
Hardware-Efficient Index Mapping for Mixed
Radix-2/3/4/5 FFTs

Tomasz Patyk
Dolby Poland

Wroclaw, Poland
Email: tomasz.patyk@dolby.com

Jarmo Takala
Tampere University of Technology

Tampere, Finland
Email: jarmo.takala@tut.fi

Abstract—Orthogonal frequency-division multiplexing modu-
lators and demodulators for modern communication standards
require efficient implementation of the fast Fourier transform
(FFT). Traditionally, radix-2 and radix-4 FFT algorithms have
been used. Over the last few years, support for non-power-of-
two transform sizes, with the emphasis on the radix-3 and radix-
5, started to become a standard. We have created a systematic
approach for designing simple digital circuits that compute array
access indices for the mixed radix-2/3/4/5 FFT computations.
Proposed index mapping, allows for the use of a bit rotation
instead of the add/modulo and multiply operations. Index gener-
ation circuits, implementing the proposed index mapping, have
hardware complexity comparable to index generation circuits for
power-of-two FFTs.

I. INTRODUCTION

In the year 1965, Cooley and Tukey presented their sem-
inal paper [1] and brought the fast Fourier transform (FFT)
algorithm to scientific and engineering communities’ attention.
Their work, laid the groundwork for a fledgling discipline of
the digital signal processing (DSP). Since then, the FFT along
with digital filters constitute two most important classes of
DSP algorithms [2].

The attractiveness of the FFT algorithm comes from the
computational complexity reduction it offers. The quadratic
O(N2) complexity of the discrete Fourier transform (DFT) cal-
culated by definition, is reduced to a linearithmic O(NlogN)
complexity. Cooley and Tukey [1] proved that for a given
radix, complexity is proportional to NlogN . Compared to a
direct calculation of the DFT, FFT algorithms exploit two tech-
niques to avoid redundant operations: the divide and conquer
technique, and a short length DFT optimisation. By employing
the divide and conquer approach and reorganising data, a large
sized DFT is recursively divided into smaller ones. This was
extensively described by many authors [1], [3], [4], [5] and
generalised to multidimensional index mapping by Burrus [6].
Two classes of factorisation divide FFT algorithms into prime
factor algorithms (PFA) and common factor algorithms (CFA).
Optimisation of a short length DFT is most commonly known
for power-of-two DFTs of size 2 and 4 (radix-2 and radix-4
butterflies) which can be implemented without multiplication
and with only additions. Winograd [4] presented optimised
DFTs of non-power-of-two sizes of 3, 5, and 7.

Historic applications of the FFT include spectral analysis,
filter banks, convolutions, and many more [2]. However,
recent years have put a spotlight on the FFT use in com-
munication applications. In particular, orthogonal frequency-
division multiplexing (OFDM) which is used in wideband
digital communication networks including 3G and 4G mobile
communication networks. Efficient OFDM modulator and de-
modulator implementations are often based on the IFFT and
FFT computations [7]. One of the challenges that the FFT has
to face in the new field of application is an efficient imple-
mentation of non-power-of-two DFT sizes. As the uplink pre-
coding [7] of Long-Term Evolution (LTE) requires transform
sizes of 12−1296, it is clear that efficient implementations of
mixed radix algorithms, including radices 3 and 5, will gain
popularity. Challenges are yet to overcome as non-power-of-
two computations of odd radices are not trivial to implement
on binary logic, which we use today.

Linear mapping of data indices from one-dimensional to
multi-dimensional mapping reduces the numbers of multipli-
cations and additions required to calculate a DFT. However,
performing linear mapping itself can be non-trivial task taking
up significant chunk of hardware resources or computational
time [8]. Therefore, non-power-of-two DFT sizes and algo-
rithms with regular access patterns have been preferred over
the years. Efficient hardware implementations for single radix-
2, radix-4, and mixed-radix-2/4 are reported in the literature.
On the contrary, number of hardware implementations for non-
power-of-two DFT sizes is limited. Typically those papers
present extra hardware for add/subtract and modulo opera-
tions [9] or complex multiplications [10].

