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Abstract—SystemC (SC) is widely used in SoC simulations at 

various levels of abstraction. The free OSCI SC simulator can 

only execute on a single core in a sequential manner, which limits 

the simulation speed. Most speed-up techniques use threading, 

but this increases synchronization complexity and requires 

modifying the SC simulator kernel. We propose to use POSIX 

processes, and call it Inter Process Transaction Level Model 

(IPTLM) simulation. Our test case is a complete Kvazaar HEVC 

intra encoder. IPTLM offers 23x speed-up in a 28-core server 

compared with the standard monocore SC simulation time. 

IPTLM required manually modifying about 200 SC model code 

lines compared with the standard SC, which is reasonable when 

taking the achieved simulation speedup into account. 

Keywords—SystemC, TLM, POSIX, Distributed simulation, 

Manycore HEVC, Kvazaar  

I.   INTRODUCTION 

SystemC (SC) [1] has become the mainstream modeling 
language from transaction level model (TLM) to register 
transfer level (RTL) abstractions with varying timing accuracy. 
The basic concepts are SC modules for structural description 
and SC processes for the behavioral part of the system. 

Open SystemC Initiative (OSCI) offers a free SC simulator, 
which includes a C++ library and can be used with just a 
compiler and code editor. However, the SC simulator runs only 
on one Operating System (OS) process, and the SC scheduler 
repeats the evaluate-update-notify cycle for each SC process 
one at a time. Therefore, the simulation execution is inherently 
sequential and cannot benefit from multiple cores on the 
simulator computer.  

Our goal is to speed-up the simulation without modifying 
the SC simulator kernel. Our proposal is called Inter Process 
Transaction Level Model (IPTLM) simulation, and it is 
implemented as a new library to SC. IPTLM implements 
untimed/loosely timed TLM simulation, which is used, e.g., in 
the design space exploration phase of the SoC design. 

In the rest of the paper, we refer to the simulated system as 
“SC model”. “SC process” means SC threads and SC methods 
in general. By “core” we mean the physical processor core, and 
by “kernel” the SC simulator kernel. 

The main contributions in this paper are: 

- A novel parallelization approach for SystemC simulations 
at OS process level 

- New API and functions for SC models 
- Speed-up measurements with up to 28 physical cores 

using a SC model of Kvazaar 4K High Efficiency Video 
Coding (HEVC) video encoder [2] as a test case 
 

This paper is organized as follows. Section II describes the 
related work. Section III details our parallel SC implementation 
and Section IV the SC model for Kvazaar. Section V describes 
the case studies and results. Section VI concludes the paper.   

II. RELATED WORK 

Figure 1 depicts an exemplar SC model. Every SC process 
is executed on an OS user thread, and the whole simulation 
including the SC kernel itself in an OS process having one OS 
kernel thread. Only one SC process (OS thread) is run at a 
time, and it must run to completion before yielding. This 
ensures deterministic, thread-safe execution, but makes the 
simulation locked to only one host core at a time. 

The two main speed-up techniques either modify the SC 
kernel to let several SC processes run in parallel, or let several 
kernel instances run in parallel. We start with the former in the 
following. 

A parallel SC scheduler and mechanisms to synchronize the 
evaluate-update phase is presented in [6]. They also present 
four approaches to distribute the SC processes to cores. The 
best results were achieved with a new SC API, in which the 
user manually grouped SC processes to cores. The reported 
simulation time speedup was ~8 for 16 cores. 

ParSC [7] has a master-slave OS threads model. The user 
must modify the SC model to protect against data races for the 
SC processes executed in parallel in a delta-cycle. The speedup 
was at best 4.4x in a quad-core cycle-accurate simulation. 

legaSCi [12] attempts to avoid any modifications of legacy 
SC models. It uses Loosely-Timed TLM abstraction and 
grouping of SC processes to zones sharing the same context. 
Determinism is achieved by an additional scheduling algorithm 
for runnable SC processes. However, the SC model still needs 
to be modified by, e.g., adding some new blocks for inter-zone 
communication. A speedup of 2.13x is reported on four cores. 

Running many kernel instances in parallel is presented in 
[8]. The authors present a new SC modeling profile called 



TLM Distributed Time (TLM-DT) and a simulator supporting 
it based on Portable Operating System Interface (POSIX) 
Threads. The idea is to remove the centralized simulated time 
keeping from the kernel. Instead, all SC processes keep it as 
local, and mutually synchronize time with special messages. A 
speedup of 1.9x is reported with two cores. 

