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Abstract— We present a controller that achieves robust
regulation for a port-Hamiltonian system of even order.
The controller is especially designed for impedance energy-
preserving systems. By utilizing the stabilization results for
port-Hamiltonian systems together with the theory of robust
output regulation for exponentially stable systems, we construct
a simple controller that solves the Robust Output Regulation
Problem for an initially unstable system. The theory is illus-
trated on an example where we construct a controller for one-
dimensional Schrödinger equation with boundary control and
observation.

I. INTRODUCTION

The class of port-Hamiltonian systems includes models
of flexible structures, traveling waves, heat exchangers,
bioreactors, and, in general, lossless and dissipative hyperbolic
systems on one-dimensional spatial domain [7]. Due to this
vast coverage of models, the stability and stabilization of port-
Hamiltonian systems have been subjects of active research
during the past decade [1], [12]. Stability and stabilization
properties of systems are essential for robust output regulation
problems, which ties robust regulation for port-Hamiltonian
systems closely to this field of research.

The Internal Model Principle is the key to understanding
how control systems can be robust, i.e., tolerate perturbations
in the systems’ parameters. The type of robust controller
(low-gain controller) proposed by Davison [3] for stable
systems has many practical advantages, as the structure of
the controller is simple and it can be tuned with input-output
measurements from the open loop system. The controller was
generalized to infinite-dimensional systems and its tuning
process was simplified in [5], [6]. The Internal Model
Principle was generalized to regular linear systems in [9],
[10]

In this paper, we construct a robust regulating controller
for an impedance energy-preserving port-Hamiltonian system
of even order. Even though the considered system is initially
unstable, by combining output feedback with a typical
controller structure we will be able to construct a simple
controller that achieves robust output regulation on the system.
By robust regulation we mean that the controller exponentially
asymptotically tracks the reference signal yref , exponentially
asymptotically rejects the boundary disturbance w and allows
some perturbations in the plant [6].

As the main contribution of this paper we construct a
simple robust regulating controller for an initially unstable
system. Using the stability results presented in [1] we
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derive a sufficient criterion for exponential stability of port-
Hamiltonian systems of even order. With the new criterion, we
will show that the asymptotically stabilizing output feedback
presented in [12] actually achieves exponential stability for
impedance energy-preserving port-Hamiltonian systems of
even order. When the system is exponentially stabilized, we
can utilize the controller structure introduced in [5], [6] for
exponentially stable systems, and construct a simple robust
regulating controller for a system that was initially unstable.

The structure of this paper is as follows. In Section III we
give some required background to port-Hamiltonian systems.
Furthermore, we will present a sufficient condition for an
even-order port-Hamiltonian system to be exponentially stable,
and we will use the result to exponentially stabilize a port-
Hamiltonian system. In Section IV we will introduce the
control system, and in Section V we present the Robust
Output Regulation Problem (RORP) and the Internal Model
Principle. In Section VI we will present our main result
which will be illustrated in Section VII where we construct
a controller for one-dimensional Schrödinger equation. In
Section VIII we conclude the paper.

II. NOTATION

Here L(X,Y ) denotes the set of bounded linear operators
from the normed space X to the normed space Y . The domain,
range, null space and resolvent of a linear operator A are
denoted by D(A),R(A), N (A) and ρ(A), respectively. A
strongly continuous (C0-) semigroup TA(t) generated by A
is exponentially stable if there are positive constants M and
α such that ||TA(t)|| ≤Me−αt.

III. BACKGROUND ON PORT-HAMILTONIAN SYSTEMS

A linear port-Hamiltonian system of order N on the spatial
interval ζ ∈ [a, b] is given by

∂

∂t
x(ζ, t) = Ax(ζ, t), x(0) = x0, (1a)

u(t) = Bx(·, t), (1b)
y(t) = Cx(·, t), (1c)

where B and C are linear operators, and the operator A is
defined by

Ax(ζ, t) :=

N∑
k=0

Pk
∂k(H(ζ)x(t, ζ))

