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ABSTRACT

The automatic detection of anomalies, defined as patterns that are
not encountered in representative set of normal images, is an impor-
tant problem in industrial control and biomedical applications. We
have shown that this problem can be successfully addressed by the
sparse representation of individual image patches using a dictionary
learned from a large set of patches extracted from normal images.
Anomalous patches are detected as those for which the sparse repre-
sentation on this dictionary exceeds sparsity or error tolerances. Un-
fortunately, this solution is not suitable for many real-world visual
inspection-systems since it is not scale invariant: since the dictio-
nary is learned at a single scale, patches in normal images acquired
at a different magnification level might be detected as anomalous.
We present an anomaly-detection algorithm that learns a dictionary
that is invariant to a range of scale changes, and overcomes this lim-
itation by use of an appropriate sparse coding stage. The algorithm
was successfully tested in an industrial application by analyzing a
dataset of Scanning Electron Microscope (SEM) images, which typ-
ically exhibit different magnification levels.

Index Terms— Anomaly detection, image analysis, sparse rep-
resentations, dictionary learning, group sparsity

1. INTRODUCTION

We address the problem of automatically detecting anomalies in im-
ages, defined as regions that do not conform to the structures in a
reference training set of normal images. This is a very important is-
sue in high-throughput industrial control or biomedical applications,
where normal images are characterized by their own peculiar struc-
tures, and any region departing from these might require further in-
spection by technicians or doctors. Moreover, in these applications
it is often necessary to provide a quantitative assessment of the ac-
quired images and measure the area covered by anomalies.

As a meaningful example of applications that we are targeting,
consider Scanning Electron Microscope (SEM) images like those in
Figure 1(a), which are acquired to monitor the production of nano-
fibers [1, 2]. Inside normal regions, fibers appear as very thin fila-
ments (having diameter below 0.5 micron), while anomalous regions
might exhibit very different structures, like those in Figure 1(b).

There are two main approaches to this sort of anomaly-detection
problems [3]: (i) designing features that discriminate between nor-
mal and anomalous regions, and (ii) designing features that provide
a known response to normal data, while anomalous data are identi-
fied as those yielding an unusual response. The former is a viable
approach only when potential anomalies are known beforehand, and
yields solutions that are highly application-specific. The latter is a

more challenging approach because it does not exploit any informa-
tion about the anomalies to be detected, however, it is also more
practical as it requires only a training set of normal data which is
often easy to collect. This problem is also referred as novelty detec-
tion [4, 5, 6], and is formulated as a one-class classification prob-
lem [7].

We pursue the latter approach and tackle anomaly detection by
learning a model that approximates patches belonging to normal im-
ages. Then, during operation, we analyze test images in a patch-wise
manner, and we determine whether each patch is normal or anoma-
lous by assessing the goodness of fit of the learned model. A patch-
wise analysis is necessary since the anomalous regions may be small,
and thus not detectable by analyzing global statistics.

We observe that the content of patches extracted from normal
images may be very different (even when they do not overlap with
anomalous regions), also because in real-world applications images
might be acquired at different magnification levels. Consider, for ex-
ample, the images in Figure 2, acquired from different specimens of
a nanofibers. While patches in these images are perceptually similar,
their content is very different because the images are acquired at dif-
ferent magnification levels (i.e. scales). This means that an anomaly
detector trained on an image like Figure 2(a) would possibly detect
as anomalous patches from images like Figure 2(d), which should
instead be considered as normal since only the scale has changed.
To successfully address this issue it is necessary to design anomaly
detectors which are invariant with respect to change in the scale.

Here, we propose a scale-invariant anomaly-detection algorithm,
which uses a multiscale dictionary to describe patches belonging to
normal images acquired at different scales. Our contribution does
not concern dictionary learning, which is here performed by juxta-
posing atoms of dictionaries learned from images at different scales,
but rather the anomaly-detection algorithm that effectively uses this
powerful model. In particular, we show that, to successfully detect
anomalies, it is necessary to introduce a group-sparsity penalization
term when encoding each patch with respect to the learned dictio-
nary. By doing so, we promote representations using atoms belong-
ing to one or a few scales. Our experiments show that our scale-
invariant anomaly detector can correctly identify anomalous regions
in SEM images from a real-world industrial-monitoring application,
even when these are acquired at a scale that does not appear among
the training images. Most importantly, the proposed anomaly de-
tector achieves a performance close to that of an ideal single-scale
detector that is trained on the exact scale of the test images.

