
Cramér-Rao Lower Bound for Linear Filtering with
t-Distributed Measurement Noise

Robert Piché
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Abstract—The Cram

´

er-Rao lower bound (CRLB) on the

achievable mean square error (MSE) can be used to evaluate

approximate estimation algorithms. For linear filtering problems

with non-Gaussian noises, the CRLB can be easily computed

using the Kalman filter state covariance recursion with the Fisher

information in place of the noise covariance term. This work

studies a linear filtering problem with t-distributed measurement

noise. It is found that for a t distribution with heavy tails, the

CRLB significantly underestimates the optimal MSE, the Kalman

filter has significantly larger MSE, and a computationally light

variational-Bayes algorithm achieves nearly optimal MSE.

I. INTRODUCTION

The Student t distribution is often used as an alternative to
the normal distribution to model observations that have large
deviations more frequently than do samples from a normal
distribution. The t distribution’s degrees of freedom parameter
n controls the heaviness of the tail, and n values between 3
and 5 are typically used as default values for measurements
of physical phenomena. The t distribution with n = 1 is the
Cauchy distribution; its tails are so heavy that the mean and
variance do not exist. At the other extreme, the t distribution
converges to a normal distribution in the limit as n ! •.

In the standard Kalman filtering model, measurement noise
is modelled as a sequence of independent normally-distributed
random vectors. If a t distribution is used instead, then
approximate methods are needed to compute the estimation
posterior. Three such methods are the following.
Kalman filter (KF): A Kalman filter whose noise covariance

parameter is chosen to match the noise covariance is
a computationally cheap method. This filter is optimal
in the sense that no other linear filter gives a smaller
mean square error. However, because it is a linear filter,
the estimate tends to overreact to occasional outlier
measurements, and the filter may need several time steps
to recover. Another drawback is that t noise covariance is
undefined for n 2 (0,2], so the filter cannot be used for
such heavy-tailed distributions.

Particle Filter (PF): In a bootstrap particle filter [1], the
replacement of a normal measurement noise model by
t noise is trivial: It suffices to replace the call to the
normal density function, in the computation of the particle
weights, by a call to the t density function. PF can
approximate the Bayesian estimate as closely as desired
by using a sufficiently large number of particles, but
approximation accuracy comes at the cost of considerably
more computational effort than KF, especially when the
state dimension is large.

Variational Bayes (VB): Filtering and smoothing algorithms
for nonlinear systems with t distributed measurements are
presented in [2]. These algorithms are derived using a
variational Bayes approximation based on the Gaussian
scale mixture representation of the t distribution. The
filtering algorithm resembles KF with EM-like iterations
that adjust the gain according to the size of the innova-
tion; the algorithm’s computational complexity is roughly
that of KF multiplied by the number of iterations. In
simulations, a small number of iterations (2–4) has been
observed to give accuracy similar to that of PF.

A popular tool for evaluating a filtering system design is
the Cramér-Rao lower bound (CRLB), a lower bound on the
achievable mean square error (MSE). The CRLB can also help
evaluate the quality of a filter approximation. In particular,
for linear filtering problems, closeness of the CRLB to the
MSE matrix of the optimal KF indicates that there would be
little advantage in using a computationally heavier nonlinear
estimation method in place of KF.

The Bayesian CRLB for discrete-time filtering problems can
be computed using a recursive formula [3]. For linear filtering
problems with non-Gaussian additive noise, the computation
is very light: the formula is identical to the KF covariance
evolution formula, except that the term containing the mea-
surement noise covariance is replaced by the inverse of the
Fisher information matrix.

CRLBs for linear filtering problems with non-Gaussian
measurement and process noises were studied in [4] and [5].
Skewed heavy-tailed noise distributions were modelled by
Gaussian mixtures, the Fisher informations were computed nu-
merically, and examples were presented comparing the CRLB
with MSE obtained with KF and of PF with a large number
of particles. Examples were presented where the CRLB is
significantly smaller than the MSE achieved by PF, indicating
that the CRLB is a poor approximation of the optimal MSE
for these systems. In some of the examples the PF error was
also significantly smaller than the KF error; in others it was
about the same.

