive amounts of power. This pa-
per proposes a programmable computational imaging processor
with 16-bit half-precision SIMD floating point vector process-
ing capabilities combined with power efficiency of an exposed
datapath. In comparison to traditional VLIW architectures with
similar computational resources, the exposed datapath reduces
the register file traffic and complexity. These and the specific
optimizations enabled by the explicit programming model enable
extremely good power-performance. When synthesized on a 28nm
ASIC technology, the accelerator consumes 71mW of power
while running a state-of-the-art denoising algorithm, and occupies
only 0.2mm2 of chip area. For the algorithm, energy usage per
frame is 7mJ, which is 10x less than the best found GPU-based
implementation.

I. INTRODUCTION

Contemporary high quality video and image processing
algorithms require high-performance hardware to be able to
run in real-time. For non-mobile devices, the energy budget
is usually not a limiting factor in contrast to mobile de-
vices where the battery technology sets an additional energy
constraint. Therefore, running programs utilizing state-of-the-
art computational imaging algorithms on mobile devices is
challenging due to their high computational performance re-
quirements combined with the energy efficiency demands.

What helps in reaching the goals is the fact that image pro-
cessing algorithms can often utilize parallel hardware resources
due to the nature of the algorithms involved. Due to this, in
the past years, GPUs with abundance of data parallel resources
have been widely used [1]–[3] for image processing. However,
GPUs designed originally for graphics rendering with added
hardware to enable more general purpose uses are not the
most energy-efficient possible. This makes them inoptimal for
battery-dependent use cases such as complex image processing
on satellites, drones or battery driven surveillance cameras. In
addition, computational imaging algorithms are often highly
memory-intensive, causing a memory bottleneck as data is
constantly accessed.

For the lowest power consumption, some sort of specialized
accelerators are typically used instead of general purpose CPUs

and GPUs. The least power consuming type of accelerators
is a fixed function accelerator, which can achieve extremely
energy-efficient operation with the expense of programmability
and flexibility. Fixed function accelerators reach the power
performance by means of tailored arithmetics and simplified
control hardware with fixed logic. However, fixed function
hardware development and verification is time consuming.
In addition, often it is desirable to execute more than one
image processing algorithm on a single device. Application-
specific Instruction-Set Processors (ASIPs) or “domain-specific
processors” are typically used as accelerators, when more
programmability is required, while still reaching low energy
consumption. In the image processing field, Image Signal
Processors (ISPs) is the common term used for processors
customized for typical image tasks such as demosaicing,
filtering or correction of camera imperfections.

This paper introduces an ISP targeting low-power use
cases. It achieves extremely good power performance by
means of an explicit programming model which simplifies the
control logic and reduces register file power consumption. The
processor was designed to not include excessive function units,
which reduces the area and improves the power foot print.
On the other hand, specialized function units very avoided to
maintain generality. The memory-intensity of image processing
algorithms was considered while defining the architectural
features. This resulted in an extremely energy-efficient design
which uses no special hardware, yet delivers high computa-
tional performance.

This paper is organized as follows. In Section II, the accel-
erator design is presented. Section III describes the evaluation
of the design and presents the results. Section IV reviews
related work. Finally, Section V concludes the paper.

II. ACCELERATOR DESIGN

A. Transport Triggered Architecture

A popular architecture style used in contemporary DSPs
and ISPs is the so called Very Long Instruction Word (VLIW).
In order to exploit Instruction Level Parallelism (ILP), multiple
different operations can be executed in parallel in a VLIW
processor. This is achieved with multiple parallel Function
Units (FUs) that can implement common operations, or cus-
tomised operations to accelerate bottlenecks in programs. ILP
is a more free form of fine grained parallelism than Data
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Fig. 1. VLIW and TTA processor architectures.

Level Parallelism (DLP) where a single operation is applied
to elements of a vector of data.

VLIW architecture is illustrated in Fig. 1a. The flow of
instruction execution proceeds from left to right. Instructions
are fetched with an instruction fetch component, after which
they are decoded into control signals for the rest of the
processor. The instruction word controls the FUs explicitly,
thus its size is proportional to the number of parallel FU
operations, hence its name VLIW.

