
Distributed SystemC Simulation

on Manycore Servers

Janne Virtanen, Panu Sjövall, Marko Viitanen, Timo D. Hämäläinen, and Jarno Vanne

Department of Pervasive Computing

Tampere University of Technology

Tampere, Finland

{janne.m.virtanen, panu.sjovall, marko.viitanen, timo.d.hamalainen, jarno.vanne}@tut.fi

Abstract—SystemC (SC) is widely used in SoC simulations at

various levels of abstraction. The free OSCI SC simulator can

only execute on a single core in a sequential manner, which limits

the simulation speed. Most speed-up techniques use threading,

but this increases synchronization complexity and requires

modifying the SC simulator kernel. We propose to use POSIX

processes, and call it Inter Process Transaction Level Model

(IPTLM) simulation. Our test case is a complete Kvazaar HEVC

intra encoder. IPTLM offers 23x speed-up in a 28-core server

compared with the standard monocore SC simulation time.

IPTLM required manually modifying about 200 SC model code

lines compared with the standard SC, which is reasonable when

taking the achieved simulation speedup into account.

Keywords—SystemC, TLM, POSIX, Distributed simulation,

Manycore HEVC, Kvazaar

I. INTRODUCTION

SystemC (SC) [1] has become the mainstream modeling
language from transaction level model (TLM) to register
transfer level (RTL) abstractions with varying timing accuracy.
The basic concepts are SC modules for structural description
and SC processes for the behavioral part of the system.

Open SystemC Initiative (OSCI) offers a free SC simulator,
which includes a C++ library and can be used with just a
compiler and code editor. However, the SC simulator runs only
on one Operating System (OS) process, and the SC scheduler
repeats the evaluate-update-notify cycle for each SC process
one at a time. Therefore, the simulation execution is inherently
sequential and cannot benefit from multiple cores on the
simulator computer.

Our goal is to speed-up the simulation without modifying
the SC simulator kernel. Our proposal is called Inter Process
Transaction Level Model (IPTLM) simulation, and it is
implemented as a new library to SC. IPTLM implements
untimed/loosely timed TLM simulation, which is used, e.g., in
the design space exploration phase of the SoC design.

In the rest of the paper, we refer to the simulated system as
“SC model”. “SC process” means SC threads and SC methods
in general. By “core” we mean the physical processor core, and
by “kernel” the SC simulator kernel.

The main contributions in this paper are:

- A novel parallelization approach for SystemC simulations
at OS process level

- New API and functions for SC models
- Speed-up measurements with up to 28 physical cores

using a SC model of Kvazaar 4K High Efficiency Video
Coding (HEVC) video encoder [2] as a test case

This paper is organized as follows. Section II describes the
related work. Section III details our parallel SC implementation
and Section IV the SC model for Kvazaar. Section V describes
the case studies and results. Section VI concludes the paper.

II. RELATED WORK

Figure 1 depicts an exemplar SC model. Every SC process
is executed on an OS user thread, and the whole simulation
including the SC kernel itself in an OS process having one OS
kernel thread. Only one SC process (OS thread) is run at a
time, and it must run to completion before yielding. This
ensures deterministic, thread-safe execution, but makes the
simulation locked to only one host core at a time.

The two main speed-up techniques either modify the SC
kernel to let several SC processes run in parallel, or let several
kernel instances run in parallel. We start with the former in the
following.

A parallel SC scheduler and mechanisms to synchronize the
evaluate-update phase is presented in [6]. They also present
four approaches to distribute the SC processes to cores. The
best results were achieved with a new SC API, in which the
user manually grouped SC processes to cores. The reported
simulation time speedup was ~8 for 16 cores.

