
AVX2–OPTIMIZED KVAZAAR HEVC INTRA ENCODER

Ari Lemmetti, Ari Koivula, Marko Viitanen, Jarno Vanne, Timo D. Hämäläinen

Department of Pervasive Computing, Tampere University of Technology, Finland

{ari.lemmetti, ari.koivula, marko.viitanen, jarno.vanne, timo.d.hamalainen}@tut.fi

ABSTRACT

This paper presents efficient SIMD optimizations for the

open-source Kvazaar HEVC intra encoder. The C

implementation of Kvazaar is accelerated by Intel AVX2

instructions whose effect on Kvazaar ultrafast preset is

profiled. According to our profiling results, C functions of

SATD, DCT, quantization, and intra prediction account for

over 60% of the total intra coding time of Kvazaar ultrafast

preset. This work shows that optimizing primarily these

functions doubles the coding speed of a single-threaded

Kvazaar intra encoder for the same rate-distortion

performance. The highest performance boost is obtained by

deploying the proposed optimizations jointly with

multithreading. On the Intel 8-core i7 processor, the AVX2-

optimized 16-threaded Kvazaar ultrafast preset achieves

real-time (30 fps) intra coding speed up to 1080p resolution.

Compared to AVX2-optimized ultrafast preset of x265,

Kvazaar is 20% times faster and still obtains 9.1% bit rate

gain for the same quality. These results justify that Kvazaar

is currently the leading open-source HEVC intra encoder in

terms of real-time coding speed and efficiency.

Index Terms— High Efficiency Video Coding

(HEVC), Kvazaar, intra coding, single instruction multiple

data (SIMD), Advanced Vector Extensions 2 (AVX2)

1. INTRODUCTION

High Efficiency Video Coding (HEVC) [1], [2] is the latest

international standard in video coding. It has been

developed by Joint Collaborative Team on Video Coding

(JCT-VC) as a joint activity of ITU-T Video Coding Experts

Group (VCEG) and ISO/IEC Moving Picture Experts Group

(MPEG). HEVC is published as twin text by ITU, ISO, and

IEC as ITU-T H.265 | ISO/IEC 23008-2. Its first edition

contains Main, Main Still Picture, and Main 10 profiles.

This paper addresses all-intra (AI) coding [3]

configuration of HEVC Main Profile. It is reported to

improve coding performance by 23% over that of AVC intra

coding [4] for the same objective quality but at a cost of

over 3× encoding complexity [5]. Therefore, implementing

a real-time HEVC intra encoder with a reasonable cost and

power budget requires efficient optimizations.

In software encoders, the complexity of HEVC can be

tackled by two primary techniques: multithreading through

data-level parallelization and single instruction multiple

data (SIMD) optimizations. The implementation details of

these optimizations are kept strictly confidential in

commercial HEVC encoders, so only open-source

implementations are considered in this paper.

Currently, there exist three noteworthy open-source

HEVC encoders: HM [6], x265 [7], and our Kvazaar [8].

The SIMD and data-level optimizations presented for

HEVC typically deal with HM decoder [9], [10] but there

also exists a couple of works that focus on HM encoder

optimization. Chen et al. [11] speed up individual

algorithms of HM 6.2 encoder with Streaming SIMD

Extensions 4 (SSE4) instruction set. Ahn et al. [12]

accelerate inter coding of HM 9.0 encoder by 1.2× through

SSE3 and multithreading. However, the original

implementation of HM is inherently slow so the reported

optimizations are not still sufficient for real-time HEVC

encoding. Hence, x265 and Kvazaar are the only practical

open-source HEVC encoders at the moment.

Both x265 and Kvazaar support multithreading and

SIMD implementations. Kvazaar intra coding performance

and parallelization on multi-core processors have already

been considered in our previous works [13], [14] so the

main emphasis here is on Kvazaar SIMD optimizations.

Intra coding in Kvazaar is more time-consuming than inter

coding. Optimizing intra coding is crucial for AI coding, but

it is also important for other coding configurations that

contain intra only pictures. Since our target is real-time

coding speed, the main focus is on Kvazaar ultrafast preset

whose C implementation is accelerated by Advanced Vector

Extensions 2 (AVX2) instructions.

The remainder of this paper is organized as follows.

