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Abstract—This paper presents a study on the benefit of
observing several signals of opportunity for positioning purposes.
Several static emitters are placed over a defined area where an
user is moving and acquiring measurements to each of these
emitters. The simulation considers that the user is capable of
acquiring time of arrival measurements from several wireless
protocols, such as WCDMA, 802.11b, 802.11g and 802.11ac. The
variance in the measurements is modelled through the Crámer-
Rao bound and a propagation model for each technology. As
conclusions, this paper discusses the benefits of using multiple
signals of opportunity in the context of positioning and how much
the positioning performance is affected by considering different
measurements combinations from several wireless technologies.

Index Terms—Cramér-Rao Lower Bound, signals of opportu-
nity, approximate maximum likelihood.

I. INTRDUCTION

Location based services have pushed the need to localize
user’s in any environment, either in urban canyons or indoor
facilities, such as office buildings, hospitals, schools among
others [1], [2]. While global navigation services are commonly
relied on for providing the location of an user, these services
are meant to be used in obstruction-less environments and
a clear view of the sky. For that reason, positioning with
signals of opportunity, any signal designed for something else
than positioning, aims to be an alternative to complement the
existing positioning services [3], [4].

The proliferation of Wi-Fi networks has contributed to the
appearance of several techniques for estimating the location
of an user. Fingerprinting is one of the most widely used
approaches [5], whose popularity arises from the fact that the
required infrastructure is already in place and no significant
investments are required [6], [7]. However, one of its disad-
vantages is the requirement of a prior training phase, which
can be expensive and difficult to deal with.

Therefore, relying on one stage estimators, such as those
that employ angle of arrival, time of arrival and time differ-
ence of arrival measurements is more desirable. This is the
motivation for the study, which focuses on time of arrival
measurements to obtain the location of a mobile receiver [8].

The goal of the study is to provide a bound for the
performance of a positioning system, which is assumed to rely
on time of arrival measurements of several widely available
wireless protocols, such as Wi-Fi and UMTS signals. This
work is of interest, for example, for future microlocation for
the Internet of things [9] or for energy-efficient cooperative
opportunistic positioning systems [10]

II. RELATED WORK

Related works can be found for example in [11]–[14].
In [11], a similar problem of hybrid localization with

heterogeneous networks is addressed. The authors combine
cellular and WiFi signals with TOA, AOA and RSS and the
focus is only on the overall performance, rather than on the
incremental performance of adding one additional system or
emitter at a time, as done here.

In [12] the authors compare the Wi-Fi-based positioning
with UMTS-based positioning by using RSS measurements,
but the two systems are not considered together. They conclude
that similar indoor accuracies can be achieved with Wi-Fi and
UMTS when RSS measurements are used.

The work in [14] looks into positioning with a 3GPP-LTE
signal and what is the gain obtained by considering several
signals of opportunity, such as digital television and Wi-Fi.
When aided by signals of opportunity, the gain in accuracy
was seen to be 40 % to 70% better than standalone positioning
with 3GPP-LTE. These gains were observed for scenarios with
more than 40 user equipments and 1 to 4 additional signals of
opportunity, respectively.

III. SIMULATION

In this study, the simulation model assumes the exis-
tence of several Wi-Fi signals, based on the standards IEEE
802.11ac/b/g (simply refered as 802.11ac/b/g from now on)
and WCDMA signals, based on UMTS signals. Table I sum-
marises a few key parameters of each technology, including the
signal structure type, OFDM and CDMA and bandwidth. The
simulation assumes an environment where several emitters,
from each of these technologies, are randomly distributed
inside a defined area.