ParSC [7] has a master-slave OS threads model. The user
must modify the SC model to protect against data races for the
SC processes executed in parallel in a delta-cycle. The speedup
was at best 4.4x in a quad-core cycle-accurate simulation.

legaSCi [12] attempts to avoid any modifications of legacy
SC models. It uses Loosely-Timed TLM abstraction and
grouping of SC processes to zones sharing the same context.
Determinism is achieved by an additional scheduling algorithm
for runnable SC processes. However, the SC model still needs
to be modified by, e.g., adding some new blocks for inter-zone
communication. A speedup of 2.13x is reported on four cores.

Running many kernel instances in parallel is presented in
[8]. The authors present a new SC modeling profile called

TLM Distributed Time (TLM-DT) and a simulator supporting
it based on Portable Operating System Interface (POSIX)
Threads. The idea is to remove the centralized simulated time
keeping from the kernel. Instead, all SC processes keep it as
local, and mutually synchronize time with special messages. A
speedup of 1.9x is reported with two cores.

A hybrid solution is presented in [10], in which a two-level
hierarchy of threading is utilized. The first layer maps SC
processes to different SC kernels, which in turn are mapped to
OS kernel-level threads and those to cores. The speedup is 3.3x
for four cores, but does not increase anymore by adding more
cores.

CoMix [11] is a commercial solution aimed at multi-
computer simulation. The SC model is manually cut to
modules, which are connected via Transmission Control
Protocol / Internet Protocol (TCP/IP) for distributed and
loosely synchronized simulation. A speedup of 3.8x is reported
in a quad-core virtual machine.

Most of the proposals are based on OS threads, since inter
process communication causes larger overhead in general. All
proposals consider time synchronization, most delta-cycle
ordering of execution to ensure determinism and also load
balancing either by static or dynamic SC process allocation.

Unfortunately, it seems that modifications to the SC model
cannot be fully avoided, so we accept the fact and only try to
limit the developer effort. Another issue is that parallel SC
simulators are not standardized as is the OSCI SC simulator,
which complicates long-term tools maintenance.

Our constraints for parallel SC simulation are: i) as
standard toolset as possible, ii) moderate manual work to
modify the SC models, and iii) scalability to dozens of cores.
We are not attempting a perfect core load balancing if the total
simulator time is sufficiently decreased as we add more cores.

III. IPTLM

Distributing the SC simulation to OS processes means
technically many independent SC simulators, which has two
requirements. First, the distribution of the original SC model to
the kernels. Second, the execution coordination between the
kernels at runtime. Ideally, both of them are automated and the
user does not need to modify the original SC models of the
simulated system.

Our IPTLM is based on manual distribution like most of
the related work. In addition, we only consider untimed/loosely

timed TLM, and primarily aim at reducing the simulator wall
clock time.

Our approach sets the following limitations to the SC
model. The main requirement is a strict separation of
computation and communication that takes place only using
channels between the SC modules. SC events are not allowed
for signaling between the SC modules. However, events may
be used if all related SC processes are executed within one
kernel, but this requires manual work every time the
distribution is changed. Therefore, we completely avoid the use
of events. The channel communication abstraction is TLM 2.0.

We recognize two levels of parallelization. The first is the
way the SC model describes parallel execution of the
application. This concerns the mapping of SC processes to the
SC modules, and we may have dozens of SC models for
exploring the alternatives. The second is distribution of the SC
modules to kernels. The number of kernels per core is
configured separately. As a whole, we may change the
mapping of SC processes to SC modules, the SC modules to
kernels, and kernels to cores.

The SC model is manually modified for IPTLM as follows.
The standard SC TLM channel related functions are replaced
by the IPTLM wrapper functions whenever the other SC
process is executed in another kernel. Alternatively, the
underlying implementation of the standard TLM functions
would be automatically substituted, but this is out of scope of
this paper.

A. IPTLM architecture

IPTLM is based on POSIX processes and POSIX shared
memory for inter process communication. POSIX queues and
messages could be used as well, but shared memory is feasible
for most standard computers used in simulations.