This work revisits the studies of [4], [5], with two mod-
ifications. First, the study is based on a non-Gaussian noise
distribution for which the Fisher information can be easily
computed in closed form. This helps to clarify the analysis
and makes the study more attractive as a pedagogical example.
Secondly, the study includes results for the VB filter.
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II. THEORY

In the following, symbols for random variables and vectors
are underlined to distinguish them from symbols of real
variables and vectors. The notation x ⇠ MVN(m,P) means
that x has a multivariate normal distribution with mean m and
covariance P; its density function is

px(x) µ e�
1
2 (x�m)P�1(x�m). (1)

The notation y ⇠ MVT(m,T,n) means that y has a t
distribution with location parameter m, shape matrix T and
degrees of freedom parameter n ; its density function is

py(y) µ
�
1+ 1

n (y�m)0T�1(y�m)
�� n+n

2 . (2)

where n is the dimension of y. For n > 1 the distribution’s
mean is m; for n > 2 its covariance is n

n�2 T . Random samples
of y⇠MVT(m,T,n) can be obtained using the Gaussian scale
mixture representation

z⇠ c2
n , y | z⇠MVN(m,

n
z

T ). (3)

An n-variate measurement y that is a linear function of x
with additive t distributed noise is modelled as

y|x⇠MVT(Hx,T,n),

where y|x denotes the conditional random variable y|(x = x).
The measurement’s Fisher information is

I (x) = n+n
n+n+2 H 0T�1H. (4)

This formula is derived in [6, Proposition 4]; an alternative
derivation is given in appendix A.

Consider a state sequence x0,x1, . . . that evolves according
to a standard linear-Gaussian state-space model:

x0 ⇠MVN(m0,P0), (5a)
xk+1 |xk ⇠MVN(Fkxk,Qk), (5b)

where k 2 {0,1,2, . . .} is the time index. Assume that the
measurement at each time is a linear function of the current
state, with additive noise that is not necessarily Gaussian:

yk |xk = Hkxk + ek, k 2 {1,2, . . .}. (6)

The initial state, process noises, and measurement noises are
assumed independent.

Let x̂k denote a filter’s estimate of the current state xk;
it is a deterministic function of realised past and current
measurements y1, . . . ,yk. The same function applied to the
random variables y1, . . . ,yk is denoted x̂k. A measure of the
quality of the estimation function is the MSE matrix, defined
as

Sk = E
�
(xk� x̂k))(xk� x̂k)

0�. (7)

The expectation in (7) is over the joint distribution of (xk,y1:k).
The filter whose value is the posterior mean is denoted x̂pm

k
and is defined by

x̂pm
k = E(xk |y1:k). (8)

It is optimal in the sense that its MSE matrix Spm
k is no larger

in the Loewner partial ordering than the MSE matrix Sk of
any filter; that is, Sk�Spm

k is non-negative definite. This fact,
proved for example in [7], is denoted

Sk ⌫ Spm
k . (9)

For systems with non-Gaussian noise, approximate methods
are needed to compute the MSE-optimal estimate. In principle,
the PF estimate’s MSE can be made as close as desired to the
Bayesian filtering distribution, so that Spf

k ⇡ Spm
k . However,

achieving nearly optimal MSE may require an impractically
large number of particles Npf, and so the computationally
lighter alternatives KF and VB are considered. Details of the
KF, PF, and VB approximate filter algorithms for the linear
system with t distributed noise are given in appendix B.

The Cramér-Rao lower bound (CRLB) provides a formula
for matrices Bk such that Sk ⌫ Bk. The recursive formula for
computing the CRLB is derived in [3]. For the linear model
with Gaussian process noise and non-Gaussian measurement
noise, the recursive formula reduces to

Bk+1 
�
(FkBkF 0k +Qk)

�1 +E(Ik(xk)
��1

, (10)

where Ik(xk) is the Fisher information matrix of the measure-
ment yk |xk, and the recursion is initialised with B0 = P0. In
(10) the expectation is with respect to the distribution of xk.

For the t distributed measurement noise model

yk |xk ⇠MVT(Hkxk,Tk,n), (11)

(4) is substituted into (10) to obtain

Bk+1 
�
(FkBkF 0k +Qk)

�1 + n+n
n+n+2 H 0kT�1

k Hk
��1

. (12)

Applying the matrix inversion lemma, this can be written as

Bk|k�1 Fk�1Bk�1F 0k�1 +Qk (13a)

Sk HkBk|k�1H 0k +
n+nk+2

n+nk
Tk (13b)

Kk Bk|k�1H 0kS�1
k (13c)

Bk Bk|k�1�KkSkK0k. (13d)

This is identical to the Kalman filter’s covariance propagation
formula, except that the measurement covariance is replaced
by n+nk+2

n+nk
Tk, a multiple of the t noise’s shape matrix.

III. EXAMPLE

Consider a one-dimensional motion described by (5) and
(6) with

m0 =
⇥

0
0
⇤
, P0 =

⇥
40 0
0 4

⇤
, (14a)

Fk =
⇥

1 1
0 1

⇤
, Qk =

⇥
0 0
0 1

⇤
, (14b)

Hk = [1 0 ], Tk =
100
3 , n = 3 (14c)

This system is similar to the example in [4], and is an
approximation of an integrated Wiener process. The state
components are position and velocity; the measurement is
position.