TABLE I
SIGNALS UNDER CONSIDERATION

Signal Type Bandwidth (MHz)

802.11ac OFDM 60
802.11g OFDM 20
802.11b CDMA 22
WCDMA CDMA 5

For the given area, the user movement is modeled through a
random walk in a two dimensional space [15], with a fixed step
length of one meter. Each new position, X(t), at simulation
time, t, was obtained by summing a movement vector, M(s),



to the previous position. The movement vector is randomly
chosen by drawing the step decision variable s, from a random
integer generator. Hence, the movement model is defined by,

X(t) = X(t− 1) + M(s),where s = {1, 2, 3, 4}, (1)

and,

M(s) =


(−1, 0) , if s = 1,

(1, 0) , if s = 2,

(0,−1) , if s = 3,

(0, 1) , if s = 4.

(2)

On each new location, the timing measurements, Ln, to each
nth-emitter are computed by assuming their location known
as well as the variance in the measurement error. Hence, Ln

is obtained by

Ln = Rn + εn, (3)

where Rn is the geometrical distance to the emitter and εn is
the measurement error. Rn is obtained by,

Rn =

√
(x

(i)
emitter − xuser)2 + ((y

(i)
emitter − yuser)2 (4)

where (xuser, yuser) are the coordinates of the user at a given
time and (xemitter, yemitter)

(i) the position for the i-th emitter.
The measurement noise, εn, is modelled through a normal

distributed distribution, with its variance set according to the
Crámer-Rao lower and the expected carrier to noise ratio
(C/N0) at the receiver’s location. Regarding the variance, the
Crámer-Rao lower bounds are computed using the result in
[16], where the variance for an unbiased estimator for range
measurements is given as,

var(τ̂0) ≥
1
ε

N0/2
F2
⇔ (5)

⇔ var(τ̂0) ≥
1
C

N0/2T

F2, (6)

where, ε is the signal energy, N0 the noise spectral density,
T the observation interval and F 2 the mean square bandwidth
of the signal, given as,

F2 =

∫ −∞
+∞ (2πF)2|S(F)|2dF∫ −∞

+∞ |S(F)|2dF
. (7)

Fig.1 shows the expected accuracy for the signals under con-
sideration, WCDMA, 802.11b, 802.11g and 802.11ac, plotted
against the signal’s carrier to noise ratio (C/N0). As expected,
the WCDMA is the signal showing the worst performance
for timing estimates, since it is the one with the smallest
bandwidth. A narrow band signal in the frequency domain
equates to a larger signal in the time domain, which is unde-
sirable for positioning purposes. Since the receiver relies on
the correlation of the incoming signal with a locally generated
replica to obtain a time of arrival (TOA) measurement, the
larger or flatter this area is, the worse the timing estimate will
be.

Therefore, besides considering each signal design individ-

ually, regarding its transmission power and bandwidth, the
simulator also relies on the ITU-R propagation model to
describe the expected C/N0 at the receiver [17]. The ITU-
R model is derived from the Friis equation and given as,

Pr(d) = Pt+L− 20 log10

(
4πf

c

)
− 20η log10 (d)+ v, (8)

where the RSS at a distance of d (meters) is given by Pr(d),
the device’s transmission power by Pt, the operating frequency
in Hertz as f , the propagation speed, considered as the speed
of light in vacuum, as c, losses in the path of the signal are
translated into η while L are other system losses. The model
considers a slow fading phenomenon, described by the log-
normal distributed random variable v ∼ N(0, σ2).

While the ITU-R model is used for the propagation loss,
the noise component is modelled as thermal noise [17]. Fig.2
presents a diagram with the steps taken by the simulator in
order to provide a measurement for the given location of the
user. Afterwards, this measurement is used to estimate the
user’s location.
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Fig. 1. Crámer-Rao lower bounds for WCDMA and 802.11 ac/g/b

Since the goal of the simulation is to infer the accuracy in a
best case scenario, the network is assumed to be synchronized,
meaning that no clock bias or offset is modelled and added to
the measurement. Therefore, one should keep in mind that in
a real system, these constrains would not hold. Nevertheless,
they can give a clear image of the relative performance of the
different considered approaches.