Figure 2 depicts an overview of IPTLM and the write
sequence. IPTLM has separate classes and interfaces for a
master and slave bus interface in the SoC SC model. One slave
is connected to one master as point to point. They connect
when their objects are created in SC. They will identify each
other with a constant string defined at SC model creation time.
For the underlying technology (POSIX shared memory) the
name of the memory file is the same constant string. IPTLM
utilizes semaphores to synchronize between the master and
slave processes.

The bus master initiates either read or write (1. - 4.) and the
slave waits for a request (6. - 7.). Both are blocking calls.
When a request is received, the slave has a chance to respond
based on whether or not it was a write or read and which
address was targeted by the master (8. - 9.). The slave then
makes a transfer, and releases the master (10. - 12.), thus
releasing both (13. - 16.). The sequence for reading is similar,
except the master executes memcpy() after slave has transferred
(11.-13.). Function transfer() works for both transfer directions.

IPTLM provides a C++ library extension to the standard SC
API to mediate between the POSIX processes. In the current
implementation, this is lightweight and consists of six
functions as summarized in Table 1.

OS process

sc_module
CPU1

sc_module
HW IP

P1 P3

Global
variable

sc_module
CPU2

P2

P4

Event

SC Process

Channel
SC

kernel

OS kernel thread
OS user thread OS user thread

OS user threadOS user thread

SC model

Core 1

Core 2

Core 0

…

Figure 1. Example SystemC model.

Like TLM, IPTLM is completely layered on top of the SC
kernel. IPTLM API does not directly correspond to TLM API.
The main difference is that the slave does not register
b_transport functions, but instead calls the function
slave::wait_request when it is ready to receive a request from a
master. If the master has already sent a request, the function
returns immediately. After that, the slave inspects the request,
and transfers accordingly.

1. write()

Thread A Thread BMaster SlavePOSIX

2.memcpy()

5. sem_try_wait()

3. sem_post()

6. wait_request()

7. sem_try_wait()

10. transfer()

8. return

9. address +

write = true

12. sem_post()

11. memcpy()

13. return

4. return

14. return 15. return

16. return

Figure 2. IPTLM write sequence.

Table 1. IPTLM functions.

IPTLM function Description

master::master Creates a new master object, establishes link

with the corresponding slave.

master::write Writes contents of the buffer parameter to
slave.

master::read Writes data coming from slave to the buffer

parameter.

slave::slave Creates a new slave object, establishes link
with the corresponding master.

slave::wait_request Waits for a request from the corresponding

master, returns true, if master is writing, else

false.

slave::transfer Executes the transfer initiated by the master.

B. IPTLM performance

We measured the IPTLM data transfer performance with a
minimal system model that includes only one master and one
slave and very simple application just sending data in a one-
way manner with protection (semaphore). To compare, we
have three models: standard SC TLM model using b_transport,
IPTLM, and pure POSIX shared memory. We used a PC with
i7-4790X@3.60 GHz with CentOS 6.6 guest hosted by
Windows 7 in this test.

Naturally the TLM model is the fastest, 3.4 GiBps using
1kiB transfers, since there is no operating system process
overhead and data copying is by reference. IPTLM and POSIX
achieve 40 MiBps and 50 MiBps. With larger transfer size, 100
kiB, IPTLM achieves 4.3 GiBps. Thus, IPTLM favors either

computation intensive or large transfer sized simulations. In the
following, we present the results in a real test case. For brevity,
we consider only the simulator time and omit details of
simulated computation and communication times.

IV. TEST CASE

As a real-scale test case, we use an open-source Kvazaar
HEVC intra encoder, version 0.4.2 [2]. The C source code of
Kvazaar is modified to SystemC model for hardware
architecture exploration. Comparing potential HW
architectures for Kvazaar is out of the scope of this paper, but
we focus on speeding up the simulation of any SC model of
Kvazaar intra encoder. Here, we have chosen one test case,
where Kvazaar is run under All-Intra (AI) coding configuration
with the following command line options:

--input-res 3840x2160 --no-rdoq --no-sao --

no-deblock -q 18 --rd 2 -p 1 --full-intra-

search -n Frames --wpp --owf N,

where rate distortion optimized quantization (RDOQ), sample
adaptive offset (SAO), and a deblocking filter are disabled. The
tested 4K video sequence is “Bosphorus” [3] (600 frames) with
quantization parameter (QP) value of 18. RDO level (rd) is set
to full, intra period (p) is every frame, and an exhaustive intra
search is enabled. The intra coding tools of Kvazaar are
detailed, e.g., in [4].