1.1. Related works

Anomaly-detection problems are quite common in imaging appli-
cations, like the identification of masses in mammograms [8], the



(a) An example of SEM image
that is considered normal.

(b) An example of SEM image
containing anomalous clots.

Fig. 1. SEM images for monitoring nanofibers production.

detection of sea mines in side-scan sonar images [9], or of defects in
industrial monitoring applications [10], to name a few examples.

All the above methods either assume that a reference defect-free
image is provided [10], or specific features are available to char-
acterize normal data [8], and this may not be the case in most ap-
plications. Here we consider solutions where a model describing
normal structures has to be learned from training images, and in
particular solutions based on sparse representations [11, 12, 15].
Recently, sparse models have been successfully used for detecting
anomalies in images [11, 12]. In practice, patches from test images
are represented (sparse coding) with respect to a dictionary learned
from normal images. Then, [11] identifies anomalies as outliers in
the distribution of indicators computed from such representations,
while [12] embeds the detection phase inside the sparse coding and
does not implement separate outlier detection. Convolutional-sparse
models [13, 14] were also successfully used to detect anomalies in
images [15]. Unfortunately, because of a known limitation of patch-
based sparse representations, none of these methods is able to handle
scale change. The solution proposed here solves this issue, as it is
able to analyze normal images acquired at different scales without
any reference image or know feature that describes normal data.

2. PROBLEM FORMULATION

Let us denote by s : χ → R+ a grayscale image, where χ ⊂ Z2 is
the regular pixel grid representing the image domain. We formulate
the anomaly-detection problem in terms of image patches, where we
define a patch sc as a square region of

√
P ×
√
P pixels centered at

the pixel c of the image s. To simplify our notation, in what follows
we omit the center c of each patch and refer to image patches as s,
which are organized in column vectors.

We assume that normal patches, i.e. those in normal images,
are generated by an unknown stochastic process PN . Anomalous
patches are instead generated from a different processPA that is also
unknown and feature structures that do not conform to those charac-
terizing normal images. Since images may be acquired at different
magnification levels, patches generated by either PN and PA may
exhibit very different content, although they are perceptually similar,
as in Figure 2. In the following we assume that training images con-
tain only patches generated byPN and that these have been acquired
at the maximum scale available. Thus, that test images are acquired
at the same or at a lower magnification. This is not a restrictive as-
sumption in applications where the maximum magnification level is
known beforehand.

Our goal is to locate those regions in a test image where the

(a) Series A (b) Series B

(c) Series C (d) Series D

Fig. 2. Example of normal images acquired at different magnifica-
tion levels. Patches extracted from images are perceptually similar,
but their content is very different.

structures do not conform PN . In particular, we want to detect
anomalies even when the test images are acquired at a different scale
than the training ones.

3. PROPOSED SOLUTION

For simplicity, in the following we illustrate the proposed solution
assuming a single training image s is provided, even though multiple
training images can be easily handled. Our solution is based on a
dictionary D which is able to approximate any patch s ∈ RP taken
from an anomaly-free image as

s ≈ Dx, (1)

where the coefficients vector x ∈ RM is sparse, i.e. has few nonzero
or non-negligible components. In the following we explain how to
compute the dictionary D ∈ RP×M and the coefficient vector x for
a given patch s, then we illustrate the anomaly-detection method.

3.1. Multiscale Dictionary
The dictionary D is expected to provide suitable representations of
normal images acquired at different scales. Various algorithms for
learning multiscale dictionaries have been proposed in the litera-
ture [16, 17, 18, 19, 20]. However, to better investigate the role of the
sparse coding and the choice of suitable indicators to achieve scale-
invariance, we adopt a simple design of the multiscale dictionary.

Let us denote by sσ the image swith support rescaled by a factor
σ. Consider now a set of L scaling factors σi, i ∈ {1, . . . , L} and
construct, for each image s, a set of rescaled images sσi to simulate
normal data at different scales. Since we assume the scale of the
training image is higher than in test images, we consider scaling fac-
tors σ ≤ 1. For each rescaled images sσi we extract a suitable set of
patches and subtract their mean, then assemble them as the columns
of matrix Ti ∈ RP×N . The dictionary Di ∈ RP×Mi corresponding
to the scale σi is thus learned solving the Basis Pursuit DeNoising
(BPDN) [21, 22] problem

Di = arg min
D,X

1

2
‖Ti −DX‖22 + λ ‖X‖1 , (2)



where λ > 0 balances the reconstruction error ‖Ti −DX‖2 and the
sparsity, assessed by the `1 norm of the coefficient X ∈ RMi×N .

