

Abstract— Today’s production environment is characterised by

frequent changes in terms of high product variation, small batch

sizes, high demand fluctuation as well as random unexpected

disturbances on the factory floor. Production systems need to be

rapidly reconfigurable and adaptable to these changing

requirements. ReCaM project targets to develop a set of

integrated tools for rapid and autonomous reconfiguration of

production systems. Such tools need to be supported by formal

information models describing the product requirements, as well

as resource characteristics and functionalities. This paper

concentrates on introducing the formal resource and capability

models, which are used and further enriched to support ReCaM

targets. Also examples of how these models can be applied to

support rapid reconfiguration will be given.

I. INTRODUCTION

The requirements on production systems are continuously
being shifted towards higher flexibility and adaptability.
Increasing volatility in the global and local economies,
shortening innovation and product life cycles, as well as a
tremendously increasing number of variants, call for
production systems, which comply with these changing
demands. There is a need for rapidly responding production
systems that can timely adjust to the required changes in
processing functions, production capacity, and the dispatching
of the orders. Responsiveness is fast becoming a new strategic
goal for manufacturing enterprises alongside with quality and
costs [1]. System reconfiguration is required on three levels:
physical (changing the layout of the system, adding or
removing machines or machine elements); logical (changing
the process sequence, re-routing or re-scheduling production);
and parametric (changing the adjustable machine parameters).

Despite the high efforts towards reconfigurable production
systems e.g. by multitude of different EU-funded projects, and
several standardization activities focusing on unification of
mechanical as well as communication and control interfaces,
reconfiguration of assembly systems is still rare in real
factories. The usual business today, when the product model
changes, is to scrap the existing resources and build a new
assembly system from a scratch. This is due to high
engineering, integration and programming efforts and skills
needed to re-configure the existing system, as well as
uncertainties related to the needed effort. One of the reasons
for infeasibility of reconfiguration is the lack of sufficient
information and documentation about the capabilities of the
current system, its lifecycle, and usage history [2]. Therefore,
standardisation of hardware and software interfaces is not, in
itself, enough to enable the rapid and efficient reconfiguration.

*This research has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement no 680759.

All authors are with the Department of Mechanical Engineering and
Industrial Systems, Tampere University of Technology, Tampere, Finland

Furthermore, there still remains work to be done in order to
make these mandatory enabler interfaces into practice.
Moreover, efficient methodologies, tools and information
models are needed to support planners and engineers in the
reconfiguration planning, integration and execution process,
and also to allow logical and parametric reconfiguration to take
place autonomously while the system is running.

The European Commission funded project ReCaM (Rapid
Reconfiguration of Flexible Production Systems through
Capability-based Adaptation, Autoconfiguration and
Integrated Tools for Production Planning) [3], started in
November 2015, aims to find solutions for the above
mentioned issues. It targets to develop a set of integrated tools
for rapid and autonomous reconfiguration of production
systems, integrated with the existing production planning and
scheduling tools (MES). The ReCaM approach is based on
intelligent plug-and-produce capable self-describing
Mechatronic Objects (MOs), which are able to auto-program
and self-adjust to the required task by utilizing parametric
capabilities. ReCaM approach will rely on an unified
functional description of modules, providing a foundation for
rapid creation of new system configurations.

This paper concentrates on describing the formal resource
and capability models, which are utilized and further enriched
to support ReCaM targets. Modifications implemented and
designed to the models, to improve their performance, are
highlighted. Also the roles of these two, previously
independent, models in ReCaM context is discussed.
Furthermore, examples of how these models can be applied to
support rapid reconfiguration of production systems will be
given.

II. EXISTING APPROACHES TO MODEL RESOURCES AND

THEIR CAPABILITIES

The aim of bringing automation to the system design, re-
configuration and order dispatching, requires a formal,
structured representation of the product requirements as well
as resource capabilities, properties and constraints. Recently,
manufacturing resource modelling has been addressed by
several researchers using different methods, having different
purposes, from different viewpoints and at different levels of
detail.

From the beginning of the millennium, there has been an
increasing interest in manufacturing domain on using
emerging technologies such as ontologies, semantics and
semantic web, to support the collaboration, interoperability

(E. Järvenpää, phone +358-40-8490869, email: eeva.jarvenpaa@tut.fi; N.

