
Kvazaar: Open-Source HEVC/H.265 Encoder

Marko Viitanen, Ari Koivula, Ari Lemmetti, Arttu Ylä-Outinen, Jarno Vanne, Timo D. Hämäläinen

Department of Pervasive Computing
Tampere University of Technology, Finland

{marko.viitanen, ari.koivula, ari.lemmetti, arttu.yla-outinen, jarno.vanne, timo.d.hamalainen}@tut.fi

ABSTRACT

Kvazaar is an academic software video encoder for the emerging

High Efficiency Video Coding (HEVC/H.265) standard. It
provides students, academic professionals, and industry experts a
free, cross-platform HEVC encoder for x86, x64, PowerPC, and
ARM processors on Windows, Linux, and Mac. Kvazaar is being
developed from scratch in C and optimized in Assembly under the
LGPLv2.1 license. The development is being coordinated by Ultra
Video Group at Tampere University of Technology (TUT) and the
implementation work is carried out by an active community on

GitHub. Developer friendly source code of Kvazaar makes joining
easy for new developers. Currently, Kvazaar includes all essential
coding tools of HEVC and its modular source code facilitates
parallelization on multi and manycore processors as well as
algorithm acceleration on hardware. Kvazaar is able to attain real-
time HEVC coding speed up to 4K video on an Intel 14-core
Xeon processor. Kvazaar is also supported by FFmpeg and Libav.
These de-facto standard multimedia frameworks boost Kvazaar

popularity and enable its joint usage with other well-known
multimedia processing tools. Nowadays, Kvazaar is an integral
part of teaching at TUT and it has got a key role in three Eureka
Celtic-Plus projects in the fields of 4K TV broadcasting, virtual
advertising, Video on Demand, and video surveillance.

Keywords

Open source; Video coding; Video encoder; High Efficiency
Video Coding (HEVC); Kvazaar HEVC encoder

1. INTRODUCTION
Video traffic is reported to reach 80-90% of all global consumer

Internet traffic by 2019 [1]. This is due to rapid proliferation of
video applications together with universal expectations of better-
quality video content and immersive user experience. The holistic
growth of video inevitably sparks a need for better compression.

The latest international video coding standard, High Efficiency
Video Coding (HEVC/H.265) [2], [3] is developed to address the

increasing transmission and storage requirements of video. HEVC
reduces the bit rate by almost 40% over the preceding state-of-the-
art standard AVC [4] for the same objective quality but at about
40% encoding complexity overhead. Therefore, implementing a
powerful HEVC encoder with a reasonable coding speed, cost,
and power budget requires an efficient encoder implementation.

In software encoders, HEVC complexity can be primarily tackled

by two techniques: multithreading through data-level parallelism
and single instruction multiple data (SIMD) optimizations. Further

speedup and lower power dissipation can be obtained by
offloading the compute-intensive coding tools to hardware
accelerators or implementing the entire encoder on hardware.

Currently, there exist a couple of open-source HEVC encoders
[5]-[9]. The summary of these projects is given in Table 1. HEVC
reference encoder (HM) [5] supports all HEVC coding tools and

is able to achieve high coding efficiency. However, it is slow and
single threaded, as it is targeted for research and conformance
testing rather than practical encoding. The commercially funded

x265 [6] is probably the most well-known practical open-source
HEVC encoder at the moment. It is based on the C++ source code
of HM which has been enhanced by extensive assembly
optimizations, multithreading, and techniques from the open-
source x264 encoder [10]. HomerHEVC [7] and f265 [8] are less
feature complete encoders and both of them have only a single
active developer.

Kvazaar [9] is an academic cross-platform HEVC encoder
coordinated by Ultra Video Group [11] at Tampere University of
technology (TUT). The development of Kvazaar was started by us

in a private academic project in May 2012. The source code of

Kvazaar was published on GitHub under GPLv2 in Jan 2014 and
relicensed as LGPLv2 in Feb 2015. The latest version of its source
code and issue tracker can be found on GitHub [9]. Kvazaar
allows participation without any copyright transfers contrary to
x265, f265, and HomerHEVC that require signing a contributor
licence agreement (CLA) before accepting code into the project.