In this paper, we propose a novel hardware efficient array
index mapping for a decimation-in-time (DIT) mixed-radix-
2/3/4/5 FFT algorithms to be used for in-place computations.
The scheme is generic as it supports any DFT size which can
be factorised to supported radices. The order of radices can be
chosen arbitrarily. Additionally, we present an implementation
of an index generator circuit (IG). The implementation is
based on pseudo-linear counter and rotators, and it does
not require any multipliers or extra adders. Small design
corresponds to less silicon area, shorter critical path, and
reduced power consumption. Latter is especially important for
battery-powered portable devices where new communication

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

4

3

2

1ω32

ω32

32

ω32

F2

F2

F2

F2

F2ω

8

7

6

5ω32

ω32

32

ω32

F2

F2

F2

F2ω

12

11

10

9ω32

ω32

32

ω32

F2

F2

F2

F2ω

15

14

13ω32

ω32

ω32

F2

F2

F2

F4

2ω32
4ω32
6ω32

F4

F4

6ω32
12ω32
18ω32

F4

4ω32
8ω32

12ω32

F4

2ω32
4ω32
6ω32

F4

F4

6ω32
12ω32
18ω32

F4

4ω32
8ω32

12ω32

F4

F4

F4

F4

F4

F4

F4

F4

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Fig. 1. Signal flow graph of 32-point FFT.

standards are applicable.
The rest of the paper is organised as follows. Section II

presents current state of the research in the field. Section III
explains the novelty of the proposed index mapping. Sec-
tion IV proposes a hardware efficient implementation of the
new mapping. Section V discusses advantages of the design as
compared to existing solutions. Finally, section VI concludes
the paper.

II. RELATED WORK

There are several aspects of a FFT algorithm that translate
to different index mapping. For a given DFT size, there are
decimation-in-time [1] or decimation-in-frequency [3] algo-
rithms; input sequence in order or permuted; for a mixed
radix FFT, the order of radices can be chosen arbitrary, and
finally, a computation stage can have regular or irregular (split-
radix) geometry [5]. Demuth [11] proposed an unified set
of equations, that allow FFT computations of an arbitrary
DFT size. The implementation based on three nested loops
can be implemented on programmable processor using general
purpose arithmetic logic unit (ALU). Naturally, using ALU for
index computations usually means that ALU does not compute
FFT kernel (butterfly). This approach is flexible but far from
optimal at the same time.

FFT implementations based on application-specific inte-
grated circuits (ASIC) or instruction-set processors (ASIP)
tend to use dedicated index (address) generation units (IG).

TABLE I
ACCESS INDICES OBTAINED FROM LINEAR INDICES IN BINARY NUMERAL

SYSTEM FOR 3 STAGES OF 32-POINT FFT (ROTATED BITS IN BOLD).

Linear Access
R-10 R-2 R-2 R-10

Stage 1
224140 224140

b4b3b2b1b0 b4b3b2b1b0
0 000000 000000 0
1 000001 000001 1
2 000010 000010 2
3 000011 000011 3
4 000100 000100 4

.
Stage 2

224140 224140

b4b1b0b3b2 b4b3b2b1b0
0 00000 00000 0
1 00001 00100 4
2 00010 01000 8
3 00101 01100 12
4 00100 00001 1

.
Stage 3

424120 224140

b3b2b1b0b4 b4b3b2b1b0
0 00000 00000 0
1 00001 10000 16
2 00010 00001 1
3 00011 10001 17
4 00100 00010 2

.

Hardware-efficient IG units have been proposed for power-
of-two FFTs with regular signal flow graphs, both single
radix [12] and mixed radix [13]. These design transform a
linear index generated with an accumulator to the actual array
access index through a bit rotation, where the number of
rotated bits depends on the computational stage in the FFT.
The rotations can be implemented with a set of multiplexers
making the design as hardware-optimal.