Section 2 presents the intra coding tools of Kvazaar ultrafast

preset and the respective complexity profiling results of

Kvazaar C implementation. Section 3 introduces the

proposed SIMD optimization techniques for Kvazaar.

Section 4 measures the performance gain of the proposed

optimizations and benchmarks the rate-distortion-

complexity (RDC) characteristics of the optimized Kvazaar

over those of x265. Section 5 concludes the paper.

2. KVAZAAR INTRA ENCODER

Kvazaar intra encoder supports HEVC Main profile for 8-bit

4:2:0 video with ten recently specified presets: ultrafast,

superfast, veryfast, faster, fast, medium, slow, slower,

veryslow, and placebo whose naming convention follows

that of x264 [15]. In this work, the ultrafast preset is

considered for the highest possible coding speed.

2.1. Ultrafast preset

Kvazaar ultrafast preset reduces encoding complexity by

disabling or limiting configurable encoder features. This

inevitably induces some loss in RD performance. The intra

coding settings affecting the RDC characteristics of Kvazaar

the most include a simplified selection of intra prediction

(IP) mode, limitations of initial prediction block sizes, and a

disabled RD optimized quantization (RDOQ).

Table 1 tabulates the settings of ultrafast presets in

Kvazaar and x265. The main difference between them is

that Kvazaar makes use of the large 64 × 64 coding unit

sizes, while x265 limits the size to 32 × 32. In addition, the

deblocking filter is disabled in Kvazaar.

2.2. Profiling results

A single-threaded C implementation of Kvazaar ultrafast

preset was profiled with Intel VTune Amplifier XE 2015

using advanced hotspots feature. Our profiling environment

is detailed in Table 2. Each sequence in the HEVC common

test conditions (classes A-F) [16] was encoded with a

quantization parameter (QP) value of 32 using the

command line parameters listed in Table 3. Inclusive CPU

times were gathered from VTune reports for each test

sequence and then averaged. The distribution of relative

CPU time between the essential encoding functions is

summarized in Fig. 1.

As is shown in Fig. 1, Sum of Absolute Transformed

Differences (SATD), Discrete Cosine Transform (DCT),

angular IP, planar IP, and quantization account for more

than half of the CPU cycles in Kvazaar. These functions are

also suitable for SIMD acceleration, so they were selected as

our primary targets for optimization.

3. KVAZAAR AVX2 OPTIMIZATIONS

The majority of SIMD optimizations for Kvazaar is

implemented with AVX2 instruction set extension and only

these optimizations are considered in this paper. Like AVX,

AVX2 utilizes 256-bit wide registers, called YMM. These

instructions also allow for non-destructive operations where

the result is written in a register other than one of the inputs.

Compared to AVX, the main advantage of AVX2 is the

increased number of the instructions supporting the YMM

registers.

The chosen method for AVX2 optimization is the usage

of Intel Intrinsics instead of a x86-64 assembly language.

Intrinsics for AVX2 are usable in C language with the

inclusion of corresponding header file. The header defines

necessary data types such as __m128i and __m256i for 128-

bit and 256-bit integer vector operations, respectively. In

addition, the header file provides callable functions that are

mapped practically one-to-one to AVX2 instructions.

Having variables and corresponding tools available, much of

the manual labor is avoided and left to the compiler.

Table 1. Encoder settings in ultrafast presets

Table 2. Profiling environment

Table 3. Encoding parameters

Fig. 1. Relative CPU usage in Kvazaar C implementation

Kvazaar x265

Coding Unit sizes 64, 32, 16, 8 32, 16, 8

Prediction Unit sizes 64, 32, 16, 8 32, 16, 8

IP modes 35 35

SAO off off

Signhide off off

RDOQ off off

TU split off off

Deblock off on

Feature
Ultrafast presets

Processor Intel Core i7-5960X Extreme (8 × 3.0 GHz)

Memory 32 GB

L1 cache 8 × 32 KB (instruction) + 8 × 32 KB (data)

L2 cache 8 × 256 KB

L3 cache 20 MB

Compiler MS Visual Studio 12.0.30723.00 Update 3

Operating system 64-bit MS Windows 8.1

Encoder Parameters

Kvazaar --wpp --no-info --preset=ultrafast -n (frames) -p 1 -q (qp)

no-asm --cpuid=0

x265 --tune=psnr --psnr --no-info --preset=ultrafast --no-progress

--hash=3 -q (qp) -f (frames) -I1 --ipratio=1 --input-res=(res)

--no-scenecut --pools=(threads) --fps=(fps) --log-level=debug

single --frame-threads=1

no-asm --no-asm

26%

15%

12%2%
7%

7%

31%

SATD

DCT

Angular IP

Planar IP

Quantization

Other optimized

Unoptimized

In theory, a transition from 128-bit to 256-bit SIMD

registers doubles the number of parallel processed elements.