The multiscale dictionary D ∈ RP×M representing the training
image at multiple scales is constructed by collecting all the learned
dictionaries Di into a single matrix

D = [D1 | D2 | · · · | DL] . (3)

In principle, the dictionariesDi may have different number of columns
Mi, however here we consider Di having the same size P ×M/L.

3.2. Multiscale Sparse Coding

The sparse coding of each patch s with respect to the dictionary D
corresponds to computing a sparse vector x ∈ RM of coefficients
that properly approximate s. Given the specific form of D, each
coefficient vector has the form:

x =
[
xT1 xT2 · · · xTL

]T
, (4)

where xi is a column vector that collects the coefficients correspond-
ing to dictionaryDi learned from the image at scale σi. For anomaly-
detection purposes, it is not desirable to approximate a patch s by
mixing atoms from different dictionaries Di, as this mixture could
possibly match anomalous structures. Therefore, we expect that in
each sparse representation x, only one, or possibly a few, groups xi
are active, i.e. x should be group sparse. This goal is achieved by
formulating the sparse coding as a BPDN problem that includes an
`2,1-norm regularization term [23]

x̂ = arg min
x

1

2
‖s−Dx‖22 + λ ‖x‖1 + ξ

L∑
j=1

‖xj‖2 . (5)

When solving (5), the group-sparsity term penalizes representations
involving atoms belonging to different dictionaries. Both (2) and (5)
can be solved via Alternating Direction Method of Multipliers [24].
In our experiments, we use the MATLAB implementation provided
in the SPORCO library [25].

3.3. Anomaly Detection

We use the learned dictionary D and the sparse coding procedure in
(5) to define, for each patch s, an indicator vector g(s) that assesses
the extent to which s is consistent with PN .

As in [11], g(s) is the vector stacking all the summands of the
cost function minimized during the sparse coding (5) of s: the recon-
struction error ‖s−Dx‖2, the sparsity ‖x‖1, and the group spar-
sity

∑
i ‖xi‖2. The group-sparsity term is used to assess the spread

of significant coefficients among different scales of the dictionary
atoms. Since normal patches are expected to involve atoms from
one or few scales σi, this term is expected contribute to discriminate
normal ad anomalous patches. Therefore, for each patch s we obtain
an indicator vector having three components:

g(s) =

‖s−Dx‖2
‖x‖1∑
i ‖xi‖2

 . (6)

To detect whether a patch s is normal or anomalous, we build
a confidence region Rγ from the values of g computed from the
normal patches in the training set:

Rγ =
{
φ ∈ R3 :

√
(φ− g)′Σ−1(φ− g) ≤ γ

}
, (7)

where g and Σ are the average and the sample covariance matrix of
g computed on few normal patches, respectively. Then, s is labeled
anomalous if g(s) falls outside the regionRγ .

Since we analyze test images in a patch-wise manner and we
consider overlapping patches, in practice we assign to each pixel one
label (normal/anomalous) for each patch including it. To aggregate
all these labels, we consider a majority-voting scheme: a pixel is
considered anomalous when the majority of the patches containing
that pixel are labeled anomalous.

4. EXPERIMENTS

We assess the performance of the proposed anomaly-detection al-
gorithm on a dataset of SEM images acquired in a quality control
application to monitor the industrial production of nanofibers. High
variability affects this industrial process, introducing defects like the
one shown in Figure 1(b). The detection of these anomalies is very
important to determine whether the produced nanofibers conform to
the desired standards and eventually adjust the production.

We consider 20 SEM images acquired at different magnification
levels, and we group them into 4 series, each sharing the same mag-
nification. An example of a normal image from each series is shown
in Figure 2. It can be seen that images from Series A have been
acquired at the highest scale (maximum magnification), thus they
are used to train the proposed anomaly detector. In the test phase,
we consider images containing anomalies from all these series, thus
from different scales. The performance of the anomaly-detector can
be assessed thanks to a binary mask that labels each pixel as normal
or anomalous and that is provided for each image.

In this experiment we use patches having size 32 × 32 and, to
speed up the dictionary learning (2) and the sparse coding (5) stages,
we project patches in the Discrete Cosine Transform (DCT) domain
and consider only the first 225 coefficients, ordered in a zig-zag fash-
ion, so that s in (1) is a vector of 225 DCT coefficients.