In VLIWs, the order of instructions is decided by the
compiler during compile-time. This is called static schedul-
ing. An opposite approach is dynamic scheduling, where the
processor’s control hardware detects dependencies between
instructions and reorders them on the fly. This is common espe-
cially in contemporary general purpose CPUs. The simplified
control hardware of VLIWs makes the control logic smaller
and less power hungry.

VLIW allows multiple parallel operations, however, when
multiple operations finish at the same time, they need to store
their results to a Register File (RF), or bypass it and move their
result straight to another FU. The worst case is, when all FUs
want to write to the RF at the same time, because in that case
the number of RF write ports required is the number of parallel
FUs [4]. Also, scaling the architecture larger in size increases
the complexity of the bypass logic. Bypassing means wiring
the output of an FU directly to another FU’s input instead of
first storing it into the RF. This helps decreasing the execution
latency as there is no need to wait for the register update stage
to consume the result of a previous operation. All or a subset
of the FUs can be connected in this manner.

The “MOVE architecture” [5] was presented by Lipovski
in 1976. In this architecture, operations were triggered by
moving operands to inputs of FUs. Thus, the operations were
transport triggered. This was different from the traditional
paradigm of operation triggering used also in VLIWs, where
in addition to transporting the input operands and destination to
the FU, an operation opcode is given. After this, the hardware

performs the data transfers required for the operation. In a
transport triggered architecture, the data transfers are explicitly
controlled in the assembly code (which can be produced by a
compiler from higher level languages).

TTAs were later studied extensively by Corporaal et al. [6].
They proposed the MOVE architecture to be used as an
improvement to the traditional operation triggered VLIW ar-
chitecture to alleviate their issues with scalability and register
file complexity.

In Fig. 1, the structure of VLIW and TTA is compared.
Both are statically scheduled architectures and use instruction
fetch and decode units to control the CPU. However, TTAs
have an exposed datapath, where the programmer controls
individual moves between function units and/or register files.
These happen on the InterConnection (IC) network. In a sense,
the only instructions in a TTA are Move and No Operation
(NOP). The actual computation happens in FUs as a “side
effect” of moving data to FU trigger ports. FUs still need an
opcode port to indicate the operation to perform.

TTA addresses the VLIW scaling bottleneck with its pro-
gramming model. Unlike in VLIW, the number of required
general purpose RF ports does not directly depend on the
number of FUs in TTAs. This is due to the fact that TTAs
provide extensive freedom to program the data transports.
Operands can be moved to registers in the FU input ports
earlier than when the operation needs to execute, same way
as results can be moved out later than when they are ready.
This reduces the register file pressure, allowing smaller RF
sizes and less RF ports. Both TTAs and VLIWs can perform
register file splitting to reduce the number of ports in a single
RF, but it adds even more complexity to the compiler due to
the register file assignment decision. [7]

Register file bypassing in TTAs is done with software
bypassing. That is, data can be moved directly between FUs
by the programmer. This alleviates the bypass network scaling
issue in VLIWs in addition to reducing the RF bottleneck.
Operand sharing can be used to reuse input operands when
two or more operations share the same input value. The value is
kept in the input register until it is no longer needed. Software
bypassing also allows dead result elimination, where results
are not moved from the FU result register if they are not used,
again saving register file accesses.

B. The Processor Design

In addition to the RF simplification benefits, its modular
and flexible nature makes TTA an interesting architecture
for low-power programmable devices and as a template for
rapid ASIP design. Due to the modularity, automatic Register
Transfer Level (RTL) code generation of TTA processors is
rather straightforward. However, simplicity of the hardware
is traded off to the increased complexity of the high-level
language compiler.

TTA-based Co-design Environment (TCE) [8] is a design
and programming suite for TTAs, developed at Tampere Uni-
versity of Technology. It allows the user to generate Hardware
Description Language (HDL) code from a processor designed
with a graphical interface and includes automatically retarget-
ing compilers and simulators for programming support. TCE
was used to design the proposed ISP TTA.
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Fig. 2. The structure of the proposed TTA accelerator design.