Siltala email: niko.siltala@tut.fi; M. Lanz email: minna.lanz@tut.fi).

Formal Resource and Capability Descriptions Supporting Rapid

Reconfiguration of Assembly Systems*

Eeva Järvenpää, Niko Siltala, and Minna Lanz

and adaptation needs. In the context of distributed intelligent
systems, such as agent-based or holonic systems, ontologies
play a key role as they provide a shared, machine-
understandable vocabulary for information exchange among
dispersed agents. [4]

FP6 project PabadisPromise [5] resulted a manufacturing
ontology (P2 ontology) and reference architecture focusing on
factory floor control. Borgo and Leit [6] developed ADACOR
ontology for distributed holon-based manufacturing focusing
on processes and system interaction descriptions. It consists of
ontological classification of ADACOR concepts according to
DOLCE foundational ontology. During the FP6 EUPASS-
project, an ontology for modelling evolvable, modular, ultra-
precision assembly systems was developed [7]. Kitamura et al.
[8] presented ontological definition of an assembly device
capabilities based on the function-behaviour-structure (FBS)
framework.

An ontology-based capability management approach for
multi-agent-based manufacturing systems was developed by
Timm et al. [9]. In the SIARAS project an intelligent system,
called the skill server, was built to support automatic and semi-
automatic reconfiguration of production processes [10][11].
Barata et al. [12] presented a multi-agent-based control
architecture for a shop floor system (CoBaSa) which supports
fast re-engineering and plug and play capabilities based on
skill descriptions. Frei [13] applied the CoBaSa in Self-
Organizing Evolvable Assembly Systems (SO-EAS). Also
Obitko et al. [14] proposed ontology for agent-based
manufacturing systems. Terkaj et al. [15] developed an
ontological Virtual Factory Data Model, which acts as a shared
meta-language providing a common definition of the data that
are shared among different software tools along factory
process lifecycle. In SkillPro-project, the classical product-
process-resource concept was extended with the concept of
skills. AutomationML-based format was used to store and
communicate the skill descriptions to facilitate autonomous
setup and execution of production tasks [16].

Manufacturing-as-a-Service paradigm has been in the
interest of many researchers, who have produced different
approaches to formally describe the service requests and
offerings. Manufacturing Service Description Language
(MSDL) was developed as a formal domain ontology for
representation of capabilities of manufacturing services,
focusing on mechanical machining services [17]. Later on, it
has been extended for other applications, such as metal casting
[4]. Shin et al. [18] enriched the MSDL further to comply
better with the requirements of Manufacturing Service
Capability (MSC) models. Hu et al. [19] developed an
ontology-based digital description of resource services for grid
manufacturing. In ManuCloud-project an XML-based
manufacturing service description was developed to enable
Manufacturing-as-a-Service operation principle in production
network [20].

Most of the available approaches are domain-specific and
offer only partial solutions for very specific applications,
missing a comprehensive view. Also the ontologies or other
data models are not publicly available, making their re-use
practically impossible. The previous research attempts to
describe manufacturing capabilities are limited in that they
either don’t consider the combined capabilities of multiple co-

operating resources, or they do not incorporate parameter
information into the capability description. Furthermore, most
of the presented approaches rely on static resource descriptions
lacking the lifecycle aspect. In the context of production
system re-configuration, information about the actual
capability is needed instead of catalogue information.

III. INTRODUCTION TO THE FORMAL RESOURCE AND

CAPABILITY DESCRIPTIONS

ReCaM-project utilizes, combines and enriches the
existing formal capability model and resource description
approach developed by the authors in previous projects. These
independent models have been originally described in
[2][21][22], and will be discussed in the following sub-
sections. Furthermore, the modifications implemented and
planned to these models is highlighted.