A hybrid solution is presented in [10], in which a two-level 
hierarchy of threading is utilized. The first layer maps SC 
processes to different SC kernels, which in turn are mapped to 
OS kernel-level threads and those to cores. The speedup is 3.3x 
for four cores, but does not increase anymore by adding more 
cores. 

CoMix [11] is a commercial solution aimed at multi-
computer simulation. The SC model is manually cut to 
modules, which are connected via Transmission Control 
Protocol / Internet Protocol (TCP/IP) for distributed and 
loosely synchronized simulation. A speedup of 3.8x is reported 
in a quad-core virtual machine.  

Most of the proposals are based on OS threads, since inter 
process communication causes larger overhead in general. All 
proposals consider time synchronization, most delta-cycle 
ordering of execution to ensure determinism and also load 
balancing either by static or dynamic SC process allocation.  

Unfortunately, it seems that modifications to the SC model 
cannot be fully avoided, so we accept the fact and only try to 
limit the developer effort. Another issue is that parallel SC 
simulators are not standardized as is the OSCI SC simulator, 
which complicates long-term tools maintenance. 

Our constraints for parallel SC simulation are: i) as 
standard toolset as possible, ii) moderate manual work to 
modify the SC models, and iii) scalability to dozens of cores. 
We are not attempting a perfect core load balancing if the total 
simulator time is sufficiently decreased as we add more cores.      

III. IPTLM 

Distributing the SC simulation to OS processes means 
technically many independent SC simulators, which has two 
requirements. First, the distribution of the original SC model to 
the kernels. Second, the execution coordination between the 
kernels at runtime. Ideally, both of them are automated and the 
user does not need to modify the original SC models of the 
simulated system. 

Our IPTLM is based on manual distribution like most of 
the related work. In addition, we only consider untimed/loosely 

timed TLM, and primarily aim at reducing the simulator wall 
clock time. 

Our approach sets the following limitations to the SC 
model. The main requirement is a strict separation of 
computation and communication that takes place only using 
channels between the SC modules. SC events are not allowed 
for signaling between the SC modules. However, events may 
be used if all related SC processes are executed within one 
kernel, but this requires manual work every time the 
distribution is changed. Therefore, we completely avoid the use 
of events. The channel communication abstraction is TLM 2.0. 

We recognize two levels of parallelization. The first is the 
way the SC model describes parallel execution of the 
application. This concerns the mapping of SC processes to the 
SC modules, and we may have dozens of SC models for 
exploring the alternatives. The second is distribution of the SC 
modules to kernels. The number of kernels per core is 
configured separately. As a whole, we may change the 
mapping of SC processes to SC modules, the SC modules to 
kernels, and kernels to cores. 

The SC model is manually modified for IPTLM as follows. 
The standard SC TLM channel related functions are replaced 
by the IPTLM wrapper functions whenever the other SC 
process is executed in another kernel. Alternatively, the 
underlying implementation of the standard TLM functions 
would be automatically substituted, but this is out of scope of 
this paper. 

A. IPTLM architecture 

IPTLM is based on POSIX processes and POSIX shared 
memory for inter process communication. POSIX queues and 
messages could be used as well, but shared memory is feasible 
for most standard computers used in simulations. 

Figure 2 depicts an overview of IPTLM and the write 
sequence. IPTLM has separate classes and interfaces for a 
master and slave bus interface in the SoC SC model. One slave 
is connected to one master as point to point. They connect 
when their objects are created in SC. They will identify each 
other with a constant string defined at SC model creation time. 
For the underlying technology (POSIX shared memory) the 
name of the memory file is the same constant string. IPTLM 
utilizes semaphores to synchronize between the master and 
slave processes. 

The bus master initiates either read or write (1. - 4.) and the 
slave waits for a request (6. - 7.). Both are blocking calls. 
When a request is received, the slave has a chance to respond 
based on whether or not it was a write or read and which 
address was targeted by the master (8. - 9.). The slave then 
makes a transfer, and releases the master (10. - 12.), thus 
releasing both (13. - 16.). The sequence for reading is similar, 
except the master executes memcpy() after slave has transferred 
(11.-13.). Function transfer() works for both transfer directions. 

IPTLM provides a C++ library extension to the standard SC 
API to mediate between the POSIX processes. In the current 
implementation, this is lightweight and consists of six 
functions as summarized in Table 1. 
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Figure 1. Example SystemC model. 