TABLE I. SUMMARY OF THE PROPOSED ARCHITECTURE FEATURES.

local memories 8kB instruction SRAM,
4kB scratchpad Data SRAM

instruction width 128b
compute FUs 2xALU, 8 lane SIMD ALU, 8 lane

SIMD FMA FPU
transport buses 3x32b, 4x128b
registers 2x1b, 32x32b, 32x128b
register file ports scalar: 3 write, 3 read

vector: 1 write, 3 read
peak floating point perf. 16 GFLOPS (FP16, 600 Mhz)

The aim of the processor design was to be able to run
various image processing algorithms efficiently on the plat-
form, yet achieve low-power high performance. To accomplish
this, no special function units were exploited and only generic
integer and floating point units were implemented. To exploit
the data-level parallelism typical to image processing algo-
rithms, Single Instruction Multiple Data (SIMD) operations
were implemented and heavily utilized in the processor. SIMD
operations have the benefit that only a single operation code
needs to be encoded for multiple performed operations. Thus,
the instruction bits per operation ratio is lucrative.

To achieve the low-power target, 16-bit floating point
arithmetics were chosen for the accelerator. Using floating
point operations also simplifies programming of the processor

TABLE II. PARAMETERS OF THE EVALUATION CODE.

block size 8
matches in 3D group 8
image size 3072x1536
step size between reference blocks 7
3D transformation method Haar

in contrast to fixed point operations, where data has to be
manually scaled. This allows decrease the instruction memory
usage. In addition to 16-bit floating point operations, we also
included basic 32-bit scalar integer operations for addressing
and other occasional needs.

With these initial decisions, the design process continued
by defining the function units and interconnect. The number
of function units was found empirically by simulating the
processor and adding or removing FUs when needed. The
main resources of the processor design are listed in Table I.
Experimenting with different architecture features was quite
effortless, thanks to TCE’s automatic HDL generation and
cycle-accurate simulator.

Finding the optimal configuration of the IC in TTAs is
complicated due to the fact that changes to the IC can dras-
tically affect the scheduling and thus the compiled program.
In our design, the InterConnection network and register file
amounts and sizes were discovered with an automated opti-
mizer algorithm [10]. The interconnect was optimized to allow
high performance yet keep the silicon area utilization low. The
designed architecture is illustrated in Fig. 2. For clarity, Scalar
FUs, LSUs and vector FUs are separated into 2a, 2b, 2c,
respectively. The architecture has two load-store units: one

TABLE III. COMPARISON OF THE EVALUATED PLATFORMS.

Mali-T628 Adreno Intel TTA
MP6 [9] 330 HD5500

process tech. 28nm 28nm 14nm 28nm
FP vector width 8x16b - 8x32b 8x16b
clk freq. (MHz) 600 450-578 850-950 600
processing elements 6 cores 4 cores 24 execution 1 core

units



for the local on-chip scratchpad data memory and one for
the external global memory. The InterConnection network
connections are shown in the bottom part, where the top 3
buses are for scalar data and bottom 4 for vector data.

In order to alleviate the data memory access bottleneck,
we added a local memory. Increasing the size of the RF
would have been an option, but this would have had a large
impact on the RF power consumption. In addition, RFs cannot
be indexed dynamically, reducing their applicability. A local
scratchpad SRAM was a compromise between access time
and power consumption. The local scratchpad data memory
was implemented as a banked design so that 8 half-precision
floating point values could be loaded in parallel. The parallel
fetch was designed to complete in 3 cycles, which is more
than feasible for a local scratchpad memory.

For achieving high computational performance, 16-bit
floating point SIMD units with 8 lanes were implemented.
The SIMD function units always operate on all 8 lanes per
instruction. At maximum the design can start an 8-wide SIMD
operation in its SIMD ALU, an 8-wide SIMD FMA (com-
monly counted as two operations), one operation in the scalar
FP ALU and one scalar FMA (again counted as two) resulting
in a peak floating point performance of 16 half-precision
GFLOPS with the targeted 600 MHz clock frequency. Support
for denormal numbers was not included in the implementation.
This reduced the available precision when presenting floating
point numbers, but helped in saving energy due to the denormal
handling logic being relatively complex.