∂ζk
, (2)

where the matrices Pk ∈ Cn×n satisfy the condition P ∗k =
(−1)k+1Pk for k ≥ 0, and the matrix PN is assumed to
be invertible [12]. The Hamiltonian density matrix function
H : [a, b]→ Cn×n is a measurable function such that there
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exists 0 < m ≤ M such that for almost every ζ ∈ [a, b]
we have H(ζ) = H(ζ)∗ and m|ξ|2 ≤ ξ∗H(ζ)ξ ≤M |ξ|2 for
ξ ∈ Cn [1]. The energy state space X = L2([a, b],Cn) is
equipped with the inner product

〈f, g〉X =
1

2

b∫
a

g(ζ)∗H(ζ)f(ζ)dζ, (3)

and hence, X is a Hilbert space.
Let

Φ : HN ([a, b];Cn)→ C2nN ,

Φ(x) := (x(b), . . . , x(N−1)(b), x(a), . . . , x(N−1)(a))
(4)

be the boundary trace operator and introduce the boundary
port variables f∂ , e∂ defined by[

f∂
e∂

]
:=

1√
2

[
Q −Q
I I

]
Φ(Hx) := RextΦ(Hx), (5)

where Q ∈ CnN×nN is a block matrix given by

Qij :=

{
(−1)j−1Pi+j−1, i+ j ≤ N + 1

0, else
. (6)

Note that since PN is assumed to be invertible, it follows
that Q is invertible, and hence, Rext is invertible as well.
Using the boundary port variables we define the operators B
and C as

Bx(t) := WB

[
f∂(t)
e∂(t)

]
, (7a)

Cx(t) := WC

[
f∂(t)
e∂(t)

]
, (7b)

where WB ,WC ∈ CnN×2nN . [1]
Define the domain of the operator A as

D(A) =

{
Hx ∈ HN ([a, b],Cn)

∣∣∣∣WB

[
f∂
e∂

]
= 0

}
. (8)

Since we assumed P0 to be skew-adjoint, it follows from
[4, Thm. 4.1] that the operator A generates a contraction
semigroup if and only if WBΣW ∗B ≥ 0, where

Σ =

[
0 I
I 0

]
. (9)

Furthermore, for N = 1 we have from [7, Lem. 9.1.4] that
if WBΣW ∗B > 0 then A generates an exponentially stable
semigroup. By utilizing the following proposition [1, Prop.
2.14], we will show that the result of [7, Lem. 9.1.4] holds
for N = 2 as well.

Proposition 1: [1, Prop. 2.14] Let N = 2 and H ∈
W 1
∞([a, b];Cn×n), and assume

Re〈Ax, x〉X ≤ −γ
(
||(Hx)(a)||2 + ||(Hx)′(a)||2 + ||(Hx)(b)||2

)
(10)

for x ∈ D(A) and for some γ > 0. Then A generates an
exponentially stable and contractive C0-semigroup.

�
Lemma 1: Let N = 2. If WBΣW ∗B > 0, then the operator

A with domain (8) generates an exponentially stable C0-
semigroup.

Proof: Following the proof of [7, Lem. 9.1.4] we write
WB = S [I + V, I − V ], where S is invertible and V V ∗ <
I (equivalently V ∗V < I), and define a full rank matrix

WC = [I + V ∗, −I + V ∗]. Thus, the matrix
[
WB

WC

]
is

invertible.
Let x ∈ D(A) be arbitrary. By definition of the domain

of A we have that
[
f∂
e∂

]
∈ N (WB). Following the proof

of [7, Lem. 9.1.4], we may write[
f∂
e∂

]
=

[
I − V
−I − V

]
l

for some l ∈ C2n. Since P ∗0 = −P0, we have [1, Lem. 2.2]
that

2 Re〈Ax, x〉X = Re〈f∂ , e∂〉C4n = l∗(−I + V ∗V )l.

Furthermore, we have

y := WC

[
f∂
e∂

]
= [I + V ∗, −I + V ∗]

[
I − V
−I − V

]
l

= 2(I − V ∗V )l,

from which we obtain

Re〈Ax, x〉X =
1

8
y∗ [−I + V ∗V ]

−1
y ≤ −m1||y||2 (11)

for some m1 > 0, where we used that −I + V ∗V < 0.
Using (5), the definition of the domain of A and the

definition of y we obtain[
0
y

]
=

1√
2

[
WB

WC

] [
Q −Q
I I

]
Φ(Hx) := WΦ(Hx).