IV. ESTIMATION

By using the measurements acquired at each point the user
moves to (Fig.2), the simulation estimates the location of
the user, (x, y), through an approximate maximum likelihood
(AML) [18], [19]. Hence, assume each of these measurements,
as in (3), define the measurement vector, r, given as

r = [L1,L2, . . . ,Ln], (9)
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Fig. 2. Workflow for measurement generation

with n being the number of available emitters.
Assuming a vector of TOA as,

T = [t1, . . . , tn], (10)
T = T0 + e, (11)

where T0 is the vector of true TOA, and e is a vector of
additive measurement errors, assumed independent random
variables with a with a zero mena Gaussian distribution. The
covariance matrix of e is given as,

Q = E{eeT } = diag(σ2
1 , . . . , σ

2
n). (12)

Finally, let Θ be,

Θ = [x, y]. (13)

Approximate Maximum Likelihood

The maximum likelihood (ML) estimate is the Θ that
minimizes the Jacobian J in the probability density function
of T given Θ,

f(T/Θ) = (2π)
N
2 (detQ)−

1
2 exp

(
−J
2

)
. (14)

Setting the gradient of J with respect to Θ to zero, gives
the two ML equations

n∑
i=1

(ri − δi)(x− xi)
ri

= 0, (15)

n∑
i=1

(ri − δi)(y − yi)
ri

= 0. (16)

Due to the non linearity of (16), the AML solution, as
presented in [18], in matrix form can be represented as,

2

[∑n
i=1 gixi

∑n
i=1 giyi∑n

i=1 hixi
∑n

i=1 hiyi

] [
x
y

]
=

[∑n
i=1 gi(s+ ki − δ2i )∑n
i=1 hi(s+ ki − δ2i )

]
, (17)

where,

gi =
x− xi

ri(ri + δi)
, (18)

hi =
y − yi

ri(ri + δi)
. (19)

The AML treats (17) as a set of linear equations. Starting
from an initial (x, y), it first computes gi, hi, and the least
squares for (x, y) from (17), in terms of s. Putting them into

s = x2 + y2, (20)

leads to a quadratic in s. Therefore, the correct root needs to
be chosen. For that to happen the AML acts differently on
three scenarios, one root is positive, both roots are positive
and both roots are either negative or imaginary. For the first
case, the root with a positive value is taken as the value to
replace s in the least squares solution of (17). For the second
case, the favored root is the one providing a smaller J. On the
third case, it takes the absolute values of the real parts.

After k iterations, the AML will have k values of J and in
the end, the one that provides the smallest value of J [18],
[19].

V. RESULTS

This section covers a set of illustrative results obtained
through the simulator. The first results show a direct con-
sequence from the fact that narrow band signals provide
an overall lower accuracy regarding timing estimates. This
is seen through Fig.3 where the root mean square error is
plotted against the number of emitters available for a given
technology. As expected, the lowest RMSE is obtained by
using 802.11ac emitters and the biggest RMSE when only
WCDMA emitters are present.

Since the study sets out to understand the benefit of observ-
ing and exploiting several technologies, Fig.4 - 6 illustrate the
benefit of obtaining measurements from additional emitters.
In each figure, the thicker line with a circle marker represents
the RMSE in meter obtained using only several WCDMA
emitters, while the remaing lines represent the RMSE obtained
when merging WCDMA with N other emitters of a different
technology. As an example, WCDMA + 3b means that N
WCDMA emitters are availalbe (read from the x axis) as well
as 3 other 802.11b emitters.
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Fig. 3. Positioning using a single technology