Efficiency of hardware implementation for power-of-two
FFTs is related closely to binary logic; Indices are obtained
with multiplications/divisions by power-of-two factors, which
can be efficiently implemented with shifters. This is not the
case for non-power-of-two radices. For instance single radix-
3 FFT will require multiplication by power-of-three numbers.
For mixed radix-3/4 FFT index calculations will require mul-
tiplication by integer multiples of 12.

Few authors [14], [15], [16], [17] proposed a LTE compliant
designs, which support DFT sizes ranging power-of-two as
128–2048 and 1536. However, 1536 can be considered as a
special case as it contains a single radix-3 stage, which can be
left last in the computations, thus the ordinary power-of-two
index mapping hardware can be used.

Hsiao [9] proposed a generalised, mixed radix algorithm
and its hardware implementation. Address (index) generation
hardware unit is a direct implementation of the index mapping
proposed by Burrus [6]. All indices for a single butterfly
are generated in parallel. This requires two accumulators,
adder, and a modulo circuit per butterfly input. For each stage

TABLE II
ACCESS INDICES OBTAINED FROM LINEAR INDICES IN TERNARY

NUMERAL SYSTEM FOR 3 STAGES OF 27-POINT FFT.

Linear Access
All stages Stage 1 Stage 2 Stage 3

R-10 R-3 R-3 R-10 R-3 R-10 R-3 R-10
0 000 000 0 000 0 000 0
1 001 001 1 010 3 100 9
2 002 002 2 020 6 200 18
3 010 010 3 001 1 001 1
4 011 011 4 011 4 101 10
5 012 012 5 021 7 201 19

. .

different seed values need to be provided for the accumulators.
In addition, modulo logic must be set to DFT size. Each index
is obtained by adding together outputs of two accumulators
and modulo truncated if needed. The authors did not explain,
if the seed values required for accumulators, are calculated on
the fly or stored in a ROM memory and fetched by the control
logic. Chen [18] extends the previous method to support wider
range of radices. The extended scheme also supported several
DFT sizes using the same address (index) generation hardware.

Ma [10] proposed an approach, where pseudo-linear address
from accumulator is first rotated. The number of rotated bits
depends on the stage and decreases as computation proceeds.
Certain chunks of the accumulator are then multiplied by
constant values. The products of those multiplications are
added together to obtain the final index. For longer DFT sizes,
this approach might become extremely expensive as it requires
(s − 1) multiplications and additions for s computational
stages.

The proposed index mapping supports non-power-of-two
radices and mixed radix FFTs. Unlike the previous solutions
discussed earlier it requires neither add/modulo or multiplica-
tion to obtain memory access indices.

III. PROPOSED INDEX MAPPING

The DFT of an input vector Y = [x0, x1, ..., xN−1]
T is

defined as the vector Y = [y0, y1, ..., yN−1]
T such that:

ym =

N−1∑
n=0

ωnm
N xn, (1)

or equivalently Y = FNX , where FN is the (N ×N)-matrix
of DFT with entries:

ωnm
N = exp− i2πnm

N
. (2)

Many FFT algorithms were derived for efficient computation
of the DFT. In this paper, we use the in-place, decimation-in-
time (DIT), mixed radix algorithm with permuted input, and
in-order output. The formula for this FFT algorithm is given
by (3):

Fpm
1
=

1∏
s=m

{[
Ipm

s+1
⊗ (Frs ⊗ Ips−1

1
)

]
(Ipm

s+1
⊗Trs,ps−1

1
)

}
Rpm

1
,

(3)

TABLE III
ACCESS INDICES OBTAINED FROM LINEAR INDICES IN MIXED RADIX
NUMERAL SYSTEM FOR 3 STAGES OF 144-POINT FFT (FIRST STAGE

OMITTED).

