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Abstract— Commonly used Global Navigation Satellite Sys-

tems (GNSS) are inappropriate as Location Based Services (LBS) 

in indoor environment. Therefore research teams are developing 

different systems, which can be used as asuitable alternative. One 

of options is to use Inertial Navigation System (INS) which con-

sists of inertial sensors and mathematic procedures. This concept 

has been known for a long time, but with arrival of Microelectro 

Mechanical System (MEMS) INS found wide use. Smartphones 

with inertial sensors, such as accelerometers and gyroscopes, 

allow us to use them as input devices for Pedestrian Dead Reck-

oning (PDR). In this paper we present PDR by using smartphone 

sensors. They can be classified as low-cost Inertial Measurement 

Unit (IMU), and have been compared with more precise and 

expensive Xsens IMU. Accuracy of inertial sensors has increased 

in the past few years, but they still cannot alone provide proper 

accuracy because of many negative effects, such as heading drift 

due to gyroscope bias. Particle Filter (PF) has been successfully 

used with map constraints to increase the accuracy of proposed 

location system. Presented results show that low-cost smartphone 

IMU combined with PF can be applicable as proper navigation 

system. 
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I.  INTRODUCTION 

Navigating via Global Navigation Satellite System (GNSS) 
has become an important part in smartphone´s daily use. Even 
though GNSS provides fairly good location information in 
open-space, there are still areas, e.g., urban canyons, valleys 
and indoor environment, where localization is restrained. In 
order to carry out the positioning also in restrained areas with 
pedestrians, one possible solution is to use Pedestrian Dead 
Reckoning (PDR). PDR is a sequential navigation technique 
where the actual position is estimated from previous position 
whenever a step is detected. A basic concept of PDR is pre-
sented, e.g., in [1]. Conventionally, accelerometer data is used 
for step detection. Multiple detection methods have been de-
veloped, e.g., peak and zero crossing detection [2]. To obtain 
position update, step length and heading information are also 
needed. Step length is influenced by many factors such as age 
or gender and thus it is one of the challenges in PDR. Step 
length is closely connected with activity. Faster movement 
usually means longer steps. Even the step length of the same 
person varies from step to step. Last, the heading angle, i.e., the 

moving direction, of the pedestrian needs to be calculated. 
Conventionally, gyroscopes and/or magnetometers are used for 
the heading estimation [3], [4]. However, magnetometers are 
known to suffer from the errors caused by ferromagnetic metal 
elements in buildings. 

In order to do PDR, many research teams have been using 
Inertial Measurement Unit (IMU) consisting of accelerometers, 
gyroscopes and in some cases also magnetometers. Conven-
tionally more expensive IMU provide more accurate results. In 
past few years, there have been tendency to use low-cost sen-
sors for personal navigation. Embedded appropriate sensors in 
smartphone allow them to be used as a suitable device for the 
PDR. One advantage is, that almost everybody owns 
smartphone, but on the other hand their accuracy might not be 
as high as needed. As mentioned, GNSS is insufficient in urban 
environment. One of the possible solution for open-space area 
was presented in [5] and [6] where GNSS was combined with 
PDR. IMU can be attached to different body parts. One major 
class is waist or torso-mounted IMU [7]. In addition, there are 
helmet-mounted [8] and foot-mounted PDR systems [9]. Usu-
ally the foot-mounted systems are more accurate, e.g., in [10] 
the position error was below 5% of travelled distance for in-
door and outdoor environment. Nevertheless, MEMS sensors 
alone cannot provide accurate information because of many 
negative effects, e.g., bias, thermal noise, 1/f noise or non-
orthogonality of axis. Thus one option is to combine them with 
different localization methods. For example, in [11], [12], [13] 
and [14] combination of inertial sensors with Wi-Fi for 
handheld device was presented, similar combining method with 
UWB can be found in [15] and in [16] PDR and light sensor in 
smartphone were combined. Selecting the optimal filter plays 
also an important role. Example of system combining multiple 
sources of position information using Kalman Filter (KF) can 
be found in [13] and [17]. In addition, combination of multiple 
smartphone sensors including magnetometer, gyroscope, accel-
erometer and pressure sensor is used in [18]. While KF one of 
the most often used fusion techniques, it is not applicable in all 
the situations. For example, Particle Filter (PF) is found to be 
more suitable for a map matching problems [19], [20]. 

