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Abstract We approach the problem of choosing linearly independent loops in a
pipeflow network as choosing the best-conditioned submatrix of a given larger ma-
trix. We present some existing results of graph theory and submatrix selection prob-
lems, based on which we construct three heuristic algorithms for choosing the loops.
The heuristics are tested on two pipeflow networks that differ significantly on the
distribution of pipes and nodes in the network.

1 Introduction

In boiler design it is essential that we can estimate the flow rates in each of the pipes
related to the boiler. By estimating the flow rates the pipes can be made sufficiently
durable so that they withstand the flow, while the pipes should not be made need-
lessly durable so that the material costs can be held at a reasonable level. Thus, it is
possible to deliver durable boilers at a competitive prize to the potential customers.
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A very simple example of a boiler modeled as a pipeflow network is given in Fig.
1. There the network consists of m = 12 pipes and n = 6 nodes, and the heat surface
is modeled by the seven adjacent pipes between the nodes 3 and 4. The behavior
of the flow in such a network can be depicted by two simple principles - the first
one being the continuity of flow on each node, i.e., flow in equals flow out, and the
second one being that the pressure loss over any closed circuit has to be zero.

Fig. 1 A very simple example of a boiler mod-
eled as a pipeflow network. In this case, the
model consists of 12 pipes corresponding the
12 edges and 6 nodes corresponding the 6 ver-
tices. The heating surface is modeled by the
seven adjacent pipes between nodes 3 and 4 1 2 3
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We obtain n−1 linearly independent linear equations from the continuity of flow,
and therefore we need m− n+ 1 equations based on the pressure losses (see [4]
for details on obtaining the equations). Even though the pressure loss equations
are nonlinear with respect to the flow rates, we want to have as many equations
as we have unknown variables so that we can solve the linearized version of the
equations. As a whole the flow rates are solved iteratively by subsequently solving
the linearized version of the equations by following the procedure depicted in [4]. In
order to improve the convergence and numerical stability of the iterative procedure,
we will present heuristics for improving the condition number of the set of linearized
equations.

The structure of this paper is as follows. In Sect. 2 we consider the problem
from a theoretical standpoint and present some existing results as a basis for our
heuristics. The heuristics for choosing the pressure loss loops are presented in Sect.
3 where we also consider the effect of scaling on the condition number. In Sect. 4
we test our heuristics in two different pipeflow networks, and in Sect. 5 we conclude
our work.

Throughout this paper we denote the number of pipes in a network by m and
the number of nodes by n. The singular values of a matrix are denoted by σi and
the condition number of the matrix is determined by the quotient of its largest and
smallest singular values. We denote the inner product of two vectors x and y by 〈x,y〉,
and the Euclidean (2-)norm || · || is induced by the inner product, i.e., ||x||2 = 〈x,x〉.
The maximum (∞-)norm is denoted by || · ||∞.

2 Theoretical Background

In this section we will consider some required background to understand our ap-
proach to the problem of choosing linearly independent pressure loss loops. The
section is divided into two subsections considering graph theory and the problem
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of choosing the best-conditioned submatrix. As the reference of graph theory we
use the recent book by Santamu [2], and in the submatrix selection problem our
reference is the article by Šrámek et al. [3].

2.1 Concepts of Graph Theory

In this subsection we will review some required background to graph theory in order
to present the concept of fundamental cycles. First of all, we call the minimum set
of edges that connects all the vertices a spanning tree. There are n− 1 edges in a
spanning tree, and the remaining m− n+ 1 edges form the cospanning tree. When
an edge from the cospanning tree is added to the spanning tree, a cycle is formed.
By separately adding the vertices of the cospanning tree to the spanning tree we
obtain a cycle for each of the vertices, and together these cycles form the set of fun-
damental cycles. As each fundamental cycle contains at least one unique edge, the
set of fundamental cycles is independent under the ring sum operation. Similarly the
set of vectors of Rm corresponding to the fundamental cycles are linearly indepen-
dent in the usual sense. Note also that as the spanning tree is not unique, the set of
fundamental cycles is not unique either.

Based on the above we can choose the pressure loss loops such that they form
a set of fundamental cycles, which will make them linearly independent. However,
we do not know which set of fundamental cycles is the most linearly independent.
In our approach we aim to choose the most linearly independent cycles from the
set of an excessive number of cycles by utilizing the ideas presented in the next
subsection.