The reduction in RF ports in TTA over VLIW can be
clearly seen in Fig. 2a and 2c. In VLIW, the worst case
scenario would be all 5 scalar FUs and all 6 vector FUs writing
into an RF at once. This would require total of 5 write ports
in scalar RFs and 6 write ports in SIMD RFs. The same TTA
design uses 3 write ports in the scalar RF and 1 write port in
the vector RF. In TTA the amount is adjustable according to
the performance requirement, as in VLIW it is dictated by the
number of FUs.

III. EVALUATION

A. Benchmark Application

BM3D [11] is a state-of-the-art image denoising algorithm
which provides very good quality results. It was used to
evaluate the implemented accelerator, since it is challenging to
implement efficiently due to its memory-intensity and thus is
well suited for benchmarking. Two main computational steps
are identified in BM3D filtering: Block Matching (BM) and
filtering in 3D transform domain. In the BM step, an input
image is divided into overlapping blocks, consisting typically
of 8x8 pixels. Within the image some blocks are selected
as reference blocks. For these reference blocks, a number of
(typically 8 or 16) similar blocks are found. The best matches
together with their reference block are stacked together to
form a 3D group. BM3D exploits the observation, that real-
life images often have similar blocks due to images containing
surfaces, textures and similar areas.

In the second phase of BM3D, the groups are individually
filtered. First, the groups are 3D-transformed. Depending on
the desired execution time and quality of results, algorithms

TABLE IV. SYNTHESIS RESULTS.

primary programming model OpenCL C
area 0.2mm2

target clock frequency 600MHz
avg. power with the workload of interest 71mW
ASIC technology 28nm FDSOI

such as Discrete Cosine Transform (DCT) or Haar transform
can be used. Next, thresholding followed by an inverse 3D-
transform is performed on the groups.

The benchmark program was implemented as an
OpenCL [12] application with kernels that exploit the SIMD
instructions explicitly using the vector datatypes. It was com-
piled for the TTA processor with TCE’s compiler that utilizes
Portable Computing Language (pocl) [13], an implementation
of the OpenCL standard. The code performed the filtering
phase of the BM3D algorithm, where a 3D Haar transform
was performed to the input data, after which thresholding was
done. Finally, an inverse 3D Haar transform was performed.
Typical to image processing algorithms, the filtering phase is
very memory-intensive. Therefore, it offered a good evaluation
point for the design. Parameters used for filtering are described
in Table II.

The TTA accelerator was compared against three platforms:
An Odroid-XU3 with a Mali-T628 MP6 GPU, Dragonboard
APQ8074 with an Adreno 330 GPU and an Intel Core i7-
5600 with an integrated Intel HD5500 GPU. Summary of the
evaluated architectures is presented in Table III. The OpenCL
benchmark code was optimized individually for these three
comparison platforms.

B. Results

The TTA processor was synthesized with Synopsys Design
Compiler, on a 28nm FDSOI technology with a 600MHz target
clock frequency. The supply voltage was 1.0V. The timing
constraint was still met at 1.1GHz after synthesis, with the crit-
ical path in the SIMD floating point unit. For accurate power
estimation, the processor was simulated in ModelSim (10.4),
from where switching activity of the benchmark program was
recorded and used in Design Compiler power analysis. The
power consumption for Intel HD5500 was obtained with GPU-
Z [14] and for Mali-T628 with the software shipped with
the Odroid-XU3 development board. All of the results are
produced from post-synthesis analysis.

ASIC synthesis results are presented in Table IV. The
area, 0.2mm2, includes the local instruction and data SRAM
memories. The TTA core area occupied 38% of the total area
and the memories 62%. The average power consumption was
71mW while executing the benchmark code at 600MHz.

The TTA accelerator computes one 3072x1536 image in
230 ms. If assuming linear relation between the runtime and
image size and down scaled to full HD (1920x1080) image
size, this gives a rough approximation of 101 ms per frame.