Encoding parallelism can be exploited by running several
Coding Tree Units (CTUs or LCUs) of the same picture in
parallel. This can be done through a wavefront parallel
processing (WPP) which exploits CTUs in already encoded
regions. Overlapped Wavefront (OWF) processing brings the
exploitation to the highest end by dealing with several frames
in parallel. In our experiments, one, three, or eleven frames are
coded in parallel, i.e., N = {0, 2, 10}. Visualization of OWF in
Kvazaar can be seen in [5].

A. Standard SC model

This acts as the purely sequential reference model to which
we compare IPTLM. Figure 3 depicts a simplified block
diagram of the Kvazaar SC model used in this paper. The
major parts of Kvazaar execution are divided into subsystems
search_cu and the rest is kept in a SC module kvazaar_core
acting as a master process. All communication between the SC
modules takes place using blocking TLM b_transport, and no
events are used between SC modules.

The master module delivers data to slave modules, collects
the results and performs some common tasks like bit stream
assembly. The intra prediction subsystems are acting as slave
modules acc_x, including SC processes search_cu, one or more
for each wavefront and frame.

The number of instantiated SC modules depends on
Kvazaar coding settings (OWF) and video resolution. 4K video
frames are large enough to instantiate even tens of slaves. As a
whole, we can explore different parallelization setups by this
master-slave model.

B. IPTLM SC model

The above standard SC model acts as a reference for
parallelization of the SC simulation. The parallelized IPTLM
model is obtained by replacing the b_transport functions by the
IPTLM functions.

 Listing 1 illustrates the usage of IPTLM in SC module’s
master interface side. For comparison, there are also the TLM
code excerpts to write/read at the specified address of the slave,
using the specified buffer of the master. A convenience
function was used to reduce redundant code. The
corresponding IPTLM transfers also receive buffers as
parameters, although in this case addresses are omitted, since
unlike in TLM, the slave side receives the requests sequentially
with other functionality. The argument i is related to time
stamping instrumentation for simulator time reports.

V. MEASUREMENTS

Our host computer includes two 14-core Intel Xeon E5-
2697v3 2.6 GHz CPUs with 32 GB RAM. The OS is Ubuntu
natively executed without any virtual machine.

The simulator time is acquired by instrumentation code
available in the original Kvazaar source code and by the
IPTLM functions. We log timestamps for computation,
communication (POSIX memcopy and semaphores) and idle
waiting for all SC processes. The CPU load is measured using
mpstat [13].

The correctness of the encoded video in parallel simulation
was verified by comparing the encoder output to a non-
parallelized native Kvazaar encoder using the same video
sequence and parameters. The PSNR is recorded for each

experiment.

A. Setting up parallel SC simulation

The standard and IPTLM SC models already define the
mapping of SC processes to SC modules (application level
parallelism), so the task is to map the SC modules to the
kernels and further the kernels to the cores for parallel
simulation. Exploration of different SC processes and module
mappings are out of the scope of this paper.

Figure 3 depicts the mapping used in this paper. We assign
one or more SC processes to one SC module, one SC module
to one kernel, and one kernel per core. This is carried out in a
code editor or graphically drag-dropping the SC modules on
top of kernel placeholders in Kactus2 tool [9]. Independent of
the input method, the mapping information is written to a
header file copied to all kernels.