Like TLM, IPTLM is completely layered on top of the SC 
kernel. IPTLM API does not directly correspond to TLM API. 
The main difference is that the slave does not register 
b_transport functions, but instead calls the function 
slave::wait_request when it is ready to receive a request from a 
master. If the master has already sent a request, the function 
returns immediately. After that, the slave inspects the request, 
and transfers accordingly. 

1. write()

Thread A Thread BMaster SlavePOSIX

2.memcpy()

5. sem_try_wait()

3. sem_post()

6. wait_request()

7. sem_try_wait()

10. transfer()

8. return

9. address +

write = true

12. sem_post()

11. memcpy()

13. return

4. return

14. return 15. return

16. return

 

 
Figure 2. IPTLM write sequence. 

 

Table 1. IPTLM functions. 

IPTLM function Description 

master::master Creates a new master object, establishes link 

with the corresponding slave. 

master::write Writes contents of the buffer parameter to 
slave. 

master::read Writes data coming from slave to the buffer 

parameter. 

slave::slave Creates a new slave object, establishes link 
with the corresponding master. 

slave::wait_request Waits for a request from the corresponding 

master, returns true, if master is writing, else 

false.  

slave::transfer Executes the transfer initiated by the master. 

B. IPTLM performance 

We measured the IPTLM data transfer performance with a 
minimal system model that includes only one master and one 
slave and very simple application just sending data in a one-
way manner with protection (semaphore). To compare, we 
have three models: standard SC TLM model using b_transport, 
IPTLM, and pure POSIX shared memory. We used a PC with 
i7-4790X@3.60 GHz with CentOS 6.6 guest hosted by 
Windows 7 in this test. 

Naturally the TLM model is the fastest, 3.4 GiBps using 
1kiB transfers, since there is no operating system process 
overhead and data copying is by reference. IPTLM and POSIX 
achieve 40 MiBps and 50 MiBps. With larger transfer size, 100 
kiB, IPTLM achieves 4.3 GiBps. Thus, IPTLM favors either 

computation intensive or large transfer sized simulations. In the 
following, we present the results in a real test case. For brevity, 
we consider only the simulator time and omit details of 
simulated computation and communication times. 

IV. TEST CASE 

As a real-scale test case, we use an open-source Kvazaar 
HEVC intra encoder, version 0.4.2 [2]. The C source code of 
Kvazaar is modified to SystemC model for hardware 
architecture exploration. Comparing potential HW 
architectures for Kvazaar is out of the scope of this paper, but 
we focus on speeding up the simulation of any SC model of 
Kvazaar intra encoder. Here, we have chosen one test case, 
where Kvazaar is run under All-Intra (AI) coding configuration 
with the following command line options: 

--input-res 3840x2160 --no-rdoq --no-sao --

no-deblock -q 18 --rd 2 -p 1 --full-intra-

search -n Frames --wpp --owf N, 

where rate distortion optimized quantization (RDOQ), sample 
adaptive offset (SAO), and a deblocking filter are disabled. The 
tested 4K video sequence is “Bosphorus” [3] (600 frames) with 
quantization parameter (QP) value of 18. RDO level (rd) is set 
to full, intra period (p) is every frame, and an exhaustive intra 
search is enabled. The intra coding tools of Kvazaar are 
detailed, e.g., in [4]. 

Encoding parallelism can be exploited by running several 
Coding Tree Units (CTUs or LCUs) of the same picture in 
parallel. This can be done through a wavefront parallel 
processing (WPP) which exploits CTUs in already encoded 
regions. Overlapped Wavefront (OWF) processing brings the 
exploitation to the highest end by dealing with several frames 
in parallel. In our experiments, one, three, or eleven frames are 
coded in parallel, i.e., N = {0, 2, 10}. Visualization of OWF in 
Kvazaar can be seen in [5]. 

A. Standard SC model 

This acts as the purely sequential reference model to which 
we compare IPTLM. Figure 3 depicts a simplified block 
diagram of the Kvazaar SC model used in this paper. The 
major parts of Kvazaar execution are divided into subsystems 
search_cu and the rest is kept in a SC module kvazaar_core 
acting as a master process. All communication between the SC 
modules takes place using blocking TLM b_transport, and no 
events are used between SC modules. 

The master module delivers data to slave modules, collects 
the results and performs some common tasks like bit stream 
assembly. The intra prediction subsystems are acting as slave 
modules acc_x, including SC processes search_cu, one or more 
for each wavefront and frame. 

The number of instantiated SC modules depends on 
Kvazaar coding settings (OWF) and video resolution. 4K video 
frames are large enough to instantiate even tens of slaves. As a 
whole, we can explore different parallelization setups by this 
master-slave model. 