2.2 Choosing the Best-Conditioned Submatrix

Since we aim to choose the most linearly independent set of cycles from a larger set,
our problem is similar to choosing the best-conditioned submatrix of a larger matrix.
Assume that we have an M×m (M > m) matrix of which we aim to find the best-
conditioned m×m submatrix. The problem is in fact shown to be NP-hard in [3],
but the authors have also presented a heuristic to find a well-conditioned submatrix
in (Mm2) time. The heuristic is based on finding such a submatrix A whose rows are
as orthogonal as possible. Thus, the heuristic tends to maximize vol(A) = Π m

i=1σi
whereas the condition number of A is defined as cond(A)=σmax/σmin, and therefore
the heuristic usually provides suboptimal solutions.

Consider the problem of finding a well-conditioned m×m submatrix B of an
M×m matrix A, where M > m. The heuristic presented in [3] repeats the following
steps m times:

1. On the i:th step, find the row a j of A that has the largest norm. Choose the row as
the i:th row of B, i.e., bi = a j.
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2. For each row of A, Subtract its projection to bi from itself, i.e., update the re-
maining rows ak by ak = ak−〈ak,bi〉||bi||−2bi.

Thus, on each step, the heuristic finds the row of A that has the largest orthogonal
component with respect to the previously chosen rows. Therefore the rows of the
submatrix B should eventually be rather orthogonal, and B should be fairly well-
conditioned. We will be using this algorithm as a basis for our own heuristics for
choosing the pressure loss loops.

3 Heuristics for Improving the Condition Number

In this section we consider three heuristics for choosing the pressure loss loops
based on the previously presented algorithm form [3]. Before presenting the heuris-
tics in Subsect. 3.2 we will consider improving the condition number by scaling the
equations.

3.1 Scaling the Equations

Consider the linearized set of equations for the flow rates in the form Ax = b. The
m− n+ 1 rows of A corresponding to the pressure loss equations contain elements
of the scale 103− 105, whereas the n− 1 continuity of flow equations consist of
elements −1,0 and 1. Thus, the matrix A may be badly scaled, and therefore we
consider simple row scaling to improve its condition number.

A heuristic given in [1] suggests that the scaling matrix S should be chosen
such that every row of SA has approximately the same ∞-norm. Thus, by choos-
ing S = diag(||a1||−1

∞ , ||a2||−1
∞ , . . . , ||am||−1

∞ ) the ∞-norm of each row of SA is 1. As
a comparison we will also consider normalizing the rows of A with respect to the
Euclidean (2-)norm. The results of scaling in two different cases are presented in
Table 1. The two cases are considered in more detail in Sect. 4.

Table 1 The effect of scaling on the condition number. The numbers represent the mean condition
number and its standard deviation for 100 matrices generated from the same network. The second
and third rows display the effect of normalization with respect to ∞ and 2-norms, and the first row
shows the condition number of the matrix without scaling for reference.

Case 1 Case 2
m = 618,n = 235 m = 953,n = 78

I (9.4±1.8) ·105 (13.4±2.2) ·105

S∞ (15.0±3.0) ·103 (15.6±4.2) ·103

S2 (12.2±2.7) ·103 (7.7±2.4) ·103
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The table shows that normalization with respect to both ∞- and 2-norms improve
the condition number by a factor of 100. Furthermore, the table indicates that 2-
norm actually provides better condition numbers than ∞-norm, which is somewhat
unexpected based on the above heuristic.

3.2 Choosing the Pressure Loss Loops

In this subsection we present three heuristics for choosing the pressure loss loops.
All the heuristics utilize the submatrix selection algorithm presented in [3]. In each
of the heuristics we assume that we have generated an excessive number of loops
and have a matrix A the rows of which correspond to these loops. Our task is to
find the m− n+ 1 rows of A that together with the n− 1 rows obtained from the
continuity of flow equations result in the best-conditioned m×m matrix.

Heuristic 1: The first heuristic directly utilizes the algorithm presented in [3].
Denote the n− 1×m matrix corresponding to the continuity of flow equations by
C. We begin by subtracting the projection of A to C from A, i.e., we update A by
A = A− (CT (CCT )−1CAT )T , which makes the rows of A orthogonal to the rows of
C. Now we simply use the algorithm of [3] to choose the m− n+ 1×m submatrix
of A, which yields the choice of the pressure loss loops.

Heuristic 2: In the second heuristic we assume that we have an initial m×m ma-
trix A0 that can be created by choosing a set of fundamental circuits as the pressure
loss loops. After the initialization, the heuristic is described as follows.