A. Capability model

Capability model is a data model for describing capabilities
of resources. It includes the high level conceptual model for
defining the concepts and their relations, as well as the formal
ontology defining the actual capabilities, their relationships
and detailed structure of the model. Capabilities are
characterized by name and parameters. The capability concept
name indicates the natural name of the capability, such as
“moving”, “drilling”, “screwing”, and “grasping”. Capability
parameters describe the characteristics of a capability, e.g. the
“moving” capability is characterized by “velocity” and
“acceleration” parameters, among others. The capability
parameters help to distinguish between different resources
which have similar capabilities. In other words, the concept
name of the capability indicates the operational functionality
of the resource, whereas the capability parameters determine
the range and constraints of the capability.

Capability model (Fig. 1) divides the capabilities into
simple and combined capabilities. Combined capabilities are
upper level capabilities, which can be divided by functional
decomposition into simple, lower level capabilities (part_of
hierarchy). Combined capabilities are combinations of two or
more (simple or combined) capabilities. In the model, the
simple and combined capabilities are linked by capability
associations. There are two types of capability associations,
namely inputs and outputs. The simple capabilities provide
output associations while the combined capabilities require
input associations.

Figure 1. Concepts of the capability model.

The capabilities, modelled as classes in the ontology, form
the capability catalogue, which consists of the pool of
capabilities that may exist in a production system, including

their parameters. The simple capabilities can be assigned to
resources through the resource description. When these
generic capabilities are assigned to the resources, the
capability parameters are filled with the resource-specific
values.

Based on the defined capability associations, the resource
combinations contributing to a certain combined capability
can be identified and queried. Fig. 2 Figure 2. shows an
example on how the capability associations are used in the
ontology to connect the simple capabilities into combined
capabilities. For instance, in order to transport an item the
system needs to be able to move within some workspace and
to hold the item. Therefore, both the “movingAssociation” and
“holdingAssociation” have to be satisfied. Several different
capabilities may provide output for a certain capability
association. For instance, “holdingAssociation” can be
satisfied either by grasping (e.g. gripper) or holding by gravity
(e.g. conveyor belt). Similarly the same input association may
be required by multiple different combined capabilities. As an
example “spinningTool” capability is part of both “screwing”
and “drilling” combined capabilities.

Figure 2. Example capabilities and capability associations between simple

and combined capabilities.

When two or more resources are combined (e.g. robot +
gripper), the associations between simple and combined
capabilities allow the combined capabilities to emerge on the
capability concept name level. Combined capability rules are
needed to reason out the parameters of the combined
capabilities (e.g. what is the payload of robot & gripper
combination).

The capability model was previously a part of bigger
ontology, called CoreOntology [2], which contains classes for
modelling products, processes, resources and resource
combinations. The ontology includes a taxonomy, which
categorizes the capabilities in a hierarchical structure (e.g.
“material removing” is a parent for “milling”, “drilling”, etc.)
The taxonomy can be used to enable mapping between product
requirements and resource capabilities at different levels of
detail and allow subsumption-based reasoning about the
capabilities. Both the product requirements and capability
instances can refer to the capability taxonomy, which makes
the matching possible on capability concept name level.
Capability matching rules are used to make the match between
product requirements and resource capabilities on parameter
level.

B. Resource description concept

Resource description concept is a comprehensive XML-
based digital representation of a technical entity. It integrates
together information of a production resource related to
geometrical, mechanical, functional, communication, and
control aspects. It allows giving a description of resources’

functionality, interfaces to other resources, parameters related
to business, environment and technical characteristics, as well
as lifecycle related information. Resource description concept
is a roof term and encapsulates detailed parts of descriptions
and their inter relations, namely Abstract resource description
(ARD), Resource description (RD), and Resource instance
description (RID) (Fig. 3).

Figure 3. Resource description concept and relations between different
descriptions.

Abstract Resource Description (ARD) is an abstraction and
a reference model for production resources. It forms an
abstract digital specification and generalisation for a collection
of similar kind of production resources. In other words, ARD
is a generalisation, which can be specialised as a physical
production resource. ARD is composed of one or more
Profiles, and it cannot be directly instantiated as a physical
resource. Its purpose is to provide harmonisation over
Resource Descriptions and its content is controlled by a
harmonisation group(s).

Profile is an integral and inseparable part of ARD and
cannot exist alone outside of it. Profile defines a reusable
construction block of definitions, a structure which is used to
specify the detailed section of the ARD. It includes
information related to interfaces, capabilities, properties, and
other features that are composing the generalisation of a set of
production resources. A Profile can be built from N other
Profiles with concepts of inheritance or referencing.