B. IPTLM SC model 

The above standard SC model acts as a reference for 
parallelization of the SC simulation. The parallelized IPTLM 
model is obtained by replacing the b_transport functions by the 
IPTLM functions. 

 Listing 1 illustrates the usage of IPTLM in SC module’s 
master interface side. For comparison, there are also the TLM 
code excerpts to write/read at the specified address of the slave, 
using the specified buffer of the master. A convenience 
function was used to reduce redundant code. The 
corresponding IPTLM transfers also receive buffers as 
parameters, although in this case addresses are omitted, since 
unlike in TLM, the slave side receives the requests sequentially 
with other functionality. The argument i is related to time 
stamping instrumentation for simulator time reports. 

V. MEASUREMENTS 

Our host computer includes two 14-core Intel Xeon E5-
2697v3 2.6 GHz CPUs with 32 GB RAM. The OS is Ubuntu 
natively executed without any virtual machine. 

The simulator time is acquired by instrumentation code 
available in the original Kvazaar source code and by the 
IPTLM functions. We log timestamps for computation, 
communication (POSIX memcopy and semaphores) and idle 
waiting for all SC processes. The CPU load is measured using 
mpstat [13]. 

The correctness of the encoded video in parallel simulation 
was verified by comparing the encoder output to a non-
parallelized native Kvazaar encoder using the same video 
sequence and parameters. The PSNR is recorded for each 

experiment.  

A. Setting up parallel SC simulation 

The standard and IPTLM SC models already define the 
mapping of SC processes to SC modules (application level 
parallelism), so the task is to map the SC modules to the 
kernels and further the kernels to the cores for parallel 
simulation. Exploration of different SC processes and module 
mappings are out of the scope of this paper. 

Figure 3 depicts the mapping used in this paper. We assign 
one or more SC processes to one SC module, one SC module 
to one kernel, and one kernel per core. This is carried out in a 
code editor or graphically drag-dropping the SC modules on 
top of kernel placeholders in Kactus2 tool [9]. Independent of 
the input method, the mapping information is written to a 
header file copied to all kernels. 

The master process includes one communication thread for 
each slave. The slave specific thread is always executed on the 
same core as the slave process, but otherwise the master is 
executed in its own core. Thus, the number of slave processes 
is one less than the number of available cores, e.g. 27 slaves in 
a 28-cores machine. A shell script is used to launch each 
simulation experiment. Automatic load balancing is not used. 

B. Results 

Figure 4 depicts the total simulator wall-clock time and 
average wait times for the master and slave processes as a 
function of the cores for OWF={0,2,10}. The first column, 
labelled as “ref”, plots the simulator time for the reference SC 
model and the remaining ones for the IPTLM with 1-28 cores. 
The reference model simulator time is 20.037s (OWF=0), 
20.089s (OWF=2) and 20.132s (OWF=10), which is slightly 
lower than that of the IPTLM with one core. This is explained 
by the OS process overhead in IPTLM, but IPTLM starts to 
quickly pay back after three cores. It should be noted that the 
OS and SC kernel have freedom to execute the reference SC 
model on multiple cores if possible, but in practice only one 
core is used. 

Without overlapping frame encoding (OWF=0), the 
execution time flattens after 20 cores. In this case, the 4K 
frame does not contain enough data to fully exploit all the cores 
since we do not have automatic load balancing. With three 
(OWF=2) and eleven (OWF=10) frames encoded in parallel, 
the simulator time continuously drops towards the 28 cores.  

The identical results for OWF2 and OWF10 mean that the 
cores are already fully occupied when three frames are encoded 
simultaneously. The PSNR in all the experiments were 
attempted to be same, which resulted in on average 45.9 (Y) 
49.2 (U) 48.6 (V). Figure 5 depicts the simulator time 
speedups. The graphs confirm almost linear scalability for 
OWF=2 and OWF=10, and the saturation effect after 20 cores 
for OWF=0.  

To analyze the results in more detail, Figure 4 plots the 
master and slave process idle times as well. Wait times have 
been measured from the master process communication threads 
and slave processes individually, and averaged by the number 
of slaves.  
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Figure 3. High-level view of Kvazaar SystemC model and 
execution mapping on host cores. 

Listing 1. Example replacement of b_transport by IPTLM. 