Linear Access
R-10 R-3/4/3/4 R-3/4/3/4 R-10

Stage 2
0 0000 0000 0
1 0001 0010 3
2 0002 0020 6
3 0003 0030 9
4 0010 0001 1
5 0011 0011 4
6 0012 0021 7
7 0013 0031 10

.
Stage 3

0 0000 0000 0
1 0001 0100 12
2 0002 0200 24
3 0010 0001 1
4 0011 0101 13
5 0012 0201 25

.
Stage 4

0 0000 0000 0
1 0001 1000 36
2 0002 2000 72
3 0003 3000 108
4 0010 0001 1
5 0011 1001 37
6 0012 2001 73
7 0013 3001 109

.

where IN denotes an identity matrix of order N , ⊗ is a tensor
product, m is number of stages, s is the stage index in s ∈
(1,m), rs is the radix of the sth stage, and pmn is a product
of radices of stages n to m given by:

pmn =

{∏m
i=n ri if n ≤ m,

1 if n > m.
(4)

T matrix of stage twiddle factors is given by:

Tr,k = ⊕r−1
i=0D

ki
N , (5)

Dki
N = diag(ω0i

N , ω
1i
N , . . . , ω

(k−1)i
N), (6)

where N = rk equals DFT size and ⊕ denotes the matrix
direct sum. Finally, Rpm

1
is an input permutation matrix:

Rpm
1
=

1∏
s=m

(Ipm
s+1
⊗ Pps−1

1 ,rs
) (7)

based on the stride-by-K permutation matrix [19] of order of
N defined as follows:

[PN,K]m,k =

{
1 if k = (mK mod N) + bmK/Nc,
0 otherwise.

(8)
The signal flow graph of a 32-point mixed radix-4/4/2

FFT is illustrated in Figure 1. The algorithm uses in-place
processing; input data is read through a stride permutation,
processed in stages, and overwritten by the result data. Thus,

TABLE IV
PROPOSED INDEX MAPPING. ACCESS INDICES OBTAINED FROM LINEAR

INDICES IN BINARY CODED MIXED RADIX NUMERAL SYSTEM FOR 3
STAGES OF 27-POINT FFT.

Linear Access
R-10 BCMR BCMR R-10

Stage 1
323130 323130

b5b4b3b2b1b0 b5b4b3b2b1b0
0 000000 000000 0
1 000001 000001 1
2 000010 000010 2
4 000100 000100 4
5 000101 000101 5
6 000110 000110 6

.
Stage 2

323031 323130

b5b4b1b0b3b2 b5b4b3b2b1b0
0 000000 000000 0
1 000001 000100 4
2 000010 001000 8
4 000100 000001 1
5 000101 000101 5
6 000110 001001 9

.
Stage 3

313032 323130

b3b2b1b0b5b4 b5b4b3b2b1b0
0 000000 000000 0
1 000001 010000 16
2 000010 100000 32
4 000011 000001 1
5 000100 010001 17
6 000101 100001 33

.

the same index mapping can be used for reading and writing.
Data fed to the first stage is shuffled with (7) while the output
data is in order. The array access indices for sth radix stage,
defined in (3) by tensor products, can be represented with a
permutation matrix as:

Ipm
s+1
⊗ Prsp

s−1
1 ,ps−1

1
. (9)

The equation (9) implies that index computations require mul-
tiplication, division, modulo operation, and addition. However,
for stride-by-K matrix of order N , where both K and N
are power-of-two values, the access address can be obtained
with a rotation of linear binary index [12], [13]. For stage s,∑s

i=1 log2ri-least significant bits are rotated right by log2rs
bits. Linear indices rotated to get access indices of the 32-point
FFT are presented in Table I. Bits b1b0 and b3b2, correspond
to radix-4 stage 1 and 2, respectively. Bit b4 represents stage
3 of radix-2. The bits of the linear index indicated in bold are
rotated two bits to the right in the first two stages, and rotated
one bit to the right in the last stage. The decimal values of
the indices are shown in the radix-10 (R-10) columns of the
table.