However, the 128-bit wide instructions extended to YMM

registers often behave as if the YMM registers were divided

into two separate 128-bit registers. These 128-bit wide units

are called lanes. This needs to be addressed, since loading

sequential elements into YMM registers and operating on

them can result in an unintuitive result due to in-lane

limitations of certain AVX2 instructions. Fig. 2

demonstrates such situation where the division into lanes

affects the order of resulting elements.

In some cases, it is challenging to fill all registers with

meaningful data, especially when operating on the smallest

block sizes of HEVC. A general approach to solve this issue

is to eliminate cross-lane dependencies by dedicating each

lane for a separate task. This also makes porting 128-bit

algorithm implementations very straightforward to YMM

registers and even further to the 512-bit wide registers of

AVX-512.

At the moment, the implementations of SATD, DCT,

quantization, and angular prediction (for blocks larger than

8x8) in Kvazaar utilize the whole 256 bits of the YMM

registers at least once, whereas the rest of the optimizations

use at most half of the register capacity. Furthermore, most

of the functions in Kvazaar are exclusive for 8-bit encoding.

3.1. SATD

The rough intra mode search of Kvazaar approximates the

coding costs of two angular intra modes at every iteration.

The modes are then compared to the previously found best

mode which is updated when a better one is found. The two

SATDs are computed simultaneously, dedicating the lower

lane for the first mode and the upper lane for the other

mode. The SATD criterion is calculated using the fast

Walsh—Hadamard transform. The AVX2 optimized

transform is performed in multiple steps using shuffle, sign,

and packed add operations for horizontal transform. Vertical

transforms are achieved with packed additions and

subtractions. Each of these instructions has low latency and

high throughput on Haswell CPUs.

3.2. DCT

The C implementation of Kvazaar utilizes a partial butterfly

method for the transforms. However, a straightforward

matrix multiplication is used in AVX2 implementation for

the forward and inverse DCT instead. Rows of one matrix

are interleaved with unpack operations and multiply-added

horizontally with appropriate values from the other matrix

that are broadcasted to fill the whole register. The values are

accumulated in a buffer which is then shifted and value

clipped to the right magnitude to match the HEVC

specification. The 2D transform is achieved using the matrix

multiplication twice with the correct order of input matrices

and predefined values.

3.3. Angular and planar prediction

Angular prediction consists of linear filtering functions that

generate the prediction block. In the AVX2 optimized

function, reference pixels are loaded into two registers with

the other one having an offset of one pixel. To linearly filter

the values, reference pixels are unpacked and then multiply-

added horizontally with a register filled with weights. The

calculated pair of weights is packed into a single value that

is broadcasted over the register.

Planar prediction is filtered in the vertical direction as

well. Regular packed multiplication and addition is

performed to filter reference pixels in both directions instead

of using horizontal multiply-add. Broadcast instruction is

used to set reference pixel values and weights in registers

when necessary. As in many functions, packed shift and

pack operation is performed to scale the values to get the

total average.

3.4. Quantization and dequantization

This function quantizes coefficients in groups of 16. Values

are extended to 32 bits and they use two YMM registers.

Each coefficient is multiplied with predefined scaling values

and rounded with addition and shifting. In the optimized

function, flat scaling values are assumed. Dequantization

follows the same principle.

3.5. Other optimized functions

Other smaller trivial functions, such as computation of block

residuals and reconstruction of blocks from quantized

values, have been optimized as well.

4. PERFORMANCE EVALUATION

Fig. 3 depicts the complexity distribution of Kvazaar after

our SIMD optimizations. In the original C implementation,

the functions selected for SIMD acceleration represent 69 %

of total runtime. Now, their respective share is 35%.