 

//Original done with b-transport 
    transport( MISC_DATA_ADDR, (unsigned char*)buffer, BUF_SIZE, 
    true ); 
    transport( ENCODER_STATE_ADDR, (unsigned 
    char*)state->encoder_control, sizeof(encoder_control_t), true 
); 
    transport( LCU_ADDR, (unsigned char*)lcu, sizeof(lcu_t), true 
); 
    transport( LCU_ADDR, (unsigned char*)lcu, sizeof(lcu_t), 
false ); 
//Convenience function 
    void transport( int address, unsigned char* buffer, size_t 
len, 
    bool write ){ 
    ... 
//Blocking transport call 
    kvazaar_global->socket->b_transport( *trans, delay );} 
//The same done with IPTML 
    master->write( i, buffer, BUZ_SIZE ); 
    master->write( i, (void*)state->encode_control, 
    sizeof(encoder_control_t) ); 
    master->write( i, (void*)lcu, sizeof(lcu_t) ); 
    master->read( i, (void*)lcu, sizeof(lcu_t) ); 



 

Figure 4. Simulator wall-clock time and average wait times for 
the master and slave processes. 
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Figure 5. Simulation speedup. 

0

10

20

30

40

50

60

70

80

90

100

1

4
0

7
9

1
1

8

1
5

7

1
9

6

2
3

5

2
7

4

3
1

3

3
5

2

3
9

1

4
3

0

4
6

9

5
0

8

5
4

7

5
8

6

6
2

5

6
6

4

7
0

3

7
4

2

Simulator time [seconds]

CPU Load, Reference model, OWF=2

 User %

 Sys %

 Idl %

 

Figure 6. CPU load of the reference model. 

 

With OWF=0, the master roughly waits for 90% of the 
time, and slaves on average for around 10% of their total time 
up to the saturation point. For 28 cores, the waiting percentages 
are 46% and 55%, respectively, showing shortage of data to all 
cores. For OWF=2, the master and slave waiting percentages 
are 91% and 10% for 28 cores, and 93% and 5% for one core. 
The master is clearly not choking the execution in any 

configuration, which was the design goal for the original 
parallel Kvazaar SC model. 

Figure 6 depicts the CPU load for the reference model with 
OWF=2 for 20 frames in Bosphorus. For OWF=0, it was 
almost constantly 100%. The attempt to simulate encoding of 
three frames in parallel causes significant system call overhead 
and slows down the simulation. Clearly this is not feasible for 
standard SC simulation. It should be noted that the load is 
measured for the active cores, in this case one core, while 
others are idle and not counted in to the load figures. 

Figure 7 depicts the CPU load for IPTLM with OWF=0. 
The shape of the idle waiting clearly shows the starving for 
data for 28 cores. 

Figure 8 plots the load with OWF=2. The ratio between the 
user and system level load is very good, which shows that 
IPTLM is not causing exhaustive number of system calls, 
which is the danger in OS process based simulation 
distribution. 

C. Effort 

Parallelizing the Kvazaar source code for simulation on 
multiple cores took about one week and involved replacing the 
existing TLM-communication with IPTLM, which finally 
affected about 200 lines of code. The most laborious task was 
to rewrite the code for events. SC_events were replaced with 
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Figure 7. Load when encoding one frame at a time. 
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Figure 8. Load when encoding three frames at a time. 
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one bit signals, because IPTLM does not support events 
between modules.  

D. Comparison 

To the best of our knowledge, there is no related work 
combining both parallel SystemC simulation and parallel 
HEVC encoding. Thus, we compare the results to both of them 
separately. 

Our speedup scales very well compared to the related 
parallel SystemC simulations, which are in the order of 1.8×-
4× compared to sequential simulation. This is because the 
overhead (system and idle times) is kept moderate compared 
with even thread-based proposals that are generally more 
lightweight than process-based parallel execution.  

The speedup is very good also compared with the related 
work on parallel HEVC encoding, which is listed in Table 2. 
The last column lists the ratio at which the cores could have 
been utilized, 100% being the ideal. As a whole, we succeeded 
also in the Kvazaar parallelization approach, even though the 
primary scope of this paper was how to speed up SystemC 
simulations. For this reason, a more comprehensive encoder 
comparison is excluded in this paper. 

Table 2. Comparison of max speedup in parallel HEVC. 