It can be observed that this principle applies to any radix,
including mixed radix, as long as the index is represented in
positional numeral system based on the radices used in the FFT
computations. For instance, access indices for 27-point FFT

TABLE V
ACCESS INDICES OBTAINED FROM LINEAR INDICES IN MIXED RADIX

NUMERAL SYSTEM FOR 3 STAGES OF MIXED RADIX-3/4/3/4 144-POINT
FFT (FIRST STAGE OMITTED).

Linear Access
R-10 BCMR BCMR R-10

Stage 2
43323140 43324130

b7b6b5b4b1b0b3b2 b7b6b5b4b3b2b1b0
0 00000000 00000000 0
1 00000001 00000100 4
2 00000010 00001000 8
3 00000011 00001100 12
4 00000001 00000001 1
5 00000101 00000101 5
6 00000110 00001001 9
7 00000111 00001101 13

.
Stage 3

43423130 43324130

b7b6b3b2b1b0b5b4 b7b6b5b4b3b2b1b0
0 00000000 00000000 0
1 00000001 00010000 16
2 00000010 00100000 32
4 00000100 00000001 1
5 00000101 00010001 17
6 00000110 00100001 33

.
Stage 4

33423140 43324130

b5b4b3b2b1b0b7b6 b7b6b5b4b3b2b1b0
0 00000000 00000000 0
1 00000001 01000000 64
2 00000010 10000000 128
3 00000011 11000000 192
4 00000100 00000001 1
5 00000101 01000001 65
6 00000110 10000001 129
7 00000111 11000001 193

.

with three radix-3 stages, can be obtained through a rotation
of a linear index represented in the ternary system as shown
in Table II. Likewise, Table III illustrates the relation between
linear and access indices of 144-point mixed radix FFT.
Indices are represented in the radix-3/4/3/4 numeral system
corresponding to order of radices in the FFT computations.
Unfortunately, in the binary representation the rotation alone
does not produce expected access indices anymore.

In this paper, we propose to use linear index in binary-
coded mixed radix (BCMR) representation. BCMR encoding,
alike binary-coded decimal (BCD), uses n = dlog2rse-bits
to represent a numerical digit. Contrary to BCD, radix, and
therefore number of bits representing digits in the BCMR,
might be different for each numerical position. For the linear
index, radices assigned to numerical position change with the
stage. The radix of the least significant digit rs is the radix of
current stage s. Other digits have radices assigned according
to the order of radices in the FFT computations. Rotating
linear indices produces an unambiguous mapping to access
indices by rearranging all radices to the order in which their
are computed. Tables IV and V presents BCMR-based index
mappings for the 27- and 144-point FFTs, respectively.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Index Type: Linear Access
Radix order: 332 332
Decimal|Binary:
d1d0|b4b3b2b1b0 b4b3b2b1b0

 00|00000 00|00000
 01|00001 01|00001
 02|00010 02|00010
 03|00011 03|00011
 04|00100 04|00100
 05|00101 05|00101
 08|01000 08|01000
 09|01001 09|01001
 ...

Index Type: Linear Access
Radix order: 323 332
Decimal|Binary:
d1d0|b4b3b0b2b1 b4b3b2b1b0

 00|00000 00|00000
 01|00001 02|00010
 02|00010 04|00100
 04|00100 01|00001
 05|00101 03|00011
 06|00110 05|00101
 08|01000 08|01000
 09|01001 10|01010
 ...

Index Type: Linear Access
Radix order: 323 332
Decimal|Binary:
d1d0|b2b1b0b4b3 b4b3b2b1b0

 00|00000 00|00000
 01|00001 08|01000
 02|00010 16|10000
 04|00100 01|00001
 05|00101 09|01001
 06|00110 17|10001
 08|01000 02|00010
 09|01001 10|01010
 ...