Because the measurement noise is not Gaussian, the opti-
mal Bayesian filter for this problem is not a Kalman filter.
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Fig. 1. Error in position estimates for tracking example

However, the measurement noise variance exists (it is 100),
and the Kalman filter with this parameter value is the MSE-
optimal linear filter for this problem. Also, the Kalman
filter’s computed state covariance matrix is the filter’s MSE,
because the filter’s noise covariance parameter matches the
measurement noise variance.

Simulations are computed with Npf = 1000 particles and
Nvb = 2 variational Bayes iterations. This VB filter’s compu-
tational complexity is roughly twice that of KF. Figure 1 shows
the results for one of the simulations. It can be seen that the
three filters have similar errors most of the time, except most
notably when a measurement outlier is encountered at time
k = 18. The Kalman filter’s error makes a large jump because
of the thin tail of its underlying Gaussian noise model. Also,
because of the large value of the noise covariance parameter,
KF needs several time steps to recover. In contrast, the large
outlier has no visible effect on the VB and PF estimate.

The lower part of Figure 1 shows the evolution of the
position variance term in the Kalman filter’s MSE matrix and
of the corresponding CRLB. The values at the end of the
simulation are

B30[1,1] = 20.7, Skf
30[1,1] = 36.2.

These agree, to all shown digits, with the values that are found
by solving (using dare in the MATLAB Control Systems
Toolbox) the discrete Riccati equation [7, Eqn (4.4)] that
governs the steady state of the recursion. The large gap
between the MSE values imply the possibility that a nonlinear
filter could be significantly more accurate.

Repeating the simulation 10 000 times with different random
numbers, 90% confidence intervals for the position variance
of VB and PF at time k = 30 are found to be

Svb
30[1,1]⇡ 25.4±0.6, Spf

30[1,1]⇡ 24.9±0.6 (15)

Increasing the number of particles to Npf = 5000 gives nearly
the same value, Spf

30[1,1] = 23.6, so the PF value in (15) can
be considered to be a good approximation of the optimal
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Fig. 2. Position error variances vs. measurement noise kurtosis parameter

value. The VB and PF error variances are nearly equal, which
indicates that the VB filter is giving nearly optimal accuracy.
Both VB and PF give significant improvement in accuracy
relative to the Kalman filter. There is also still a clear gap
relative to the CRLB, which indicates that the CRLB is not a
tight bound for this system.

Repeating the simulation set with different values of the
degrees of freedom parameter n , keeping the shape parameter
Tk fixed, gives the MSE values shown in Figure 2. The gap
between CRLB and the MSE of PF increases as n decreases,
that is, the underestimation of CRLB worsens as kurtosis
increases and the distribution becomes less Gaussian; for n = 1
(Cauchy distribution), the CRLB is about half the MSE of PF.
The gap between CRLB and KF also increases as n decreases.
VB and PF results are very close for most values of n , except
at n = 1 (Cauchy noise) where a small difference is visible:
the values and 90% intervals are

Svb
30[1,1]⇡ 50.1±1.2, Spf

30[1,1]⇡ 46.4±1.1

IV. CONCLUSION

Section III presented a simple example of a linear filtering
problem with heavy-tailed non-Gaussian noise in which a VB
filter is clearly more accurate than the Kalman filter. Because
VB has an MSE close to that of PF with a large number
of particles, VB can be considered to be close to optimal,
even though the CRLB is considerably smaller when the noise
is very heavy-tailed. Because VB is an algorithm that is a
relatively simple modification of KF, and is computationally
light, it can be recommended for use in filtering problems with
heavy-tailed measurement data.

APPENDIX A
FISHER INFORMATION OF MULTIVARIATE-T

The Fisher information matrix of a measurement y is defined
as

Ik(x) =�E
�
H (y|x, x)

�
, (16)

where H (y,x) = Dx
�
ln py|x(y |x)

�
denotes the Hessian matrix

(i.e. matrix of second-order partial derivatives) with respect
to x of the log-likelihood, and the expectation in (16) is with
respect to the distribution of y|x.

The log likelihood of y |x⇠MVT(Hx,T,n) is

ln py|x(y |x) = n+n
2 ln

�
1+ 1

n (y�Hx)0T�1(y�Hx)
�
+ const.



Denoting f = 1+ 1
n (y�Hx)0T�1(y�Hx), one has

—f =
2
n

H 0T�1(Hx� y), Df =
2
n

H 0T�1H.

Then, applying the chain rule

D ln(f) = 1
f

Df � 1
f 2 (—f)(—f)0,

one obtains

�H (y,x) = n+n
2 D ln

�
1+ 1

n (y�Hx)0T�1(y�Hx)
�

= n+n
2

⇣ (2/n)H 0T�1H
1+ 1

n (y�Hx)0T�1(y�Hx)

� (4/n2)H 0T�1(y�Hx)(y�Hx)0T�1H
�
1+ 1

n (y�Hx)0T�1(y�Hx)
�2

⌘
.