TABLE V. MEASURED EXECUTION TIMES SCALED TO FULL HD.

Mali-T628 MP6 Adreno 330 Intel HD5500 TTA
exec. time (ms) 44.1 76.2 17.6 101.3



TABLE VI. COMPARISON OF POWER CONSUMPTION AND
ENERGY-EFFICIENCY.

Mali-T628 Adreno 330 Intel TTA
MP6 330 HD5500

power (W) 1.57 - 6.5 0.071
energy/ full HD frame (J) 0.070 - 0.115 0.007

To estimate the throughput for the whole BM3D filtering, the
BM step is assumed to roughly take the same amount of time
as the 3D filtering, according to our experiences. Thus the
throughput would be 4.9 frames per second.

The comparison to GPU implementations is presented in
Table V. Intel was the fastest with 17.6 ms per frame and Mali
second with 44.1 ms per frame. Adreno’s performance was
76.2 ms per frame. The proposed accelerator was the slowest
with 101 ms. This was expected, since the measured instance
is a single-core processor, whereas the other architectures are
multicores and contain more processing elements. However,
the proposed design is multicore ready as it contains a synchro-
nization unit and connections to a potentially shared memory,
and previous experiments with succesful synthesis up to four
cores with a 800 MHz target frequency.

As a comparison of the computational performance, the
Mali-T628 MP6 has 6 cores, each with an arithmetic pipeline
capable of 17 floating point operations per cycle [9]. With its
600 MHz clock frequency this translates to 10.2 GFLOPS per
core. For all its six cores, it totals up to 61 GFLOPS. The
proposed design only has one core, but has a theoretical peak
floating point performance of 16 GFLOPS. The proportion of
the peak performances is roughly the same as the execution
times in Table V.

To estimate the energy-efficiency, energy per frame was
calculated from the runtime and power consumption numbers.
Only the GPU power consumption was considered. This is
illustrated in Table VI. For TTA, with 71 mW power con-
sumption and 101 ms runtime, energy per frame results in
0.007 J/frame (full HD). Next was Mali, with 0.07 J/frame
and Intel with 0.115 J/frame. No tools to measure the Adreno
power consumption were available. What is notable is that the
proposed TTA’s energy consumption is 10 times less than that
of the Mali GPU.

IV. RELATED WORK

Not many compute platforms have been evaluated with
the BM3D algorithm, or been specifically designed for it. We
found only two previous implementations to compare against.

Lebrun [15] implemented a BM3D algorithm on CPU using
standard C++. This implementation can be compiled to use
multithreading with OpenMP library. DCT is used for the 3D
linear transformations.

Sarjanoja et al. [1] implemented a BM3D denoising al-
gorithm on various platforms containing a GPU. They used
DCT for the 3D linear transformations. The implementations
utilized two different Nvidia GPUs: GTX 650 and Tegra K1.
CUDA and OpenCL implementations were evaluated. The
authors reported a 7.5x improvement in runtime compared to
an existing CPU implementation. However, direct comparison

against these is problematic because the reported numbers
include the block-matching stage.

V. CONCLUSION

In this paper, a programmable, high performance, low-
power transport-triggered architecture ISP was proposed. The
implementation area occupation is 0.2mm2 when synthesized
on a 28nm ASIC technology, with a power consumption of
71mW while performing a state-of-the-art image denoising
algorithm.

The proposed ISP was evaluated against existing imple-
mentations for low power GPUs. The proposed ISP uses 10x
less energy compared to the next evaluated implementation
per frame for image denoising. This is achieved with the
reduced amount of register file traffic and amount of register
file ports due to the transport-triggered architecture features.
To the best of our knowledge, the proposed design is the most
energy-efficient OpenCL C programmable ISP verified with
this workload that has been published.

Future work includes further improving the performance
of the processor by implementing strided fetch for the image
data. The BM3D algorithm operates on the same data both
row-wise and column-wise, so if the rows can be fetched in
parallel, the columns will be fetched as scalars, if no strided
memory is used. Also, an optimized multi-core implementation
could be used to reach low-power, real-time operation for real
time processing of video streams.
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