Stage 3Stage 2Stage 1

0

9

3

12

6

15

1

10

4

13

7

16

2

11

5

14

8

17

F2

F2

F2

F2

F2

F2

F2

F2

F2

F3

F3

F3

F3

F3

F3

F3

F3

F3

F3

F3

F3

Fig. 2. Signal flow graph of 18-point FFT (multiplications by twiddle factors
omitted for clarity).

Comparison of the BCMR-based indices with corresponding
decimal indices in Tables II and III reveals that the proposed
mapping, nonetheless unambiguous, is discontinuous in the ad-
dress space. As a result, a larger memory space is needed than
the DFT size indicates. In practice, however, FFT processing
units support many DFT sizes; if the largest supported power-
of-two DFT uses n bits for access indices, all non-power-of-
two DFTs that use n bits for addressing, are supported too.
Figure 2 gives an example of a signal flow graphs for 18-point
FFT with n = 5, which requires 22 memory cells, covered by
25-point DFT. Similarly, signal flow graph of the 30-point,
given in Figure 3, requires 42 memory cells supported by
26-point DFT. It must be noted that we carry out in-place
computations, i.e., the same memory cells are used through
all computational stages. The discontinuities should only be
considered on the input and output accesses to the FFT. All
in all, practical systems need to support several FFT sizes,
thus the proposed method exploits only the memory, which is
already available in the system.

IV. HARDWARE IMPLEMENTATION

The index mapping proposed in section III can be efficiently
implement in hardware. The unit is comprised of two blocks:
the mixed radix accumulator and the rotator. The rotator
converts the linear index produced by the accumulator to
obtain the array access index.

Figure 4 depicts an example circuit designed for the
30-point FFT presented in Figure 3. The unit has two inputs
and a 6-bit output to read access indices from. The 1-bit trig
input, if set to 1, triggers unit to produce consecutive access
indices on each clock cycle. The stage input sets internal
multiplexers and demultiplexers through a simple logic (not
shown on the figure). This input could be omitted if the

Index Type: Linear Access
Radix order: 252 352
Decimal|Binary:
d1d0|b5b4b3b2b1b0 b5b4b3b2b1b0

 00|000000 00|000000
 01|000001 01|000001
 02|000010 02|000010
 03|000011 03|000011
 04|000100 04|000100
 05|000101 05|000101
 06|000110 06|000110
 07|000111 07|000111
 08|001000 08|001000
 09|001001 09|001001
 16|010000 16|010000
 ...

Index Type: Linear Access
Radix order: 325 352
Decimal|Binary:
d1d0|b5b4b0b3b2b1 b5b4b3b2b1b0

 00|000000 00|000000
 01|000001 02|000010
 02|000010 04|000100
 03|000011 06|000110
 04|000100 08|001000
 08|001000 01|000001
 09|001001 03|000011
 10|001010 05|000101
 11|001011 07|000111
 12|001100 09|001001
 16|010000 16|010000
 ...

Index Type: Linear Access
Radix order: 523 352
Decimal|Binary:
d1d0|b3b2b1b0b5b4 b5b4b3b2b1b0

 00|000000 00|000000
 01|000001 16|010000
 02|000010 32|000001
 04|000100 01|000001
 05|000101 17|010001
 06|000110 33|100001
 08|001000 02|000010
 09|001001 18|010010
 10|001010 34|100010
 12|001100 03|000011
 13|001101 19|010011
 ...