In the prior art, use of smartphone IMU sensors for the 
PDR is described in [17], and [21]. In [22] estimation of 
smartphones position and orientation is presented. Different 
walking scenarios like holding smartphone in hand, in front of 
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face, facing ear, smartphone in trouser pocket, in bag and 
smartphone in swinging hand were discussed. In [23] a novel 
finite state machine based step detection technique is presented 
for more precise personal navigation with foot-mounted IMU. 
Compared to foot-mounted systems, the step detection algo-
rithms in waist-mounted systems are more similar to the algo-
rithms used in handheld systems. One solution with the waist-
mounted IMU is presented in [7]. Step length calculation by 
using simple harmonic motion by using Pythagoras theorem is 
presented in [24]. Activity classification, such as walking and 
going up and down the stairs, is defined in [25]. Adaptive Pe-
destrian Activity Classification (PAC) can be found in [26], 
which classifies two basic states, standing and walking. It is 
able to add two additional activities, moving up and down. 
After the step detection and the step length estimation, heading 
angle has to be calculated. In [4] improved heading estimation 
is discussed, it uses correlation between gyroscope and magne-
tometer. Different way of heading angle calculation is in [3]. In 
the paper calculation has been done by using Quaternions. Both 
mentioned works bring precise calculation of heading angle for 
PDR. Heading angle calculation by using magnetometer is 
described in [27]. In that work, also a new reduction method 
for heading estimation error is presented. 

In this paper, we compare off-the-shelf smartphone and 
more accurate and expensive Xsens IMU. The chosen path was 
walked while holding both devices at the same time in hand. In 
the first case, the estimated path was calculated from measured 
data without any external aiding information. Then we also 
used PF with map constraints for path estimation. Results were 
compared with the reference path and errors were calculated by 
using cross track method. 

The rest of the paper is organized as follows. Section II de-
scribes PDR. The principle of PF is discussed in Section III. 
Experimental setup and results can be found in Sections IV and 
V. Conclusions are given in Section VI. 

II. PEDESTRIAN DEAD RECKONING 

A. Step Detection 

First in PDR, we need to detect the steps. To detect steps of 
a pedestrian, accelerometer data was used. The significant pat-
tern of the step is in the vertical axis relative to the ground. In 
order to get the vertical component of the acceleration, we need 
to track the attitude of the measurement device accurately. 
However, this is not always possible due to limited quality of 
sensors. Therefore, usually norm of acceleration is used. Norm 
of acceleration a(t) in time t is calculated as 

         gtatatata zyx  222      

where g represents gravitational acceleration and ax, ay, az rep-
resents measured acceleration in all three axis of accelerometer 
[4]. After calculation of the acceleration norm, step detection 
method can be applied. In this paper, zero crossing method is 
used. Other options are peak detection or frequency analysis of 
signal [2]. The norm of acceleration is shown in Fig. 1. Red 
circles denote detected steps. 

 

 

Fig. 1. Norm acceleration and zero crossing detection. 

 

Fig. 2. Step length [19]. 

We used zero crossing method with time condition. New 
step can be detected only, if time difference between two con-
secutive zero crossings was more than 0.5 s. This condition 
provides protection against detection mistakes which may oth-
erwise occur. 

B. Step Length and Activity 

Basically each step has a different length because of many 
factors, e.g., age, gender or height of pedestrian. Younger peo-
ple, men and tall people generally make longer steps. The 
length of step also varies during the walking. One option for 
step length estimation is presented in [4]. Fig. 2 shows the 
dependency of step length in relation to frequency. This infor-
mation can be used in activity classification [6], [19]. 

However, in this paper constant step length of 0.75 m has 
been used. We assumed only two motion states walking and 
standing. Two thresholds were set in positive and negative part 
of the signal. If the signal crosses both thresholds step is ac-
cepted which indicate walking. In remaining cases standing 
was detected. 