Resource Description (RD) is a digital representation of a
real, physical production resource. It describes details
associated to a specific type of HW resource used for
production as a part of a production system. The description is
jointly shared by same kind of resources i.e. resources having
the same vendor, model, type, and version. It contains a
reference to the ARD and Profile of which this resource claims
to implement. RD represents the catalogue information of the
resources.

Condition and capabilities of the resources evolve during
their individual lifecycles and usages. Resource Instance
Description (RID) is a digital representation of an individual
physical instance of a resource. It carries the resources’ current
state and historical data events – it is an accumulating
information storage. It appends the RD with information that
cannot be generalised over all instances of the same resource
type, but is specific to a specific instance only. For instance, if
the capability or lifecycle parameters (such as MTBF, Mean
Time Between Failure) is changed during the resource
lifecycle, RID will contain the updated information. The RID

screwing

spinningToolAssociation

screwingToolAssociation

spinningToolscrewingTool

Capability

CapabilityAssociation

hasInputAssociation

hasOutputAssociation

drilling

drillingToolAssociation

movingAssociation

movingdrillingTool

transporting

holding grasping

holdingAssociation

fixturingAssociation

fixturing

should travel all the time with the physical production
resource. Fig. 4 provides a detailed view of the three different
descriptions, while Table 1 provides a concrete meaning of
each description with example instances.

TABLE I. PURPOSE AND EXAMPLES OF DIFFERENT DESCRIPTIONS.

Term
Description and example

Description Example

ARD

Represents specific technologies such as

grippers, axis-systems or feeders. Each

one of those has their own ARD, which
collects all associated Profiles together.

ARD for

grippers

Profile
Provides generalised specification of a

specific kind of entity.
2-finger gripper

RD

RD turns the focus to the module
provider (e.g. vendor VA). It provides a

detailed description of the specific
production resource. This description

respects the definitions made in Profile

and ARD.

2-finger gripper
from vendor VA

with type or

model number
T1.

RID

When vendor VA produces physical

entity of such 2-finger gripper of type T1,
they give it a a serial number. At the same

time, they will create a RID and connect

it to this specific piece of HW.

2-finger gripper
from vendor VA

with type or

model number
T1 and serial

number SN123

C. Adaptations to the models for ReCaM purposes

These two above introduced models have originally been
developed completely independently from each other in
different projects and with different objectives. In ReCaM-
project the best parts of both models are utilized, and they are
harmonized and coupled more tightly together. In ReCaM the
capability ontology is used to model the capabilities, their
parameters and associations between the combined and simple
capabilities. In order to enable more powerful reasoning
possibilities with the OWL-model, the structure of the original
capability ontology, presented in [2], has been modified. For
instance, in the new approach the capability concept names are
implemented as classes instead of instances. This modelling
method allows the capability parameters to be linked to the

specific capability classes as property restrictions. SWRL
(Semantic Web Rule Language) rules are implemented
directly to the ontology file to infer the combined capability
parameters for the resource combinations based on the simple
capabilities of the resources involved in the combinations.
SPARQL queries are used to query information related to the
capabilities and their parameters. Furthermore, in ReCaM the
ontology has been distributed into three parts: capability
model, product model and resource model. Both product
model and resource model import the capability model to
describe the product requirements and resource offerings.

The XML-based resource description, on the other hand, is
responsible for handling other information related to
resources, including interface specifications as well as
business and lifecycle information. The resource description
encapsulates the capability description of the resource it
describes (as shown in Fig. 4). A new resource description
editor will be developed during ReCaM for resource providers
to ease up the filling of the resource related information. This
editor will utilize the capability model (OWL) to describe the
capability related aspects of the resource via referencing, while
the other aspects will be directly captured in the XML-based
resource description. After the resource description has been
prepared, it is published in a resource catalogue and the
capability related information can be read back to the ontology
knowledge base. The reasoning related to capability matching
is done in this knowledge base, utilizing SPARQL queries and
SWRL rules. Thus, any non-capability related information
saved into the resource description and needed for such
matching, is mapped to the OWL format. An example of such
information is weight of a gripper, which is needed in order to
calculate the payload of a “robot & gripper” combination.