Stage 3Stage 2Stage 1

F5

F5

F5

4

5

6

7

8

9

0

1

2

3

14

15

16

17

18

19

10

12

13

11

24

25

26

27

28

29

20

21

22

23

6

21

9

24

12

27

0

15

3

18

7

22

10

13

28

1

16

4

19

25

8

23

11

26

14

2

17

5

29

20

F5

F5

F5

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F3

F3

F3

F3

F3

F3

F3

F3

F3

F3

Fig. 3. Signal flow graph of 30-point FFT (multiplications by twiddle factors
omitted for clarity).

unit had internal stage counter. The rotator is build from
six, 6-input multiplexers. The mixed radix accumulator has
three radix accumulator blocks, one per stage. Each block is
connected to the trig input and other blocks through a set of
multiplexers and demultiplexers. Those are configured for sth

stage such that rs accumulator block is set to be the first, and
remaining blocks are connected in the order of computations.
The radix − 1 values must be set to blocks on initialisation
and remain unchanged during the FFT computations.

An example of a radix − 3/4 accumulator block (R3/4),
a building block of the mixed radix accumulator, is given in
Figure 5. When input cin is set to 1, the incrementer increases
its value by 1 on each clock cycle. When comparator detects
radix− 1 value in the registers, 0s are written to them in the
next clock cycle.

This design can be easily extended to any DFT size and
radix configuration if corresponding radix accumulator blocks
are present. Multiple DFT sizes can be supported when simple
logic controlling multiplexers and demultiplexers is used.
A design with s radix accumulator blocks requires: s-input

c_in c_out

l0

r0

c_in c_out

l2l0

r0 r2

c_in c_out

l1l0

r0 r1r1

l1

R2 R5 R3/4

1 1 0 0 01

trig

stage

a0 a1 a2 a3 a4 a5

Rotator

Mixed radix accumulator

Fig. 4. Example of index generator for 30-point FFT shown in Figure 3.

D Q
0

c_in

r0

r1

D Q
0

c_in

c_outc_out

l0

l1Comparator

Incrementer

Fig. 5. Exemplary R3/4 accumulator block.

multiplexer and 2-output demultiplexer for the first block; 3-
input multiplexer for the last block; 2 or 3-input multiplexer
and 2-output demultiplexer for the next to last block; and
3-input multiplexer and 3-output demultiplexer for all the
remaining blocks.

V. COMPARISON

As explained in section IV, the implementation of the
proposed index mapping for n-bit addressing space requires
n flip-flops, a set of multiplexers connecting them, simple
comparators, and n multiplexers for bit rotation. Compared to
implementations [12] and [13], which only support power-of-
two DFT sizes, connecting multiplexers and comparators were
added. When the number of supported radices was extended
beyond power-of-two. Designs presented in [9] and [18]
support odd radices but at the cost of two accumulators, adder,
and modulo operation implemented with a subtractor and a
multiplexer. They can obtain several addresses in parallel by
duplicating hardware resources while this can be done also
with the proposed method. Finally, the design in [10], alike the
proposed method, uses bit rotation, but partial results require
costly multiplications and additional addition.

VI. CONCLUSION

In this paper, we proposed a novel array index mapping
for mixed radix-2/3/4/5 FFTs. The mapping allows for the
use of a bit rotation, instead of add, modulo and multiply
operations, to obtain indices for memory accesses in the FFT
computations. A systematic method for designing a hardware-
efficient implementation was discussed. Address generation
routine is simple and requires small silicon footprint. The
proposed method can be used as a memory addressing unit,
in a application-specific fixed-function FFT processor or a
address generator unit of a application-specific instruction-set
processor (ASIP), for low-power and fast FFT computations.

REFERENCES

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. Comp., vol. 19, pp. 297–301, Apr.
1965.

[2] A. V. Oppenheim and Schafer, Discrete-time signal processing, 3rd ed.,
ser. Prentice Hall signal processing series. Upper Saddle River, NJ,
USA: Prentice Hall, 2009.

[3] W. M. Gentleman and G. Sande, “Fast Fourier transforms: For fun and
profit,” in Proc. of the AFIPS Fall Joint Comp. Conf., 1966, pp. 563–578.

[4] S. Winograd, “On computing the discrete Fourier transform,” Math.
Comp., vol. 32, no. 141, pp. 175–199, Jan. 1978.