Since PN = P2 is assumed to be invertible and
[
WB

WC

]
is

invertible, the matrix W is invertible and ||Ww||2 ≥ m2||w||2
for every w ∈ C4n and some m2 > 0. Taking norms on both
sides we obtain

||y||2 = ||WΦ(Hx)||2

≥ m2||Φ(Hx)||2

≥ m2

(
||(Hx)(a)||2 + ||(Hx)′(a)||2 + ||(Hx)(b)||2

)
,

(12)

and finally, by combining (11) and (12) we have reached rela-
tion (10), and thus, the operator A generates an exponentially
stable C0-semigroup by Proposition 1.

It should be noted that the authors of [1] have also
generalized the result of Proposition 1 to port-Hamiltonian
systems of even order, where relation (10) becomes

Re〈Ax, x〉X ≤ −γ
∑
ζ=a,b

N−1∑
k=0

αζ,k

∣∣∣∣∣∣(Hx)(k)(ζ)
∣∣∣∣∣∣2 (13)

for some γ > 0 and certain αζ,k ≥ 0 [1, Prop. 2.16]. It is
easy to see that in the general case N ∈ 2N the estimation in
equation (12) can be done so that when combined with (11),
we obtain relation (13). Furthermore, since the estimation
in equation (12) is the only part of the proof of Lemma 1
that depends on the order N , the result of Lemma 1 can
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be generalized to port-Hamiltonian systems of even order as
well. We then arrive at the generalization of Lemma 1:

Lemma 2: Let N ∈ 2N. If WBΣW ∗B > 0, then the
operator A with domain (8) generates an exponentially stable
C0-semigroup.

�
Using Lemma 2 we can now show that a certain class of

port-Hamiltonian systems of even order can be exponentially
stabilized by negative output feedback. Consider the class of
impedance energy-preserving port-Hamiltonian systems that
are systems satisfying the relation [12]

1

2

d

dt
||x(t)||2X = u∗(t)y(t). (14)

An impedance energy-preserving system can be identified
based on the matrices WB and WC by [4, Thm. 4.4].
Essentially the matrices are given a certain structure such
that they satisfy

WBΣW ∗B = WCΣW ∗C = 0, (15a)
WBΣW ∗C = WCΣW ∗B = I, (15b)

which can be checked very easily.
Stabilization of impedance energy-preserving systems is

considered in [12], where it is shown that negative output
feedback asymptotically stabilizes an impedance energy-
preserving system. We will now show that, for systems of
even order, exponential stability is actually achieved.

Lemma 3: Consider the system (1) with N ∈ 2N and
assume that u and y are such that WB and WC satisfy
equations (15a)–(15b). Then the system can be exponentially
stabilized using negative output feedback.

Proof: Using negative output feedback to the system,
i.e., u(t) = r(t)−κy(t) where κ > 0, the closed-loop system
is described by [12]

ẋ(t) = Ax(t),

(WB + κWC)

[
f∂(t)
e∂(t)

]
= (B + κC)x(t) = r(t),

Cx(t) = y(t).

(16)

Now, consider the operator As = A|D(As), where

D(As) =

{
Hx ∈ HN ([a, b],Cn)

∣∣∣∣Wκ

[
f∂
e∂

]
= 0

}
,

(17)
where Wκ = WB+κWC . It is shown in [12] that Wκ satisfies
WκΣW ∗κ = 2κI > 0, and hence, if N ∈ 2N, the operator
As generates an exponentially stable C0-semigroup due to
Lemma 2.

IV. THE PLANT, EXOSYSTEM AND CONTROLLER

In this section we will present the plant, the exosystem and
the controller. The plant is an impedance energy-preserving
port-Hamiltonian system of even order given by

ẋ(t) = Ax(t), x(0) = x0, (18a)
Bx(t) = u(t) + w(t), (18b)
Cx(t) = y(t), (18c)

where A is given in (2) with N ∈ 2N, B and C are given
in (7a)–(7b) with WB and WC satisfying (15a)–(15b), and
w(t) is a bounded and differentiable disturbance signal.