This paper gives an overview of Kvazaar including its main
features, high-level functionality, and target applications. It serves
as a Kvazaar synopsis for software programmers, video coding
experts, and end-users in academia and industry.

2. OVERVIEW OF KVAZAAR
The development of Kvazaar was started from scratch in C while
using HM as a clarification of the standard text and as a source of
fundamental HEVC algorithms. Currently, Kvazaar supports
HEVC Main, Main Still Picture, and Main 10 profiles for 8-bit
4:2:0 progressive video.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

MM '16, October 15 - 19, 2016, Amsterdam, Netherlands

Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM 978-1-4503-3603-1/16/10…$15.00

DOI: http://dx.doi.org/10.1145/2964284.2973796

The main development goals of Kvazaar are: 1) Coding efficiency
close to HM; 2) Easy portability to various platforms; 3) Real-

time coding speed; 4) Optimized computation and memory
resources; and 5) Well-documented source code. A priority list for
these objectives is specified by a target application since working
simultaneously for all of them needs compromises. In practice,
predefined presets are used to facilitate selecting different speed
and quality settings for Kvazaar.

2.1 Usage
Kvazaar accepts uncompressed video in YUV 4:2:0 format and
outputs HEVC bitstream. It comes with own command line
interface (CLI) that is documented in the readme file.

Alternatively, Kvazaar can be compiled as a library for
embedding into other applications. The C-language interface is
defined in kvazaar.h and is also used by the Kvazaar CLI. So far,
support for using Kvazaar as a library has been included into
FFmpeg and Libav multimedia frameworks.

Kvazaar supports ten presets: ultrafast, superfast, veryfast, faster,
fast, medium, slow, slower, veryslow, and placebo. The naming
convention follows that of x264. The fastest preset, ultrafast, is

targeted for low-cost real-time coding. It reduces encoding

complexity by supporting the most essential coding tools only. On
the other hand, the most computation-intensive preset, placebo,

enables every available tool. It is mainly recommended for testing
and offline coding for the best possible quality. In practise,
veryslow preset tends to be a better selection for high-quality

coding due to better balance between quality and speed. Other
presets are defined to fit between these two ends with respect to
coding speed.

2.2 Software Architecture
Figure 1 depicts the high-level architecture of Kvazaar. Each
module is implemented using one or more compilation units as
described in the readme file and Doxygen documentation.

The entry point for users is either Kvazaar CLI or the library
libkvazaar that is used by 3rd party software such as FFmpeg and
Libav. The core of Kvazaar is an Encoder module which controls

the state of the encoder and implements the interfaces for
libkvazaar. Efficient Threading module is crucial for Kvazaar.

The implementation is a thread queue built on top of Posix
threads. On Windows, Pthreads-w32 is used to provide native
threading.

Compression, Reconstruction, and HEVC bitstream modules

implement the HEVC coding tools that handle compression and
output standard-compliant bitstream, while Strategies module

provides platform-specific optimized implementations via
dynamic dispatch. An optional Visualization module provides a

graphical presentation of the state of the currently encoded
pictures.

2.3 Implementation
Kvazaar has three types of threads: an input-thread for reading the
uncompressed images, worker threads for conducting the actual
encoding, and the main thread for the remaining tasks. After
receiving the input picture, the main thread assigns it to a picture
level encoding.

Table 2 lists the essential coding parameters and coding tools of
Kvazaar. The supported HEVC coding configurations are all-intra
(AI), random access (RA), and low-delay P (LP). Kvazaar encodes

pictures at the granularity of a coding tree block (CTB) of 64 × 64

pixels, according to the block diagram depicted in Figure 2. CTBs
can be optionally divided into four equal-sized square coding
blocks (CBs) and the division can be recursively continued until

the minimum size of CBs is reached. The final quadtree structure
is selected based on coding cost using a depth-first search with an
early termination condition.