Both of the models have originally been developed to
support mainly the design and reconfiguration planning phase
of a production system. In ReCaM they are extended to
support also the auto-programming and execution phase.
Therefore, a new concept called executable capability has been
added to the resource description (see Fig. 4). Executable
capability is used for controlling the actual execution of the

Figure 4. Detailed view to the Resource description concept, which now encapsulates the capability and executable capability descriptions.

capabilities existing on the resources, i.e. configuring the
process parameters and triggering the execution of the
capabilities. It differs from simple and combined capability
descriptions by having input and output events, which triggers
the activities and data inputs and outputs e.g. for setting up the
process parameter values. The executable capabilities are part
of the production recipe, which should be automatically
generated and parameterized based on the product’s process
plan and available resources. Thus, the executable capabilities
need to correspond to the actions that the resources make to
complete the task goals (e.g. moveTo, openFingers,
closeFingers).

IV. EXAMPLES OF THE MODELS’ USAGE IN RECAM

In order to speed up the reconfiguration of the existing
production systems to new requirements, support for
reconfiguration planning, auto-configuration and auto-
programming is needed. This can be promoted e.g. by
developing methods and tools which automate the processes
of: 1) Evaluating the existing system against the new
requirements; 2) Identifying any missing capabilities from the
existing system; 3) Searching from resource
libraries/catalogues for resources which satisfy the missing
requirements; 4) Evaluating the interface compatibility of the
resources; 5) Generating alternative system configurations; 6)
Selecting the best configuration based on certain user defined
criteria (e.g. smallest system change, maximising speed, or
minimising energy consumption) while simultaneously
complying with the requirements set by the production plan;
7) Generation of the recipe for the product’s
manufacturing/assembly process; 8) Supporting the plug-and-
play capabilities of the resources and controllers; 9)
Orchestrating the activities of the resources on the line
according to the recipe; 10) Automatic deployment and
commissioning of recipes and orchestration results.

The presented capability model and resource description
provide support for all the above mentioned activities. In the
following sections, few more detailed examples will be given
on how the presented models support the ReCaM targets. The
technical implementation of these examples is part of ongoing
and future work of the project.

A. Common model for resource descriptions

The Resource Description (RD) is used to create a pool of
resource descriptions, i.e. a Resource Catalogue. This
catalogue may be a global library, where vendors can publish
their resource offerings. On the other hand, the manufacturers’
may use this library to search for suitable resources for their
manufacturing requirements. Manufacturing companies may
also have their in-house resource libraries, consisting of
Resource Instance Descriptions (RIDs), which content is
updated during the lifecycle of the resources.

The resource description and capability model provide a
common terminology and semantics for different system
component vendors to describe their system component
capabilities and other characteristics in a digital form. This
lays foundation for heterogeneous, multi-vendor systems with
easy integration and ensures that there won’t be ambiguity
caused by different naming or structuring conventions
between different vendors. Different SW-tools can retrieve

resource information from the catalogues and use it as digital
representation of the resource.

In ReCaM-approach the system components, i.e.
Mechatronic Objects, are intelligent modules which provide
self-description. Thus the RID is carried by each individual
MO. This description will support both offline and online
planning, and also agent-based flow control.

B. Capability matching

The presented capability model provides basis for
capability-based matching between products and resources.
The product requirements are described by referring to the
same capability model that is used to describe the resource
capabilities. This allows rapid match-making between the
requirements and capabilities, and fast identification of
suitable candidate resources. In reconfiguration context the
existing system can be compared against the new product
requirements and the missing capabilities can be identified.
New resources and resource combinations matching to the
requirements can be searched from the research libraries, and
the found matches can be suggested to the reconfiguration
planning tool. Due to the ability to model the combined
capabilities of combined resources (e.g. machine and its
tooling), also small reconfiguration scenarios, such as tool
changes, can be suggested.