Since WB satisfies WBΣW ∗B = 0, the system (18) is a
boundary control system [4, Thm. 4.2], and hence there are
operators A : D(A) → X with D(A) = D(A) ∩ N (B)
and Ax = Ax for x ∈ D(A), and B ∈ L(U,X) such that
R(B) ⊂ D(A) and BBu = u [2, Def. 3.3.2]. Using these
operators, the transfer function from u to y is given by [6]

P (s) = C(sI −A)−1(AB − sB) + CB. (19)

The exosystem that generates the boundary disturbance
signal w(t) and the reference signal yref (t) is given by

v̇(t) = Sv(t), v(0) = v0 (20a)
w(t) = Ev(t), (20b)

yref (t) = −Fv(t) (20c)

on a finite-dimensional space W = Cq. Here S =
diag(iω1, iω2, . . . , iωq) with {ωi}qi=1 ⊂ R and ωi 6= ωj for
i 6= j, E ∈ L(W,U) and F ∈ L(W,Y ). Furthermore, we
assume that for every k ∈ {1, 2, . . . , q} the transfer function
P (iωk) ∈ L(U, Y ) is surjective, which is crucial to the
solvability of the robust output regulation problem.

The dynamic error feedback controller is of the form

ż(t) = G1z(t) + G2e(t) z(0) = z0, (21a)
u(t) = Kz(t)− κy(t), (21b)

where e(t) = y(t) − yref (t) is the error signal, κ > 0,
and the parameters (G1,G2,K) are to be chosen such that
robust output regulation is achieved. Note that in the usual
formulation of the controller we have κ = 0, and hence,
the parameter κ is not included in the controller parameters.
However, the extra term −κy(t) is required to exponentially
stabilizing the plant (18). The controller (21) is an abstract
linear system on Banach space Z. The operator G1 : D(G1) ⊂
Z → Z generates a C0-semigroup on Z, G2 ∈ L(Y,Z) and
K ∈ L(Z,U) [8].

In order to give the state-space presentation of the closed-
loop control system, we define a new variable ξ = x −
Bsr − Gv, where r = Kz, the operator Bs ∈ L(U,X) is
such that R(Bs) ⊂ D(A) and (B + κC)Bsr = r, and the
operator G ∈ L(W,X) is such that R(G) ⊂ D(A) and
(B + κC)Gv = Ev. These operators exist as the plant (18)
with input u = Kz − κy is a boundary control system [12].
Define now the extended state-space by Xe := X × Cq , and
let ξe(t) := (ξ(t), z(t)) be the extended state. Following [6],
the closed-loop control system can be written as

ξ̇e = Aeξe +Hv +Dyref , (22)

MTNS 2016, July 11-15, 2016
Minneapolis, MN, USA

154



where D(Ae) = D(As)× Cq and

Ae =

[
As −BsKG2C ABsK −BsK(G1 + G2CBsK)

G2C G1 + G2CBsK

]
,

H =

[
AG−BsKG2CG−GS

G2CG

]
,

D =

[
BsKG2
−G2

]
,

(23)
where the operator As is given by As : D(As) → X with
D(As) = D(A)∩N (B+κC) and Asx = Ax for x ∈ D(As).

V. THE ROBUST OUTPUT REGULATION PROBLEM

In this section we formulate the robust output regu-
lation problem and present a few related concepts. We
consider perturbations (Ã, B̃, C̃, Ẽ, F̃ ) ∈ O of the opera-
tors (A,B, C, E, F ) where the operators in the class O of
admissible perturbations are such that (i) the perturbed plant
(Ã, B̃, C̃) is a boundary control system and (ii) iωk ∈ ρ(Ã)
for k ∈ {1, 2, . . . , q}. It is easy to see that these conditions are
satisfied for all bounded and sufficiently small perturbations
to (A,B, C) and for arbitrary bounded perturbations to the
operators E and F [10].