Within each CB, a rate-distortion optimized (RDO) prediction
mode search is performed. Kvazaar offers all 35 intra prediction
(IP) modes for choosing an intra mode (Pintra) and all square,
symmetric (SMP), and asymmetric (AMP) motion partition modes

for choosing an inter mode (Pinter). The motion parameters (MV,
idx) are obtained through motion estimation (ME) that refers to
previously coded pictures. ME includes integer ME (IME) stage
and optional fractional ME (FME) stage that interpolates values
between the pixels. Motion compensation (MC) produces Pinter by
using motion parameters to access pixels from a decoded picture
buffer (DPB) which contains the previously reconstructed
reference pictures (Dref).

After choosing a prediction mode for the CB, the difference (D)
between the original picture and prediction is transformed (T)

Figure 1. Module structure of Kvazaar.

libpthreadSDL2

FFmpeg Libav

Kvazaar

Compression

Kvazaar CLI

Visualization

Encoder

Threading

libkvazaar Strategies

HEVC bitstream

Reconstruction

Other programs

Table 1. Open-source HEVC encoders

Feature HM [5] x265 [6] HomerHEVC [7] f265 [8] Kvazaar

License BSD GPL2 / Commercial LGPLv2.1 BSD LGPLv2.1

Coordinator JCT-VC MulticoreWare Juan Casal Vantrix TUT

Contribution Free With CLA With CLA With CLA Free

Core language C++ C++ C C C

Lines of C/C++ 56k 51k 21k 23k 22k

Lines of assembly 0 149k 0 4k 2k

% of comments 14 % 7 % 13 % 25 % 22 %

Contributors 133 102 2 3 15

Commits 4879 11458 243 67 2068

Last commit Active Active 2/2016 9/2014 Active

with Discrete Cosine/Sine Transforms (DCT/DST) to transform
domain coefficients (TCOEFFs) and quantized (Q). It is possible
to use RDO quantization (RDOQ) and sign hiding at this stage.
After inverse quantization (Q-1) and inverse transformation (T-1),
loop filtering (LF) is applied to the reconstructed pixels (DRec)
stored in coded picture buffer (CPB). Deblocking is done after the
CTU is finished, but sample adaptive offset (SAO) is only applied

for a single row of CTUs at a time. The loop filtered pixels are
stored in a DPB which is implemented as a single reference
counted pixel buffer that can be read from the other picture-level
encoders, even before the encoding is finished. All syntax
elements are converted into a standard compliant HEVC bitstream
by entropy coding (EC).

2.4 Parallelization
For parallel encoding, Kvazaar offers three schemes: 1) tiles; 2)
Wavefront Parallel Processing (WPP); and 3) picture-level

parallel processing. WPP and tiles divide a picture into multiple
partitions that can be processed in parallel.

All these schemes have been implemented using a dynamic task
graph and a thread pool, where the workers in the pool perform
the tasks with no unmet dependencies. This scheme is illustrated
with pictures of size 3×3 CTUs in Figure 3 where black arrows
show the direction of dataflow and grey arrows depict a possible
dependency graph. The input thread reads the uncompressed
video and stores it in the buffer. The main thread creates new
frame encoders and the task graphs required to encode the frame

correctly. The workers in the thread queue perform encoding. The
size of the work unit is a single CTB/LF. The main thread collects
the resulting bitstreams and outputs the compressed video.

Experiments with Intel 8-core i7 [12] and 61-core Xeon Phi [13]
processors show that Kvazaar scales almost linearly to the number
of cores in the processor.

2.5 Optimizations
Kvazaar is compatible with x86, x64, PowerPC, and ARM
processors on Windows, Linux, and Mac. It uses a dynamic
dispatch mechanism for SIMD-optimized functions, i.e., the
function is chosen based on instruction sets supported by the

processor. Optimizations exist for SSE2, SSE4.1, AVX, AVX2,
and AltiVec, but the majority of them are for AVX2. Most of the
optimized functions are implemented in C using intrinsics, but a
few assembly versions are also maintained in order to have an
infrastructure for contributors using assembly directly.