The RDC characteristics of Kvazaar v0.8.2.5 and x265

v1.8 intra encoders are further evaluated by benchmarking

their AVX2-optimized ultrafast presets on Core i7 processor

(Table 2) using the command line parameters listed in Table

Fig. 2. Horizontal addition of 32-bit integers

YMM A a0 a1 a2 a3 b0 b1 b2 b3

YMM B c0 c1 c2 c3 d0 d1 d2 d3

_mm256_hadd_epi32(A, B) a0 + a1 a2 + a3 c0 +c1 c2 + c3 b0 + b1 b2 + b3 d0 + d1 d2 + d3

256 bits

Lower lane Upper lane

3. Release versions of Kvazaar and x265 were compiled

with Visual Studio 2013 using the build files included in

each project.

4.1 Kvazaar intra coding speed

Table 4 tabulates intra coding speeds in frames per second

(fps) for three Kvazaar implementations: 1-threaded C, 1-

threaded C/AVX2, and 16-threaded C/AVX2. The average

coding speeds were measured separately for each sequence

using the QP values of 22, 27, 32, and 37. For a reliable

comparison, only one encoder instance was run at a time.

All these versions attain an equivalent RD performance.

The C implementation of Kvazaar is able to encode

WQVGA (416 × 240) sequences in real time (30 fps).

AVX2 optimizations accelerate the C implementation

averagely by 2.0× and parallelization to 16 threads further

by 8.7× on the 8-core processor. Hence, their joint

performance gain is over 17× enabling Kvazaar to encode

1080p (1920 × 1080) format in real-time.

4.2. Comparison of Kvazaar and x265

Table 4 also compares RDC characteristics of the 16-

threaded AVX2-optimized Kvazaar with the respective

implementation of x265.

 Their bit rate differences were compared in terms of the

Bjøntegaard delta bit rate (BD-rate) [17]. The RD curves

for the BD-rate computations were interpolated with the

piecewise cubic interpolation [18] through experimentally

specified RD points that represent the QP values of 22, 27,

32, and 37. For a fair comparison, 66 bytes per picture were

deducted from the bit rate values of x265 to compensate its

bug that caused parameter information to be attached to

every coded picture.

According to our results, Kvazaar is 1.2× faster than

x265 on average and is still able to obtain 9.1% average bit

rate gain. Reasons for better RDC characteristics are

described in [14], with SIMD capabilities disabled. The RD

performance of Kvazaar is unaffected by the proposed

optimizations while they accelerate the intra coding speed of

Kvazaar over that of AVX2-optimized x265. Against HM

16.0, the average bit rate of Kvazaar ultrafast preset is 32%

larger, but the SIMD optimized version is also 52 times

faster with a single thread, or 475 times faster with 16

threads.

5. CONCLUSIONS

This paper presented AVX2 optimizations for our Kvazaar

open-source HEVC encoder which is originally written in C.

Based on our profiling results, the most complex functions

include SATD, DCT, quantization, and intra prediction.

Accelerating them with AVX2 doubles the speed of Kvazaar

and together with multithreading, the performance of

Kvazaar is increased by over 17× making real-time 1080p

intra encoding possible. Our results show that Kvazaar is

currently the leading open-source real-time intra encoder.

Compared to its closest competitor x265, Kvazaar improves

BD-rate by 9.1% and is still around 20% faster.

6. ACKNOWLEDGMENT

This work was supported in part by the European Celtic-

Plus Project 4KREPROSYS. The authors would particularly

like to thank all contributors of our Kvazaar open-source

project [8].