The following formulation of the robust output regulation
problem is given in [10]:
The Robust Output Regulation Problem. Choose the
controller (G1,G2,K, κ) in such a way that the following
are satisfied:

1) The closed-loop system generated by Ae is exponen-
tially stable.

2) For all initial states ξe0 ∈ Xe and v0 ∈ W the
regulation error satisfies eα·e(·) ∈ L2([0,∞);Y ) for
some α > 0.

3) If the operators (A,B, C, E, F ) are perturbed to
(Ã, B̃, C̃, Ẽ, F̃ ) ∈ O in such a way that the closed-
loop system remains exponentially stable, then for all
initial states ξe0 ∈ Xe and v0 ∈W the regulation error
satisfies eα̃·e(·) ∈ L2([0,∞);Y ) for some α̃ > 0.

We say that a controller (G1,G2,K) incorporates a p-
copy of the internal model of the exosystem S if for all
k ∈ {1, 2, . . . , q} we have dim(N (iωk − G1)) ≥ dim(Y )
[8]. Since we assumed that the eigenvalues of S are distinct
and we have dim(Y ) < ∞, the controller incorporates a
p-copy of the internal model of the exosystem if G1 =
diag(iω1IY , iω2IY , . . . , iωqIY ). Furthermore, a controller
(G1,G2,K) is said to satisfy the G-conditions if

R(iωk − G1) ∩R(G2) = {0}, (24a)
N (G2) = {0}, (24b)

for all k ∈ {1, 2, . . . , q}. [8]

VI. CONSTRUCTION OF THE ROBUST CONTROLLER

In this section we will prove that a controller of the
form (21) with suitably chosen parameters (G1,G2,K) and
κ > 0 solves the Robust Output Regulation Problem for
an impedance energy-preserving port-Hamiltonian system of
even order.

Theorem 1: Let the control system be as described in
Section IV. There is a controller of the form (21) such that
for every κ > 0 there exists an εκ > 0 such that for every
0 < ε ≤ εκ the Robust Output Regulation Problem is solved.

Proof: Let us begin the proof from the stabilization
of the plant (18). We denote temporarily Kz(t) = r(t), and
hence, the input for the plant (18) is of the form u(t) = r(t)−
κy(t). Since the plant is an impedance energy-preserving port-
Hamiltonian system of even order, such an input exponentially
stabilizes the plant due to Lemma 3. Thus, there is an operator
As : D(As) → X with D(As) = D(A) ∩ N (B + κC) and
Asx = Ax for x ∈ D(As) that generates an exponentially
stable C0-semigroup.

Now that the plant is exponentially stabilized, we will
choose the controller parameters (G1,G2,K) such that the
controller exponentially stabilizes the closed-loop system and
solves the robust output regulation problem. We can utilize
the controller parameter choices made in [6] where a robust
regulating controller was constructed for an exponentially
stable system. Essentially the controller parameters are chosen
in such a way that the controller incorporates a p-copy of the
internal model of the exosystem and satisfies the G-conditions.

Following [6] and [10] we define Z = Y q and choose the
controller parameters as

G1 = diag (iω1IY , iω2IY , . . . , iωqIY ) ∈ L(Z), (25a)

K = εK0 = ε
[
K1

0 ,K
2
0 , . . . ,K

q
0

]
∈ L(Z,U), (25b)

G2 = (Gk2 )qk=1 = (−(Pκ(iωk)Kk
0 )∗)qk=1

=

 −(Pκ(iω1)K1
0 )∗

...
−(Pκ(iωq)K

q
0)∗

 ∈ L(Y, Z),
(25c)

where Pκ(iωk) = P (iωk)(I + κP (iωk))−1 is the transfer
function of the stabilized plant [11]. As we assumed that
P (iωk) is surjective for every k ∈ {1, 2, . . . , q}, it follows
that Pκ(iωk) is surjective as well for every k.