The cumulative speedup from the optimizations for the whole
encoder is around 2.0× for all-intra coding, which is enough to
encode Full HD resolution in real time on Intel 8-core i7
processor [14]. Kvazaar is also able to attain real-time HEVC
coding speed up to 4K resolution on Intel 14-core Xeon processor.

Hardware-oriented source code eases acceleration of Kvazaar,
e.g., on field-programmable gate array (FPGA) through high-
level synthesis [15].

3. VISUALIZATION TOOL
The analysis of HEVC block structures and coding mode
decisions is an integral part of the encoder development.
However, the needed analysis tools are usually meant for offline
use. In Kvazaar, a tool for visualizing the encoding process is
integrated into the encoder. This allows real-time debugging of
the encoding, which is more informative than the offline analysis
since the information used for coding decisions is also available.

The visualizer is built using Simple DirectMedia Layer (SDL)

multi-platform graphics library version 2. Illustrated components
are 1) block partitioning; 2) intra prediction; 3) inter prediction;
and 4) block reconstruction [16]. Figure 4 depicts two snapshots
of the visualization. The block reconstruction is used as the
background layer and the other layers can be toggled on and off.
This way, Kvazaar developers can focus on visualization elements
of particular interest.

Table 2. Coding parameters of Kvazaar

Feature

Profile

Internal bit depth

Color format

Coding modes

Slice Types

Coding Configurations

Coding Blocks

Intra Prediction modes

Intra Prediction Blocks

Inter Prediction Blocks

Transform Blocks

Transform

4x4 transform skip

Transform split

Parallelization

Rate Control

RDO

Intra, Inter, Skip, Merge

Main, Main Still Picture, Main 10

8 (10 if enabled when compiling)

4:2:0

Kvazaar HEVC encoder

64×64, 32×32, 16×16, 8×8

32×32, 16×16, 8×8, 4×4

DC, planar, 33 angular

32×32, 16×16, 8×8, 4×4

Integer DCT (Integer DST for luma 4×4)

Enabled

Tiles, Wavefront, Picture-level

64×64, 32×32, 16×16, 8×8, 4×4, AMP, SMP

I, P, B

AI, RA, LP

Available

64×64

Partial (includes RDOQ)

Figure 2. Block diagram of HEVC encoding in Kvazaar.

Figure 3. Diagram of Kvazaar parallelization architecture.

T Q

Q-1

T-1

EC

Quantized TCOEFF

IP

Bit

stream

LF

+

IP mode

DPBMC

IME

Original video +

_

MV, idx

D TCOEFF

D’

CPB

FME

PintraPinter

+

Drec

Dref

TCOEFF’

Input thread

Main thread
Worker

Worker

Worker

Frame encoder

CTB CTB CTB LF

CTB CTB CTB LF

CTB CTB CTB LF

Frame encoder

CTB CTB CTB LF

CTB CTB CTB LF

CTB CTB CTB LF

Decoded picture bufferInput picture buffer

T
h
re

a
d
 q

u
e
u
e

Compressed video

Frame encoder

Uncompressed
video

Multi-threaded processing is also visualized, including WPP, tiles,
and picture-level parallel processing. The block borders and
motion between consecutive pictures are marked with distinct
colors to make identification of the individual pictures easier.

4. USE IN EDUCATION
Kvazaar is used as an exercise application for teaching embedded

system development in the system design course at TUT. The
exercise work is to implement a live streaming Kvazaar on a
System-on-Chip FPGA (SoC-FPGA) which consists of a dual-core

ARM processor, programmable logic, Full HD camera, and
gigabit Ethernet. The design tasks include Kvazaar source code
profiling for identifying the critical functions for FPGA
acceleration and implementing the respective hardware/software
partitioning to meet the performance goals. Deploying research
results immediately into teaching resembles the development

work in a company due to which the student feedback of the
course has been very positive.

5. CONCLUSION AND FUTURE WORK
This paper presented a cross-platform academic Kvazaar encoder
for the newest international video coding standard HEVC.