We consider the following anomaly detection techniques:
Multiscale Group-Sparse Coding and Indicator: this is our

proposed solution, described in Section 3. The multiscale dictio-
nary D is learned by scaling the training images of a factor σ ∈
{1, 0.75, 0.5}. This method differs from the following ones because
it is multiscale in all its parts: dictionary learning, sparse coding and
computed indicators.

Multiscale Group-Sparse Indicator: here we perform the sparse
coding via the standard BPDN without the group sparsity term, i.e.
we set ξ = 0 in (5). We use the same multiscale dictionary D (3),
learned in the above solution. Then, we monitor the whole indica-
tor vector (6) that includes also the group sparsity term, which is
however ignored in the sparse coding.

Multiscale All-in-one-bag: this method is presented in [11],
and here it uses the multiscale dictionary D. In practice, the group
sparsity is neither taken into account in the sparse coding nor in the
indicator vector.

Multiscale [12]: we use the same multiscale dictionaryD (3) as
in the above solutions, and we perform the sparse coding following
the procedure described in [12], which embeds an anomaly detection
procedure. This anomaly detector is also controlled by a threshold
γ > 0.

Oracle Scale: we learn 4 different dictionaries, one for each
series, and process test images using the dictionary learned from im-
ages acquired at the same (correct) scale. This is considered ideal
solution since the correct scale is rarely known, exactly. This method
is the same as [11], which does not consider a group sparsity term.
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(a) Solutions based on multiscale dictionary D.
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(b) Solutions based on single-scale dictionaries Di.

Fig. 3. ROC curves for all methods presented in Section 4. (a) the ROC curves of solutions based on the multiscale dictionary D (3); (b) the
ROC curves of solutions based on single scale dictionary Di. There are 4 ROC curves for single scale dictionaries: one for each series of
images used in the training phase. The area under the curve (AUC) of each ROC curve is reported in the legend.

Oracle Scale [12]: as in the Oracle Scale, we use the dictionary
learned from training images at the same scale of the test images,
but the sparse coding and the anomaly detection are performed as
in [12].

Single Scale: we learn 4 dictionaries, one from each series, and
use each of them to detect anomalies in images from all the series.
Anomalies are detected as in [11], which is not multiscale. Obvi-
ously, the performance of this solution might vary according to the
series used for training.

To assess the performance of the considered solutions we con-
sider the following figures of merit:

• FPR, the False Positive Rate, i.e. the percentage of normal
pixels detected as anomalous.

• TPR, the True Positive Rate, i.e. the percentage of anomalous
pixels correctly detected.

These figures of merit depend on the threshold γ which defines
the confidence region Rγ in (7) or the promptness of the anomaly
detector [12]. Therefore, different methods have to be compared
by means of the Receiver Operating Characteristic (ROC) curves,
which are computed by varying the value of γ in a suitable range.
Figure 3 shows the ROC curves averaged over all the test images:
in Figure 3(a) we report the results of the solutions based on the
multiscale dictionaryD (3), while Figure 3(b) shows the ROC curves
of the solutions that exploit single-scale dictionaries.

The ROC curves in Figure 3 and the corresponding AUC val-
ues indicate that using multiscale dictionaries is beneficial, as these
provide better performance than single scale dictionaries in all the
considered solutions. As expected, the Oracle Scale solution outper-
forms all the others, since test images are analyzed by a dictionary
that was learned on normal images acquired at the same scale. How-
ever, these settings might not be realistic in all the practical applica-
tions. The Multiscale Group-Sparse Coding and Indicator achieves
the best performance. In particular, it outperforms Multiscale All-
in-one-bag and Multiscale [12], demonstrating that simple sparsity

with respect to a multiscale dictionary is not enough to handle test
images at a different scales, and that the group sparsity term is in-
stead necessary in the design of the anomaly detector. Moreover, the
comparison between Multiscale Group-Sparse Coding and Indicator
and Multiscale Group-Sparse Indicator confirms that is not enough
to measure the group sparsity in the indicator vector, but this has to
be taken into account also during the sparse coding.

5. CONCLUSIONS

We present an anomaly-detection algorithm that is able to correctly
analyze test images that have been acquired at scales that are differ-
ent from those of training images. Our anomaly-detector uses a mul-
tiscale dictionary that aggregates atoms learned from synthetically
resized normal images, and performs sparse coding by enforcing the
group sparsity of the representations. This regularization term turns
to be essential to achieve superior anomaly-detection performance.
We test our solution on a dataset of SEM images acquired to monitor
the industrial production of nanofibers, and demonstrate it can effec-
tively handle changes in magnification level that typically occurs in
industrial/medical imaging applications.
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