Since the surjectivity assumption of the transfer function
holds, we choose the components Kk

0 of K0 such that the
operators Pκ(iωk)Kk

0 are invertible, e.g., by choosing Kk
0 =

Pκ(iωk)† (the Moore-Penrose pseudoinverse of Pκ(iωk)), in
which case we have Gk2 = −IY for all k ∈ {1, 2, . . . , q} [10].

It has been shown in [6] that, if the plant is exponentially
stable, there exists an ε∗ > 0 such that the closed-loop
system is exponentially stable for every 0 < ε ≤ ε∗ and that
the proposed controller solves the robust output regulation
problem. Since we choose the controller parameters according
to [6] and exponentially stabilized the plant, it follows
from the results of [6] that, when the plant is exponentially
stabilized with output feedback u(t) = Kz(t)−κy(t), where
κ > 0, there exists an εκ > 0 such that for every 0 < ε ≤ εκ
the closed-loop system is exponentially stable and the robust
output regulation problem is solved.
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VII. EXAMPLE

As an example we study Schrödinger equation on the
spatial interval ζ ∈ [0, 1] considered in [1], given by

∂

∂t
w(ζ, t) = i

∂2

∂ζ2
w(ζ, t), t ≥ 0, (26a)

which is a second-order port-Hamiltonian system with P2 = i,
P1 = P0 = 0, H(ζ) = 1 and state x(ζ, t) = w(ζ, t) [1]. The
inputs are given by

u(t) =

[
u1(t)
u2(t)

]
=

[
x′(0, t)
x(1, t)

]
+ w(t), (26b)

and the outputs are given by

y(t) =

[
y1(t)
y2(t)

]
=

[
ix(0, t)
ix′(1, t)

]
(26c)

Using the boundary port variables f∂ and e∂ the inputs and
outputs can be written as

u(t) = WB

[
f∂(t)
e∂(t)

]
=

1√
2

[
i 0 0 1
0 i 1 0

] [
f∂(t)
e∂(t)

]
,

y(t) = WC

[
f∂(t)
e∂(t)

]
=

1√
2

[
0 1 i 0
1 0 0 i

] [
f∂(t)
e∂(t)

]
.

(27)
As the matrices WB and WC satisfy equations (15a)–(15b),
the system (26) is an impedance energy-preserving port-
Hamiltonian system of order two, and thus, we may use
Theorem 1 to construct a robust regulating controller for the
system.

Let us first consider the transfer function of the system
(26), given by

P (s) =


− tanh(i

√
is)√

is

i

cosh(i
√
is)

i

cosh(i
√
is)

−
√
is tanh(i

√
is)

 . (28)

The transfer function is surjective for every s 6= 0 and s 6=
−i
(

(2m+1)π
2

)2
where m ∈ N, and thus, we cannot track

signals including those frequencies.
Let the exosystem be given by S = diag(−4iπ2,−iπ2)

and E = F = I . If we choose the output feedback parameter
as κ = 1, the transfer function for the stabilized plant is given
by Pκ(s) = P (s)(I +P (s))−1, and thus, for the eigenvalues
of the signal generator S we have

Pκ(−4iπ2) =
1

2

[
1 i
i 1

]
= Pκ(−iπ2)∗. (29)

Thus, if we choose Kk
0 = Pκ(iωk)−1, the controller parame-

ters are given by

G1 = diag(−i4π2,−i4π2,−iπ2,−iπ2),

G2 =

[
−IY
−IY

]
,

K = ε
[
Pκ(−4iπ2)−1, Pκ(−iπ2)−1

]
,

(30)

and based on Theorem 1 there now exists an εκ > 0 such that
for every 0 < ε ≤ εκ the closed-loop system is exponentially

stable and the robust output regulation problem is solved for
the system (26).

VIII. CONCLUSIONS

We presented a simple robust regulating controller for
an unstable, impedance energy-preserving port-Hamiltonian
system of even order. By deriving a new condition for
exponential stability of even-order port-Hamiltonian systems
we were able to stabilize the system, which allowed us to
utilize the theory of robust output regulation for exponentially
stable system. Thus, we constructed a simple controller for
an unstable system that exponentially stabilizes the original
plant and solves the Robust Output Regulation Problem for
the stabilized plant.
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