The capability-based matching follows the principles of
Service Oriented Architecture (SOA). In SOA, the services
need to be described to the other parties in the system in a way,
which allows the matching of the provider’s offerings and the
requestor’s needs. This entails the services being described
through their functional (what can they do?), behavioral (how
is the functionality achieved?) and non-functional (constraints
of the previous two) aspects. Following the approach of
Kitamura et al. [8], the function represents the intention of the
designer, i.e. what he or she wants to achieve. The behavior
represents different manufacturing methods (capabilities) that
can be used to achieve the required function. For example, the
required function may be “joining”, which can be achieved by
several different behaviors, such as “welding”, “gluing”,
“screwing”, “riveting” and so on. The resource description and
capability model facilitate the description of the behavior,
whereas the capability taxonomy allows the capabilities to be
linked to the related function. The non-functional aspects are
handled through the capability parameters.

In SOA-based matching of the products and resources, the
product is seen as a service requestor, whereas the order
(including the product requirements) is seen as a service
request. Resources are service providers, which provide the
services through their capabilities. The role of the service
broker is taken by the capability matching algorithms, which
use the product requirements description, resource capability
descriptions and the capability model defined by the
ontologies, to make the match between requests and offerings.

The request may be targeted to either to a certain function,
or if the process plan has already been defined, to certain
behaviour (capability). This means that the request can be
targeted at different levels in the capability taxonomy. If the
request is targeted at functions, then all the resources having
the capabilities which can implement that function will be
offered. In ReCaM, the latter approach will be taken, targeting

the requirements to certain capability. This will make the
matching more straightforward. On the other hand, targeting
the requests on functions may be especially useful in product
design and process planning phases, when possible available
capabilities may be used as input for the design.

The capability-matching algorithm takes one capability
requirement at a time, and matches it with the existing
capabilities. If suitable capabilities are not found from the
existing system, search can be targeted to the resource library,
first in-house and finally global. The end result of the matching
will be a list of resources matching to each capability
requirement. This information will be provided to the
reconfiguration planning tool, which will make the decision
about resource selection and system configuration based e.g.
the availability and other criteria.

Combined with layout description the capability model and
associated capability matching rules will provide necessary
information for the logical adaptation (e.g. routing). For
parametric adaptation the capability description defines the
ranges for certain parameters (e.g. spinning speed). With the
executable capability extension, also the auto-programming
and execution phases will be supported. The executable
capabilities can be parameterized on real time based on the
product requirements by inputting the wanted parameter value,
while the executable capability is triggered.

V. CONCLUSION

This paper presented an ontological capability model and
XML-based resource description concept for describing
manufacturing resources. The evolution of these models to
improve their performance for ReCaM project targets was
highlighted. Examples of their use in rapid reconfiguration
context were given. Due to the formal specification,
independence from implementation and platforms, generality
and re-usability, both information models facilitate
information sharing and interoperability between various
design and planning tools used during the product, process,
and system design and reconfiguration, as well as production
planning and manufacturing execution phases.

The developed knowledge representation and associated
reasoning modules facilitate automatic filtering of resource
information and allow suitable candidate solutions to be found
from vast amount of input information. This may be especially
useful during the initial system design, when the global
resource libraries are used to search for suitable resources.
Furthermore, e.g. in large factories with thousands of
resources this automatic filtering can provide remarkable
savings in time used for system design, reconfiguration,
production planning and order dispatching. The presented
models and approaches ease and speed up the reconfiguration
planning, and facilitate also the reactive adaptation. Currently
the presented approaches have only been demonstrated in an
academic research environment. During ReCaM project, the
models will be utilized in real industrial contexts, and will be
further developed based on the feedback received from the
industry.

REFERENCES

[1] Y. Koren, and M. Shpitalni, “Design of reconfigurable manufacturing

systems,” Journal of Manufacturing Systems, 29(4), 2010, pp. 130-141.

[2] E. Järvenpää, Capability-based Adaptation of Production Systems in a
Changing Environment, PhD dissertation, Tampere University of

Technology, 2012, 190 p.

[3] ReCaM consortium, ReCaM project web page, http://www.recam-
project.eu.

[4] F. Ameri, C. Urbanovsky, and C. McArthur, “A Systematic Approach
to Developing Ontologies for Manufacturing Service Modeling,”

Proceedings of the Workshop on Ontology and Semantic Web for

Manufacturing, 2012, 14 p.