[5] P. Duhamel, “Implementation of ”Split-radix” FFT algorithms for com-
plex, real, and real-symmetric data,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 34, no. 2, pp. 285–295, Apr. 1986.

[6] C. S. Burrus, “Index mappings for multidimensional formulation of the
DFT and convolution,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 25, no. 3, pp. 239–242, Jun. 1977.

[7] G. (2008), “Evolved universal terrestrial radio access (E-UTRA);
physical channels and modulation,” Tech. Rep. ETSI TS 136 211.
[Online]. Available: http://www.3gpp.org/lte/

[8] K.-L. Wong, R. Chan, D. P.-K. Lun, and W.-C. Siu, “Efficient address
generation for prime factor algorithms,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 38, no. 9, pp. 1518–1528, Sep. 1990.

[9] C.-F. Hsiao, Y. Chen, and C.-Y. Lee, “A generalized mixed-radix
algorithm for memory-based FFT processors,” IEEE Trans. Circuits Syst.
II, vol. 57, no. 1, pp. 26–30, Jan. 2010.

[10] C. Ma, Y. Xie, H. Chen, Y. Deng, and W. Yan, “Simplified addressing
scheme for mixed radix fft algorithms,” in Proc. IEEE Acoust., Speech,
Signal Process. (ICASSP), Florence, Italy, May 2014, pp. 8355–8359.

[11] G. L.Demuth, “Algorithms for defining mixed radix FFT flow graphs,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 9, pp. 1349–
1358, Sep. 1989.

[12] E. Chu and A. George, Indised the FFT black box, ser. Computational
Mathematics. Boca Raton, FL, USA: CRC Press, 1999.

[13] T. Pitkänen, R. Mäkinen, J. Heikkinen, T. Partunen, and J. Takala,
“Transport triggered architecture processor for mixed-radix FFT,” in
Proc. IEEE Fortieth Asilomar Conf. on Signals, Syst. Comput., Pacific
Grove, CA, Oct. 2006, pp. 84–88.

[14] S.-Y. Peng, K.-T. Shrt, C.-M. Chen, and Y.-H. Huang, “Energy efficientt
128 ∼ 2048/1536− point FFT processor with resource block mapping
for 3GPP-LTE system,” in Proc. of IEEE Int. Conf. on Green Circuits
and Systems (ICGCS), Shanghai, 2010, pp. 14–17.

[15] T. Patyk, D. Guevorkian, T. Pitkäanen, P. Jääskeläinen, and J. Takala,
“Low-power application-specific FFT processor for LTE applications,”
in Proc. of IEEE Int. Conf. on Embedded Comp. Syst.: Arch. Mod. Simul.
(SAMOS), Agios Konstantinos, Grece, 2013, pp. 28–32.

[16] I. Cho, T. Patyk, D. Guevorkian, J. Takala, and S. Bhattacharyya,
“Pipelined FFT for wireless communications supporting 128–2048/1536
-point transforms,” in Proc. of IEEE Global Conf. on Sign. Inf. Proc.
(GlobalSIP), Austin, TX, 2013, pp. 1242–1245.

[17] C. Yu and M.-H. Yen, “Area-efficient 128- to 2048/1536-point pipeline
FFT processor for LTE and mobile WiMAX systems,” IEEE Trans. VLSI
Syst., vol. 23, no. 9, pp. 1793–1800, Sep. 2015.

[18] J. Chen, J. Hu, S. Lee, and G. E. Sobelman, “Hardware efficient mixed
radix-25/16/9 FFT for lte systems,” IEEE Trans. VLSI Syst., vol. 23,
no. 2, pp. 221–229, Feb. 2015.

[19] J. Takala, D. Akopian, J. Astola, and J. Saarinen, “Constant geometry
algorithm for discrete cosine transform,” IEEE Trans. Signal Process.,
vol. 48, no. 6, pp. 1840–1843, Jun. 2000.