1. Find the row index j of A0 that satisfies

j = max
n≤ j≤m

m

∑
k=1,k 6= j

|〈a0 j||a0 j||−1,a0k||a0k||−1〉|

and remove the row a0 j from A0. Denote Ã0 = A0 \a0 j.
2. Compute the norm of the orthogonal component of a0 j to the rows of Ã0, i.e.,

r = ||aT
0 j− ÃT

0 (Ã0ÃT
0 )
−1Ã0aT

0 j||.
3. Find the row ai of A that has norm-wise the largest orthogonal component to the

rows of Ã0.
4. If ||aT

i − ÃT
0 (Ã0ÃT

0 )
−1Ã0aT

i || > r, swap a0 j and ai and go to step 2, otherwise
stop.

That is, as long as we can find a row of A that is more orthogonal to A0 than the least
orthogonal row of A0, we swap the rows.

Heuristic 3: The third heuristic is essentially a combination of the first two
heuristics. First, we generated an initial matrix A0 as in the previous heuristic. Then
compute

m

∑
k=1,k 6= j

|〈a0 j||a0 j||−1,a0k||a0k||−1〉| for n≤ j ≤ m. (1)

Next, find N largest of these values, where N is predetermined, and move the
corresponding rows from A0 to A. Denote Ã0 = A0 \ A0,moved , and update A by
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A = A− (ÃT
0 (Ã0ÃT

0 )
−1Ã0AT )T . Finally, use the algorithm presented in [3] to find

a well-conditioned N×m submatrix of A that yields the choice of the N loops that
replace the ones that were removed earlier.

4 Test Cases and Results

We will test the heuristics on the two cases we inspected the effect of scaling on.
The cases are chosen due to their different distributions of pipes and nodes. We
will perform the choosing of loops 100 times for both test cases, and initially we
will generate approximately 10(m− n) loops. The parameter N for Heuristic 3 is
chosen based on the mean value of the quantities computed in Eq. (1). Additionally,
it should be noted that since row normalization with respect to 2-norm was found
effective on Subsect. 3.1, we will do that in the test cases as well.

4.1 Case 1: 618 pipes, 235 nodes

In Case 1 the pipeflow network consists of 618 pipes and 235 nodes, i.e., the number
of nodes is relatively high. The results on the test case are shown in Table 2 where
we see that while Heuristic 1 provides the best-conditioned matrix, it also requires
the most iterations and computational time. Heuristic 2 performs also rather well
as it yields almost as good results as Heuristic 1 while it requires the least time
and iterations. Heuristic 3 does clearly the worst as it is worse than Heuristic 2
on all the aspects. Regardless, it should be noted that all the heuristics yield clearly
better results than choosing a matrix randomly as seen by comparing the two bottom
rows of the table. Note also that the cond(A0) for Heuristic 1 is left blank as the
heuristic does not use any initial matrix, and the standard deviation on the number
of iterations is not displayed as the heuristic always requires m−n+1 iterations.

Table 2 Results on Case 1. The numbers represent the mean values and standard deviations of
the number of iterations, computational time, condition number of the m×m submatrix A and
condition number of the initial m×m matrix A0.

Heuristic 1 Heuristic 2 Heuristic 3

iterations 384 51.0±31.8 216.7±36.7
time (s) 30.6±1.2 8.0±4.8 19.0±3.5
cond(A) 6905±4228 7119±3910 9332±4437
cond(A0) - 12312±3083 12312±3083
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4.2 Case 2: 953 pipes, 78 nodes

In Case 2 the pipeflow network consist of 953 pipes and 78 nodes, i.e., the num-
ber of nodes is relatively low. In this case Heuristic 1 provides clearly the best-
conditioned matrices but it also requires clearly the most computational time and
iterations. Heuristic 2 performs only a few iterations, which explains the short com-
putational time and only the slight improvement from the initial cond(A0). Heuristic
3 similarly does relatively few iterations, but oddly the resulting matrix has on av-
erage worse condition number than the initial matrix. However, it should be noted
that the heuristic aims to increase the orthogonality of the matrix, which may be
achieved even if the condition number is increased.

Table 3 Results on Case 2. The numbers represent the mean values and standard deviations of
the number of iterations, computational time, condition number of the m×m submatrix A and
condition number of the initial m×m matrix A0.

Heuristic 1 Heuristic 2 Heuristic 3

iterations 876 2.33±2.62 82.57±9.98
time (s) 258.9±7.9 2.1±1.6 27.1±3.2
cond(A) 1976±462 7813±2161 8454±3470
cond(A0) - 7852±2152 7852±2152

5 Conclusions

We presented three heuristics for choosing linearly independent loops in a pipeflow
network. The heuristics were tested on two cases with differently distributed pipes
and nodes. The first heuristic provided the best results but also required the most
time, whereas the second heuristic was the fastest one but could not always provide
as good results as Heuristic 1. The third heuristic was clearly the worst of the three.
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