Ref Resolution QP CPU Core Speedup Ratio 

[14] 2560x1600 27 E5-2670 8 5,5 69 % 

[15] 1920x1080 37 GX36 36 17,0 47 % 

[16] 3840x2160 30* E5-2699 36 31,9 89 % 

[17] 1920x1080 27 Opt.6272 36 21,9 61 % 

This 3840x2160 18 E5-2697v3  28 23,6 84 % 

*average 

VI. CONCLUSIONS 

This paper presented a new approach called Inter Process 
Transaction Level Model (IPTLM). It uses POSIX processes to 
support parallel simulations using standard sequential SystemC 
kernel. Even though a direct comparison to the related work is 
difficult due to different test cases and unavailability of open 
thread-based parallel SystemC simulators, our speed-up results 
show very good scalability over state of the art. 

The associated coding effort was about one week with 200 
lines of new or modified code, which is moderate compared to 
the time for running simulations. The experiments in this paper 
took 173 hours in wall clock time on our computer, and still we 
used only one possible parallel Kvazaar architecture with one 
test sequence and three different encoder configurations. To 

perform thorough design space explorations, each of these 
dimensions can be multiplied, which means that the obtained 
speed up will have significant time savings in the future design 
space explorations. 

REFERENCES 

[1] IEEE Standard for Standard SystemC Language Reference Manual, in 
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), Jan. 2012. 

[2] Kvazaar HEVC encoder [Online]. Available: 
https://github.com/ultravideo/kvazaar 

[3] Ultra video group [Online]. Available: http://ultravideo.cs.tut.fi/  

[4] M. Viitanen, A. Koivula, A. Lemmetti, J. Vanne, and T. D. Hämäläinen, 
“Kvazaar HEVC encoder for efficient intra coding,” in Proc. IEEE, 
Lisbon, Portugal, May 2015, pp. 1662-1665. International Symposium 
on Circuits and Systems 

[5] Kvazaar Visualizer [Online]. Available:  
http://ultravideo.cs.tut.fi/#visualizer 

[6] P. Ezudheen, et al., “Parallelizing SystemC Kernel for Fast Hardware 
Simulation on SMP Machines,” in proc. ACM/IEEE/SCS Workshop on 
Principles of Advanced and Distributed Simulation, pp. 80-87, 2009. 

[7] C. Schumacher, et al., “parSC: synchronous parallel systemc simulation 
on multi-core host architectures,” in Proc. IEEE/ACM/IFIP The 
International Conference on Hardware/Software Codesign and System 
Synthesis, pp. 241-246, 2010. 

[8] A. Mello, et al., “Parallel simulation of systemC TLM 2.0 compliant, 
MPSoC on SMP workstations,” in Proc. Design, Automation & Test in 
Europe Conference & Exhibition, pp 606-609, 2010. 

[9] Kactus2 [Online]. Available: http://funbase.cs.tut.fi 

[10] M. K. Chung, J. K. Kim, and S. Ryu, “SimParallel: A high performance 
parallel SystemC simulator using hierarchical multi-threading,” in Proc. 
IEEE International Symposium on Circuits and Systems, Melbourne, 
Australia, Jun. 2014, pp. 1472-1475. 

[11] C. Sauer, H-M. Bluethgen, and H-P. Loeb, "Distributed, loosely-
synchronized SystemC/TLM simulations of many-processor platforms”, 
Specification and Design Languages, Vol. 978, 2014. 

[12] C. Schumacher, J. H. Weinstock, R. Leupers, G. Ascheid, L. Tosoratto, 
A. Lonardo, D. Petras, and A. Hoffmann., “legaSCi: Legacy SystemC 
Model Integration into Parallel Simulators,” ACM Transactions on 
Embedded Computing Systems vol. 13, no. 5, Nov. 2014, pp. 165:1-
165:24.  

[13] Command mpstat, Linux User’s Manual [Online]. Available: 
http://www.linuxcommand.org/man_pages/mpstat1.html 

[14] Yanan Zhao, Li Song, Xiangwen Wang, Min Chen & Jia Wang, 
"Efficient realization of parallel HEVC intra encoding", International 
Conference on Multimedia and Expo 2013 

[15] S. Zhang, X. Zhang & Z. Gao, "Implementation and improvement of 
Wavefront Parallel Processing for HEVC encoding on many-core 
platform", International Conference on Multimedia and Expo 2014 

[16] Z. Wen, B. Quo, J. Liu, J. Li, Y. Lu & J. Wen, "Novel 3D-WPP 
algorithms for parallel HEVC encoding", International Conference on 
Acoustics, Speech and Signal Processing 2016, pp. 1471.  

[17] K. Chen, J. Sun, Y. Duan & Z. Guo 2016, "A Novel Wavefront-Based 
High Parallel Solution for HEVC Encoding", IEEE Transactions on 
Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 181-194

 