Fig.4 shows the benefit in the performance of a system
that uses primarily WCDMA and when available uses either
802.11g, 802.11ac or both. As it can be seen from the
plot, the curve is obtained when both 802.11ac and 802.11g
are combined together with WCDMA. Furthermore, one can
also observe that when using WCDMA with 10 emitters
of 802.11ac. There is no necessity of using more emitters
of 802.11g, since the achievable performance is the same.
However, using 10 802.11g emitters with WCDMA achieves
the same performance when 3 emitters of 802.11ac and
802.11g are available. Even though 802.11ac provides more
accurate measurements, it does not offset the fact that with 10
emitters, the system still has more 4 distinct measurements.
Moreover, when merging WCDMA with a single other tech-
nology, regardless of the one that is picked, going from 3 to 5
emitters results in a significant improvement in performance.
On the contrary, when WCDMA is merged with the other two
technologies, the increase in the number of emitters has little
impact on the overall performance of the system. Bottom line,
the main conclusions to draw from this plot are the fact that
increasing the number of observables is desirable in general,
but the cost of adding and managing those does not translate to
a significant increase improvement on the overall performance.

Fig.5 follows a similar approach, but now WCDMA is
merged with the other technologies in this simulation with
higher variance, 802.11b and 802.11g. As expected, the re-
sults also show better performance when the full number of
emitters is used. It also shows the combination with 802.11g
is less accurate than the one with 802.11b. This difference is
particularly noticeable when 3 emitters of each technology are
available, with the difference fading as the number increases.
As for the best achievable performance, this seems to be attain-
able when using WCDMA in addition to 10 other 802.11g. The
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Fig. 4. Positioning with WCDMA, 802.11ac and 802.11g

combination of the three technologies seems to fare equally
well. Overall, the addition of 802.11b and 802.11g improves
the performance of the system, but in some circumstances
802.11b provides the best performance.
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Fig. 5. Positioning with WCDMA, 802.11b and 802.11g

Fig.6 presents WCDMA measurements, being merged with
the next less accurate measurement, 802.11b and with the
more accurate timing measurements from 802.11ac. The best
performance is achieved when the three technologies are all
merged together. From the plot one can see that adding 3
emitther from either 802.11b or 802.11ac seems to provide
a similar performance. This means the WCDMA is setting a



limit on the performance of the system.
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In the end, all these plots, Fig.4 - 6, show that increasing
the number of observables leads to an increase in performance.
However, for some combinations of technologies, this benefit
might not be worth the added complexity in terms of power
consumption or processing power, due to the higher bandwidth
of the signals, such as preferring 5 additional measurement
from a 802.11g source rather than 3 from a 802.11ac one
(Fig.6). Besides that, the signal structure should also be taken
into account, for example, OFDM signals are prone to phane
noise and frequency offset.

VI. CONCLUSIONS

This paper has presented a study on the impact of merging
several TOA measurements for different signals of opportunity,
WCDMA, 802.11b, 802.11g and 802.11ac. The measurements
were acquired from a simulator which derives the timing
estimates from the Crámer-Rao lower bounds for each signal.
In addition to that, the simulator uses a propagation model
to match the received signal power to the distance the user
is from the receiver. Furthermore, the simulator assumes all
the systems to be synchronised, which, in reality, would be
difficult to achieve. Therefore, the results provide an insight
on the best case scenario that a user could experience.

As main conclusions, while adding more emitters is often
desirable, the benefit in the overall accuracy is small and
in some situations less accurate systems might lead to the
same or comparable results. In particular, the paper shows that
when observing 5 emitters of 802.11b, the overall accuracy
is equivalent to the one when 10 emitters of 802.11ac are
available.

Overall, for a practical system relying on signals of op-
portunity, some combinations, pointed out in the paper, might
not be worth pursuing since it will require more resources

from the user device for little added benefit in the system’s
performance.

It is therefore of utmost importance to first perform a
theoretical analysis, as the one illustrated here in order to
pre-evaluate the possible positioning gain by using multiple
emitters from heterogeneous systems. Only if the gain is
large enough, the hybridization of signals from heterogeneous
networks should be employed, otherwise a single system may
still bring enough benefit with a lower complexity.
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