C. Heading Estimation 

The attitude estimation of smartphone relative to the global 
frame can be done by integrating angular velocity measured by 
gyroscope in body frame 

    )(),(),( tttt zyxb    
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where ωx, ωy,and ωz are angular rotations in body frame for all 
axis. One way to present the attitude of the IMU is to use Di-
rection cosine matrix (DCM). DCM is 3-by-3 rotation matrix 
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where symbols ϕ, θ, ψ represent Euler angles roll, pitch and 
yaw. Rotation matrix must be updated all the time for tracking 
IMU orientation. Updated matrix C(t+Δt) can be written as 
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where Δt is sampling interval and 
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and I is 3-by-3 identity matrix. After that, we are able to calcu-
late heading angle, i.e., yaw angle, Ψ from updated rotation 
matrix [28] 

  .,arctan 1,11,22 CC  

After step detection and heading angle estimation, position 
can be calculated as 
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where 
kEP  and 

kNP  represent east and north position, lk is the 

step length and ψk is the heading angle at moment k. Simple 
scheme is shown in Fig. 3. 

 

Fig. 3. Scheme of system working  

 

Fig. 4. Measurement equipment 

 

Fig. 5. .Reference Path. 

III. PARTICLE FILTER 

To combine various sources of information optimally, 
Bayesian filters can be used. However, this method cannot be 
used if measurement model is nonlinear. A popular approxima-
tion method of the Bayesian filters is called particle filter (PF). 
This method approximates the posterior state distribution by 
using particles. Representation of the particles as individual 
points gives advantage with map combination process, known 
as map-matching.  

Similarly to KF, PF has both prediction and update steps. 

First, particles Nkx k ,,1,)(  , are drawn from proposal 

distribution in a time moment t. 
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where y1…t-1 represents measurements one moment before t. We 
assume that states establish Markov model. This means that the 
current state xt depends only on the previous state xt-1. During 
the update phase, weights are recalculated according to the 
observation likelihood as 
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After update step weights are normalized. During running 
of the particle filter there will be few particles, which will get 
all calculated weights. Propagation particles with very low 
weight negatively affect posterior distribution. This problem is 
known as degradation, and can be avoided by resampling [29], 
[30]. Different resampling method can be found in [31] 

IV. EXPERIMENTAL SETUP 

Measurements were done by using two different IMUs. The 
first one is low-cost Samsung Galaxy S6 Edge’s IMU MPU 
6500 and the second is more expensive Xsens IMU shown in 
Fig. 4. The reference path of walking is shown in Fig. 5. The 
route is represented with blue lines, and red lines represent 
crossing areas e.g. doors. The route of both devices should be 
the same. Data from the smartphone was measured by using 
Androsensor application and sampling frequency was set to 
200 Hz. For measuring Xsens IMU data, MATLAB script was 
created. Sampling frequency was set to 40 Hz. As mentioned 
before, frequency of walking is somewhere around 2 Hz and in 
both cases step length was set as constant 0.75 m. Step detec-
tion and heading estimation were done as described in Section 
II A and II C. 

Quantifying errors is a complex problem. In this paper 
cross track method has been used. Whole path has been divided 
into parts and has been compared with the reference path’s 
straight lines in Fig. 5. Green circles represent the start and end 
points of each part. In order to find the location in the reference 
path, we searched the locations of turns from the heading data. 
This can be seen from Fig. 6. where peaks denote turns. How-
ever, more turns were detected than were actually made. There-
fore it required manual correction. 

After splitting path into smaller sections, each reference 
part has its own travelled path segment. Segments consist of 
detected steps and each step has coordinates in 2D. Distance 
between point and line has been calculated by 
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where    212211 ,,, yxPyxP  denotes starting and ending point 

of the lane, and  00 , yx  represent coordinates of the point. 

V. RESULTS 

Measurements were done with both devices at the same 
time. Both devices were held in hand in the same orientation. 
Reference path is shown in Fig. 5. Path measured by 
smartphone and Xsens IMU without using the filter are com-
pared with the reference path and can be seen in Fig. 7. At first 
sight, Xsens data seem more accurate than smartphone data. 
Most errors could occur while turning. As mentioned before, 
both devices were held in hand, which can cause tilt in horizon-

tal axes and it can be seen in Fig. 8 for Xsens and in Fig. 9 for 
smartphone.  

 

Fig. 6. Heading angle turn detection. 

 

Fig. 7. Path measured by Smartphone and Xsens IMU. 

 

Fig. 8. Tilt of Xsens IMU in x and y axis. 
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Fig. 9. Tilt of smartphone IMU in x and y axis. 

Particle filter has been used as a map matching method for 
improving accuracy. Starting position has been set manually 
and 200 particles have been calculated around this position in 
all directions because of unknown initial heading, which can be 
seen in Fig. 10. Weights of the particles crossing the walls were 
set to zero. When the number of particles was less than N/5 the 
resampling phase started.  