The master process includes one communication thread for
each slave. The slave specific thread is always executed on the
same core as the slave process, but otherwise the master is
executed in its own core. Thus, the number of slave processes
is one less than the number of available cores, e.g. 27 slaves in
a 28-cores machine. A shell script is used to launch each
simulation experiment. Automatic load balancing is not used.

B. Results

Figure 4 depicts the total simulator wall-clock time and
average wait times for the master and slave processes as a
function of the cores for OWF={0,2,10}. The first column,
labelled as “ref”, plots the simulator time for the reference SC
model and the remaining ones for the IPTLM with 1-28 cores.
The reference model simulator time is 20.037s (OWF=0),
20.089s (OWF=2) and 20.132s (OWF=10), which is slightly
lower than that of the IPTLM with one core. This is explained
by the OS process overhead in IPTLM, but IPTLM starts to
quickly pay back after three cores. It should be noted that the
OS and SC kernel have freedom to execute the reference SC
model on multiple cores if possible, but in practice only one
core is used.

Without overlapping frame encoding (OWF=0), the
execution time flattens after 20 cores. In this case, the 4K
frame does not contain enough data to fully exploit all the cores
since we do not have automatic load balancing. With three
(OWF=2) and eleven (OWF=10) frames encoded in parallel,
the simulator time continuously drops towards the 28 cores.

The identical results for OWF2 and OWF10 mean that the
cores are already fully occupied when three frames are encoded
simultaneously. The PSNR in all the experiments were
attempted to be same, which resulted in on average 45.9 (Y)
49.2 (U) 48.6 (V). Figure 5 depicts the simulator time
speedups. The graphs confirm almost linear scalability for
OWF=2 and OWF=10, and the saturation effect after 20 cores
for OWF=0.

To analyze the results in more detail, Figure 4 plots the
master and slave process idle times as well. Wait times have
been measured from the master process communication threads
and slave processes individually, and averaged by the number
of slaves.

so
ck

et

kvazaar_
main

kvazaar_core acc_0

search
_cuso

ck
etb_transport

so
ck

et b_transport

…

Core 0

SC

kernel

Core 1

SC

kernel

Core n-1

SC

kernelso
ck

et

search
_cu

…

acc_m-1

Figure 3. High-level view of Kvazaar SystemC model and
execution mapping on host cores.

Listing 1. Example replacement of b_transport by IPTLM.

//Original done with b-transport
 transport(MISC_DATA_ADDR, (unsigned char*)buffer, BUF_SIZE,
 true);
 transport(ENCODER_STATE_ADDR, (unsigned
 char*)state->encoder_control, sizeof(encoder_control_t), true
);
 transport(LCU_ADDR, (unsigned char*)lcu, sizeof(lcu_t), true
);
 transport(LCU_ADDR, (unsigned char*)lcu, sizeof(lcu_t),
false);
//Convenience function
 void transport(int address, unsigned char* buffer, size_t
len,
 bool write){
 ...
//Blocking transport call
 kvazaar_global->socket->b_transport(*trans, delay);}
//The same done with IPTML
 master->write(i, buffer, BUZ_SIZE);
 master->write(i, (void*)state->encode_control,
 sizeof(encoder_control_t));
 master->write(i, (void*)lcu, sizeof(lcu_t));
 master->read(i, (void*)lcu, sizeof(lcu_t));

Figure 4. Simulator wall-clock time and average wait times for
the master and slave processes.

0
2
4
6
8

10
12
14
16
18
20
22
24
26

ref 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Fa
ct

o
r

Number of physical processor cores

Speedup

OWF=0 OWF=2 OWF=10

Figure 5. Simulation speedup.

0

10

20

30

40

50

60

70

80

90

100

1

4
0

7
9

1
1

8

1
5

7

1
9

6

2
3

5

2
7

4

3
1

3

3
5

2

3
9

1

4
3

0

4
6

9

5
0

8

5
4

7

5
8

6

6
2

5

6
6

4

7
0

3

7
4

2

Simulator time [seconds]

CPU Load, Reference model, OWF=2

 User %

 Sys %

 Idl %

Figure 6. CPU load of the reference model.