Substituting this into (16) gives

I (x) =H 0T�
1
2 E

� (n +n)/n
1+ 1

n kuk2
In�

2(n +n)/n2

(1+ 1
n kuk2)2

uu0
�
T�

1
2 H,

(17)

where the expectation is with respect to

u = T�1/2(y|x�Hx)⇠MVT(0, In,n),

whose density function is

pu(u) =
1

(pn)n/2

G( n+n
2 )

G( n
2 )

(1+ kuk
2

n )�(n+n)/2.

The ith diagonal element of the expectation in (17) is
Z ⇣ (n +n)/n

1+ kuk
2

n

� 2(n +n)/n2

(1+ kuk
2

n )2
u2

i

⌘
pu(u)du

=
1

(pn)n/2

G( n+n
2 )

G( n
2 )

⇣
n+n

n

Z
(1+ kuk

2

n )�(n+n)/2�1 du

� 2(n+n)
n2

Z
u2

i (1+
kuk2

n )�(n+n)/2�2 du
⌘

=
1

(pn)n/2

G( n+n
2 )

G( n
2 )

⇣
n+n

n
� n

n+2
�n/2

Z
(1+ kuk

2

n+2 )
�(n+2+n)/2 du

� 2(n+n)
n2

� n
n+4

�(n+2)/2
Z

u2
i (1+

kuk2
n+4 )

�(n+4+n)/2 du
⌘

=
1

(pn)n/2

G( n+n
2 )

G( n
2 )

⇣
n+n

n
� n

n+2
�n/2

(p(n +2))n/2 G( n+2
2 )

G( n+2+n
2 )

� 2(n+n)
n2

� n
n+4

�(n+2)/2 n+4
n+4�2 (p(n +4))n/2 G( n+4

2 )

G( n+4+n
2 )

⌘

=
n +n

n +n+2
.

Also, because the standard multivariate t distribution’s density
is radially symmetric about the origin, the off-diagonal terms
of I (x) are zero. Putting these results together, (4) is obtained.

APPENDIX B
APPROXIMATE FILTERS

The following approximate filters are used to estimate the
states of the system specified by (5) and (6).

A. Kalman filter (KF)

The Kalman filter equations are

x̂k|k�1 Fk�1x̂kf
k�1 (18a)

Skf
k|k�1 Fk�1Skf

k�1F 0k�1 +Qk�1 (18b)

Sk HkSk|k�1H 0k +
n

n�2 Tk (18c)

Kk Sk|k�1H 0kS�1
k (18d)

x̂kf
k  x̂k|k�1 +Kk(yk�Hkx̂k|k�1) (18e)

Skf
k  Sk|k�1�KkSkK0k (18f)

for k = 1,2 . . .; the recursion is initialised with x̂kf
0 = m0, Skf

0 =
P0. This recursion uses the measurement covariance in step
(18c), and so the filter can only be used if n > 2.

B. Variational-Bayes Filter (VB)

For the given model, the variational Bayes algorithm pre-
sented in [2] reduces to

x̂k|k�1 Fk�1x̂vb
k�1 (19a)

Pk|k�1 Fk�1Pk�1F 0k�1 +Qk�1 (19b)
`k 1 (19c)
do Nvb times (19d)

Sk HPk|k�1H 0k +
1
`k

Tk (19e)

Kk Pk|k�1H 0kS�1
k (19f)

Pk Pk|k�1�KkSkK0k (19g)

x̂vb
k  x̂k|k�1 +Kk(yk�Hkx̂k|k�1) (19h)

`k 
n +n

n +(yk�Hkx̂vb
k )0T�1

k (y�Hkx̂vb
k )+ trace(T�1

k HkPkH 0k)
(19i)

end do (19j)

for k = 1,2 . . .; the recursion is initialised with x̂vb
0 = m0.

The parameter `k introduces a data-dependent scaling to the
Kalman gain. Large values of the posterior residual yk�Hkx̂vb

k
produce small values of `k, which in turn reduces Kk and
thereby reduces the influence of the measurement.

C. Particle filter (PF)

After initialisation of Npf particles x(i)0 ⇠MVN(m0,P0), the
bootstrap particle filter equations for k 2 1,2, . . . are

for i 2 1:Npf (20a)

x(i)k ⇠MVN(Fk�1x(i)k�1,Qk�1) (20b)

w(i)
k  MVTPDF

�
yk; Hkx(i)k ,Tk,n

�
(20c)

end for (20d)

for i 2 1:Npf, ji ⇠ categ
�
w
(1:Npf)
k /sum(w

(1:Npf)
k )

�
, end for

(20e)

x
(1:Npf)
k  x

( j1:Npf )

k (20f)

Steps (20e– 20f) are multinomial resampling, and categ( ·)
denotes the discrete distribution on the values 1 : N.
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