Kvazaar is already included in the popular FFmpeg and Libav
multimedia frameworks, deployed in teaching at TUT, and
selected as a core component in three European multinational
R&D projects where Kvazaar is being used in application
development for 4K TV broadcasting, virtual advertising, Video
on Demand, video surveillance, and video conferencing.

In the future, the objective is to make Kvazaar a leading open-
source HEVC encoder globally in terms of performance,
versatility, portability, and popularity among end-users and
developers in the open-source community. HEVC Format Range
Extensions will be added in the portfolio of Kvazaar coding tools

to enable: 1) Format range extensions up to 12-bit 4:4:4 8K@120
fps Super Hi-Vision video; 2) Scalable HEVC coding to guarantee
video streaming in resource-constrained environments; and 3)
Multiview/3D coding to produce 3D, free viewpoint, and 360-

degree panoramic videos. Foreseen future applications include
virtual/augmented reality, free-viewpoint TV, telerobotics,
telemedicine, and self-driving vehicles.

6. ACKNOWLEDGMENTS
This work was supported in part by the three European Celtic-Plus
Projects: 4KREPROSYS, H2B2VS, and VIRTUOSE and by the
Academy of Finland, decision no 301820. The authors would also
like to thank all contributors of Kvazaar open-source project [9].

7. REFERENCES
[1] Cisco, Cisco Visual Networking Index: Forecast and

Methodology, 2014-2019, May 2015.

[2] High Efficiency Video Coding, document ITU-T Rec. H.265

and ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Apr.
2013.

[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand,
“Overview of the High Efficiency Video Coding (HEVC)
standard,” IEEE Trans. Circuits Syst. Video Technol., vol.

22, no. 12, Dec. 2012, pp. 1649-1668.

[4] Advanced Video Coding for Generic Audiovisual Services,

document ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC),
ITU-T and ISO/IEC, Mar. 2009.

[5] Joint Collaborative Team on Video Coding Reference
Software, ver. HM 16.0 [Online]. Available:

http://hevc.hhi.fraunhofer.de/

[6] x265 [Online]. Available: http://x265.org/

[7] HomerHEVC encoder [Online]. Available:
https://github.com/jcasal-homer/HomerHEVC

[8] f265 [Online]. Available: http://f265.org/

[9] Kvazaar HEVC encoder [Online]. Available:

https://github.com/ultravideo/kvazaar

[10] x264 [Online]. Available:
http://www.videolan.org/developers/x264.html

[11] Ultra video group [Online]. Available:
http://ultravideo.cs.tut.fi/

[12] A. Koivula, M. Viitanen, J. Vanne, T. D. Hämäläinen, and L.
Fasnacht, “Parallelization of Kvazaar HEVC intra encoder
for multi-core processors,” in Proc. IEEE Workshop Signal
Process. Syst., Hangzhou, China, Oct. 2015.

[13] A. Koivula, M. Viitanen, A. Lemmetti, J. Vanne, and T. D.
Hämäläinen, “Performance evaluation of Kvazaar HEVC
intra encoder on Xeon Phi many-core processor,” in Proc.
IEEE Global Conf. Signal Information Process., Orlando,

Florida, USA, Dec. 2015.

[14] A. Lemmetti, A. Koivula, M. Viitanen, J. Vanne, and T. D.
Hämäläinen, “AVX2–Optimized Kvazaar HEVC Intra
Encoder,” Accepted to IEEE Int. Conf. Image Processing,

Phoenix, Arizona, USA, Sept. 2016.

[15] P. Sjövall, J. Virtanen, J. Vanne, and T. D. Hämäläinen,
“High-level synthesis design flow for HEVC intra encoder
on SoC-FPGA,” in Proc. Euromicro Symp. Digit. Syst. Des.,

Funchal, Madeira, Portugal, Aug. 2015.

[16] M. Viitanen, A. Koivula, J. Vanne, and T. D. Hämäläinen,
“Live Demonstration: Run-time Visualization of Kvazaar
HEVC Intra Encoder,” in Proc. IEEE Int. Symp. Circuits
Syst., Montreal, Canada, May 2016.

Figure 4. Kvazaar visualizer output.