With OWF=0, the master roughly waits for 90% of the
time, and slaves on average for around 10% of their total time
up to the saturation point. For 28 cores, the waiting percentages
are 46% and 55%, respectively, showing shortage of data to all
cores. For OWF=2, the master and slave waiting percentages
are 91% and 10% for 28 cores, and 93% and 5% for one core.
The master is clearly not choking the execution in any

configuration, which was the design goal for the original
parallel Kvazaar SC model.

Figure 6 depicts the CPU load for the reference model with
OWF=2 for 20 frames in Bosphorus. For OWF=0, it was
almost constantly 100%. The attempt to simulate encoding of
three frames in parallel causes significant system call overhead
and slows down the simulation. Clearly this is not feasible for
standard SC simulation. It should be noted that the load is
measured for the active cores, in this case one core, while
others are idle and not counted in to the load figures.

Figure 7 depicts the CPU load for IPTLM with OWF=0.
The shape of the idle waiting clearly shows the starving for
data for 28 cores.

Figure 8 plots the load with OWF=2. The ratio between the
user and system level load is very good, which shows that
IPTLM is not causing exhaustive number of system calls,
which is the danger in OS process based simulation
distribution.

C. Effort

Parallelizing the Kvazaar source code for simulation on
multiple cores took about one week and involved replacing the
existing TLM-communication with IPTLM, which finally
affected about 200 lines of code. The most laborious task was
to rewrite the code for events. SC_events were replaced with

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Simulator time [seconds]

CPU Load, IPTLM, OWF=0, 28 cores

 User %

 Sys %

 Idl %

Figure 7. Load when encoding one frame at a time.

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Simulator time [seconds]

CPU Load, IPTLM, OWF=2, 28 cores

 User %

 Sys %

 Idl %

Figure 8. Load when encoding three frames at a time.

80

800

8 000

80 000

ref 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

lo
gs

ac
le

 s
ec

o
n

d
s

Number of physical processor cores

Simulator total and master/slave wait time

OWF0 Total OWF0 Master Wait OWF0 Slave wait

OWF2 Total OWF2 Master Wait OWF2 Slave wait

OWF10 Total OWF10 Master Wait OWF10 Slave wait

one bit signals, because IPTLM does not support events
between modules.

D. Comparison

To the best of our knowledge, there is no related work
combining both parallel SystemC simulation and parallel
HEVC encoding. Thus, we compare the results to both of them
separately.

Our speedup scales very well compared to the related
parallel SystemC simulations, which are in the order of 1.8×-
4× compared to sequential simulation. This is because the
overhead (system and idle times) is kept moderate compared
with even thread-based proposals that are generally more
lightweight than process-based parallel execution.

The speedup is very good also compared with the related
work on parallel HEVC encoding, which is listed in Table 2.
The last column lists the ratio at which the cores could have
been utilized, 100% being the ideal. As a whole, we succeeded
also in the Kvazaar parallelization approach, even though the
primary scope of this paper was how to speed up SystemC
simulations. For this reason, a more comprehensive encoder
comparison is excluded in this paper.

Table 2. Comparison of max speedup in parallel HEVC.

Ref Resolution QP CPU Core Speedup Ratio

[14] 2560x1600 27 E5-2670 8 5,5 69 %

[15] 1920x1080 37 GX36 36 17,0 47 %

[16] 3840x2160 30* E5-2699 36 31,9 89 %

[17] 1920x1080 27 Opt.6272 36 21,9 61 %

This 3840x2160 18 E5-2697v3 28 23,6 84 %

*average

VI. CONCLUSIONS

This paper presented a new approach called Inter Process
Transaction Level Model (IPTLM). It uses POSIX processes to
support parallel simulations using standard sequential SystemC
kernel. Even though a direct comparison to the related work is
difficult due to different test cases and unavailability of open
thread-based parallel SystemC simulators, our speed-up results
show very good scalability over state of the art.