[5] Pabadis'Promise, D3.1 Development of manufacturing ontology,

Project deliverable, The PABADIS'PROMISE FP6 project consortium,
2003.

[6] S. Borgo and P. Leit, “Foundations for a core ontology of
manufacturing,” Integrated Series in Information Systems, vol 14,

2007.

[7] N. Lohse, Towards an ontology framework for the integrated design of
modular assembly systems, PhD dissertation. University of

Nottingham, 2006, p. 245.

[8] Y. Kitamura, Y. Koji, and R. Mizoguchi, “An ontological model of
device function: industrial deployment and lessons learned,” Applied

Ontology, 1(3-3), 2006, pp. 237–262.

[9] I.J. Timm, T. Scholz, and O. Herzog, “Capability-based emerging

organization of autonomous agents for flexible production control,”
Advanced Engineering Informatics, 20(3), 2006, pp. 247-259.

[10] J. Malec, A. Nilsson, K. Nilsson, and S. Nowaczyk, “Knowledge-based

reconfiguration of automation systems,” 3rd Annual IEEE Conference
on Automation Science and Engineering, 2007, pp. 170–175.

[11] M. Bengel, “Modelling objects for skill-based reconfigurable
machines,” In Innovative production machines and systems, 3rd

I*PROMS Virtual International Conference 2007, p. 13.

[12] J. Barata, L. Camarinhamatos, and G. Candido, “A multiagent-based
control system applied to an educational shop floor,” Robotics and

Computer-Integrated Manufacturing, 24(5), 2008, pp.597-605.

[13] R. Frei, G. Di Marzo Serugendo, N. Pereira, J. Belo, and J. Barata,

“Implementing self-organisation and self-management in evolvable
assembly systems,” IEEE International Symposium on Industrial

Electronics, 2010, pp. 3527-3532.

[14] M. Obitko, P. Vrba, V. Marik, M. Radakovic, and P. Kadera,
“Applications of semantics in agent-based manufacturing systems,”

Informatica, 34, 2010, pp. 315-330.

[15] W. Terkaj, and M. Urgo, “Virtual Factory Data Model to support
Performance Evaluation of Production Systems,” CEUR Workshop

Proceedings, Vol. 886, 2012, pp. 44-58.

[16] J. Pfrommer, D. Stogl, K. Aleksandrov, V. Schubert, and B. Hein,

“Modelling and Orchestration of Service-based Manufacturing Systems
via Skills,” Proceedings of the IEEE Emerging Technology and Factory

Automation, 2014.

[17] F. Ameri and D. Dutta,”An Upper Ontology for Manufacturing Service
Description,” ASME Conference Proceedings, 2006, pp. 651-661.

[18] J. Shin, B. Kulvatunyou, Y. Lee, et al.,”Concept Analysis to Enrich
Manufacturing Service Capability Models,” Procedia Computer

Science, Vol 16, 2013, pp. 648-657.

[19] Y. Hu, F. Tao, D. Zhao, and S. Zhou, “Manufacturing grid resource and
resource service digital description,” The International Journal of

Advanced Manufacturing Technology, Vol. 44, Iss. 9-10, 2009, pp.
1024-1035.

[20] U. Rauschecker, and M. Stöhr, “Using Manufacturing Service
Descriptions for flexible Integration of Production Facilities to

Manufacturing Clouds,” Proceedings of the 18th International

Conference on Engineering Technology and Innovation, 2012.

[21] E. Järvenpää, P. Luostarinen, M. Lanz, and R. Tuokko, ”Presenting

capabilities of resources and resource combinations to support

production system adaptation,” IEEE International Symposium on
Assembly and Manufacturing (ISAM), 2011 p. 6.

[22] N. Siltala, and R. Tuokko, ”Emplacement and Blue Print–Electronic
Module Description Supporting Evolvable Assembly Systems Design,

Deployment and Execution,” Proceedings of the 6th CIRP-Sponsored

International Conference on Digital Enterprise Technology, 2010, pp.
773–788.

http://www.recam-project.eu/
http://www.recam-project.eu/