Fig. 3. Relative CPU usage of SIMD optimized Kvazaar

Table 4. Coding speed of Kvazaar and comparison to x265

8 %

8 %

10 %

2 %
2 %

5 %65 %

SATD

DCT

Angular IP

Planar IP

Quantization

Other optimized

Unoptimized

C C/AVX2 C/AVX2

1 thread 1 thread 16 threads

Traffic 0.8 1.8 16.6 1.2× 1.9%

PeopleOnStreet 0.8 1.8 16.8 1.2× -1.0%

Kimono 1.7 4.1 36.9 1.2× 8.0%

ParkScene 1.6 3.4 31.2 1.1× 1.5%

Cactus 1.6 3.5 32.2 1.2× -2.5%

BQTerrace 1.7 3.4 31.7 1.2× -7.5%

BasketballDrive 1.7 3.9 35.6 1.2× -1.9%

RaceHorses 7.7 15.7 143.5 1.1× -6.9%

BQMall 8.4 17.5 160.2 1.2× -9.9%

PartyScene 7.1 12.8 121.4 1.1× -9.0%

BasketballDrill 8.4 17.4 157.7 1.2× -9.7%

RaceHorses 30.4 58.9 504.2 1.1× -14.3%

BQSquare 28.9 51.2 450.2 1.1× -16.4%

BlowingBubbles 28.1 50.0 438.6 1.1× -11.3%

BasketballPass 31.9 65.4 512.5 1.0× -18.5%

FourPeople 4.1 9.5 86.5 1.3× -2.9%

Johnny 4.6 11.1 99.9 1.3× -5.3%

KristenAndSara 4.4 10.6 95.8 1.3× -8.1%

BasketballDrillText 8.2 16.4 150.0 1.2× -14.5%

ChinaSpeed 4.2 8.7 81.2 1.2× -22.4%

SlideEditing 3.6 6.4 60.4 1.2× -25.1%

SlideShow 5.9 13.9 115.5 1.4× -25.0%

Average 1.2× -9.1%

Sequence

Kvazaar Coding Speed (fps) Kvazaar vs. x265

Speedup BD-rate

7. REFERENCES

[1] High Efficiency Video Coding, document ITU-T Rec. H.265

and ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Apr.

2013.
[2] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand,

“Overview of the High Efficiency Video Coding (HEVC)

standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,

no. 12, Dec. 2012, pp. 1649-1668.

[3] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra

Coding of the HEVC Standard,” IEEE Trans. Circuits Syst.

Video Technol., vol. 22, no. 12, pp. 1792-1801, Dec. 2012.

[4] Advanced Video Coding for Generic Audiovisual Services,

document ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC),

ITU-T and ISO/IEC, Mar. 2009.

[5] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,

“Comparative rate-distortion-complexity analysis of HEVC

and AVC video codecs,” IEEE Trans. Circuits Syst. Video

Technol., vol. 22, no. 12, Dec. 2012, pp. 1885-1898.
[6] Joint Collaborative Team on Video Coding Reference

Software, ver. HM 16.0 [Online]. Available:
http://hevc.hhi.fraunhofer.de/

[7] x265 [Online]. Available: http://x265.org/

[8] Kvazaar HEVC encoder [Online]. Available:

https://github.com/ultravideo/kvazaar
[9] L. Yan, Y. Duan, J. Sun, and Z. Guo, “Implementation of

HEVC decoder on x86 processors with SIMD optimization,”

in Proc. IEEE Visual Communications and Image Processing,

San Diego, CA, USA, Nov. 2012.

[10] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry,

S. Pateux, and T. Schierl, “Parallel scalability and efficiency

of HEVC parallelization approaches,” IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1827-

1838.

[11] K. Chen, Y. Duan., L. Sun, and Z. Guo, “Efficient SIMD

optimization of HEVC encoder over x86 processors,” in Proc.

APSIPA Annual Summit Conf., Hollywood, CA, USA, Dec.

2012.

[12] Y. J. Ahn, T. J. Hwang, D. G. Sim, and W. J. Han,

“Implementation of fast HEVC encoder based on SIMD and

data-level parallelism,” EURASIP J. Image Video Process.,

vol. 16, Dec. 2014, pp. 1-19.
[13] M. Viitanen, A. Koivula, A. Lemmetti, J. Vanne, and T. D.

Hämäläinen, “Kvazaar HEVC encoder for efficient intra

coding,” in Proc. IEEE Int. Symp. Circuits Syst., Lisbon,

Portugal, May 2015.
[14] A. Koivula, M. Viitanen, J. Vanne, T. D. Hämäläinen, and L.

Fasnacht, “Parallelization of Kvazaar HEVC intra encoder for

multi-core processors,” in Proc. IEEE Workshop Signal

Process. Syst., Hangzhou, China, Oct. 2015.
[15] x264 [Online]. Available:

http://www.videolan.org/developers/x264.html

[16] F. Bossen, “Common test conditions and software reference

configurations,” Document JCTVC-J1100, Stockholm,

Sweden, Jul. 2012.
[17] G. Bjøntegaard, “Calculation of average PSNR differences

between RD curves,” Document VCEG-M33, Austin, TX,

USA, Apr. 2001, pp. 1-4.
[18] J. Wang, X. Yu, and D. He, “On BD-rate calculation,”

Document JCTVC-F270, Torino, Italy, Jul. 2011.