The associated coding effort was about one week with 200
lines of new or modified code, which is moderate compared to
the time for running simulations. The experiments in this paper
took 173 hours in wall clock time on our computer, and still we
used only one possible parallel Kvazaar architecture with one
test sequence and three different encoder configurations. To

perform thorough design space explorations, each of these
dimensions can be multiplied, which means that the obtained
speed up will have significant time savings in the future design
space explorations.

REFERENCES

[1] IEEE Standard for Standard SystemC Language Reference Manual, in
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), Jan. 2012.

[2] Kvazaar HEVC encoder [Online]. Available:
https://github.com/ultravideo/kvazaar

[3] Ultra video group [Online]. Available: http://ultravideo.cs.tut.fi/

[4] M. Viitanen, A. Koivula, A. Lemmetti, J. Vanne, and T. D. Hämäläinen,
“Kvazaar HEVC encoder for efficient intra coding,” in Proc. IEEE,
Lisbon, Portugal, May 2015, pp. 1662-1665. International Symposium
on Circuits and Systems

[5] Kvazaar Visualizer [Online]. Available:
http://ultravideo.cs.tut.fi/#visualizer

[6] P. Ezudheen, et al., “Parallelizing SystemC Kernel for Fast Hardware
Simulation on SMP Machines,” in proc. ACM/IEEE/SCS Workshop on
Principles of Advanced and Distributed Simulation, pp. 80-87, 2009.

[7] C. Schumacher, et al., “parSC: synchronous parallel systemc simulation
on multi-core host architectures,” in Proc. IEEE/ACM/IFIP The
International Conference on Hardware/Software Codesign and System
Synthesis, pp. 241-246, 2010.

[8] A. Mello, et al., “Parallel simulation of systemC TLM 2.0 compliant,
MPSoC on SMP workstations,” in Proc. Design, Automation & Test in
Europe Conference & Exhibition, pp 606-609, 2010.

[9] Kactus2 [Online]. Available: http://funbase.cs.tut.fi

[10] M. K. Chung, J. K. Kim, and S. Ryu, “SimParallel: A high performance
parallel SystemC simulator using hierarchical multi-threading,” in Proc.
IEEE International Symposium on Circuits and Systems, Melbourne,
Australia, Jun. 2014, pp. 1472-1475.

[11] C. Sauer, H-M. Bluethgen, and H-P. Loeb, "Distributed, loosely-
synchronized SystemC/TLM simulations of many-processor platforms”,
Specification and Design Languages, Vol. 978, 2014.

[12] C. Schumacher, J. H. Weinstock, R. Leupers, G. Ascheid, L. Tosoratto,
A. Lonardo, D. Petras, and A. Hoffmann., “legaSCi: Legacy SystemC
Model Integration into Parallel Simulators,” ACM Transactions on
Embedded Computing Systems vol. 13, no. 5, Nov. 2014, pp. 165:1-
165:24.

[13] Command mpstat, Linux User’s Manual [Online]. Available:
http://www.linuxcommand.org/man_pages/mpstat1.html

[14] Yanan Zhao, Li Song, Xiangwen Wang, Min Chen & Jia Wang,
"Efficient realization of parallel HEVC intra encoding", International
Conference on Multimedia and Expo 2013

[15] S. Zhang, X. Zhang & Z. Gao, "Implementation and improvement of
Wavefront Parallel Processing for HEVC encoding on many-core
platform", International Conference on Multimedia and Expo 2014

[16] Z. Wen, B. Quo, J. Liu, J. Li, Y. Lu & J. Wen, "Novel 3D-WPP
algorithms for parallel HEVC encoding", International Conference on
Acoustics, Speech and Signal Processing 2016, pp. 1471.

[17] K. Chen, J. Sun, Y. Duan & Z. Guo 2016, "A Novel Wavefront-Based
High Parallel Solution for HEVC Encoding", IEEE Transactions on
Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 181-194