The walked path was approximately 185 m and user made 
245 steps. 246 steps were detected according to smartphone 
data and 250 steps according to Xsens data. Error in step detec-
tion may be caused by unexpected shaking while opening 
doors. 

The final path was calculated from all particles as their 
weighted average. However, this is not the optimal method, 
because obstacles, such as small corridors, can cause multi-
modal distribution where particles are distributed in many dif-
ferent clusters. Thus, the final result is average of those clus-
ters, which obviously yields in false estimate.  

In Fig. 11 path calculated from Smartphone is shown. Here 
we can see previously mentioned problem. In some locations 
there are miss-crossed areas. Similar issue can be observed in 
Fig. 12 with Xsens. Blue lines in both figures denote calculated 
path by Particle filter.  

 

Fig. 10. Initial state. 

 

Fig. 11. Path after filtering calculated from Smartphone data.  

TABLE I.  PATH ERRORS 

 
Device 

Smartphone Xsens 

Location 

Error [m] 
With PF Without PF With PF Without PF 

Min 0.001 0.0001 0.0036 0.0199 

Max 6.3538 6.7217 5.7058 8.6054 

Average 0.6577 1.2643 0.7097 0.7875 

 

 

Fig. 12. Path after filtering calculated from Xsens data. 

Cross track method described in Section V is used for error 
calculation. Errors were calculated for each step separately and 
results can be seen in Table I. 

From Table I can be seen that usage of particle filter im-
proves accuracy of both devices. As we assumed, data meas-
ured by Xsens were more accurate with average error of 0.7875 
m without PF. While accuracy improvement for Xsens was 
0.08 m, in smartphone´s case it was more than 0.6 m. That 
means particle filter can limit the error growth. In order to bet-
ter understand differences of the positioning accuracy achieved 
by both devices, cumulative distribution functions (CDF) of 
localization errors are compared in following figures. In Fig. 13 
localization errors achieved by smartphone is depicted. 



2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 4-7 October 2016, Alcalá de Henares, Spain 

 

Fig. 13. CDF of Smartphone errors 

From the figure above it can be seen that implementation of 
PF significantly decreases the localization error. It can be seen 
that median error is less than 0.485 m with PF. 90 % of estima-
tion errors are less than 2.836 m without PF, and 1.437 m re-
spectively with PF. Generally, the error with PF is half of the 
the error without PF.In the Fig. 14 localization errors achieved 
by using Xsens is shown. The difference between data 
achieved by with/without PF is not so significant compared to 
smartphone results. It confirmed our assumption that the accu-
racy of Xsens IMU is better. Median error is almost the same, 
i.e., 0.6 m. 90 % of the estimation errors are less than 1.898 m 
without PF and 1.483 m for data obtained with PF respectively. 
Positive impact of PF on accuracy is evident in part of bigger 
errors. Finally, it can be concluded that the positioning errors 
achieved after filtering implementation is very similar. 

VI. CONCLUSION 

Quality of smartphone inertial sensors has been rapidly in-
creased over the past few years. A device, primarily assigned 
for calling and texting, has become a versatile gadget mostly 
because of multiple embedded sensors. The fact that these 
sensors are available, makes smartphones suitable devices for 
indoor navigation.  

 

Fig. 14. CDF of Xsens errors 

This paper presented PDR in indoor environment using 
smartphone sensors. Data measured by smartphone was com-

pared to Xsens IMU. The measurements were done by using 
Androsensor application in smartphone and data from Xsens 
was collected by prepared MATLAB script in real time. The 
noted fact that low-cost sensors cannot provide accurate results 
alone was demonstrated in the results. From average error of 
0.7875 meters with Xsens and 1.2643 meters with smartphone 
without PF, the accuracy was improved up to 0.7 meters with 
both sensors using PF. Even though PF has lower effect to 
improve accuracy compared to Xsens, its effect will be more 
significant in longer measurement. In addition, absence of PF 
causes that the sserror will grow rapidly without limitations. 

It has to be noted that even if we are talking about low-cost 
sensors, Samsung Galaxy S6 is equipped with MPU6500, 
which can be considered relatively accurate. There are still 
many devices in middle and low class, which are equipped 
with various types of less accurate older sensors. Therefore, not 
all smartphones are suitable for indoor navigation yet.  
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