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Abstract—We present a novel floor-plan and PDR (pedes-
trian dead reckoning) based proposal distribution for indoor
positioning particle filtering. Including floor-plan information
in the proposal distribution makes the particle filtering more
efficient than using the map only in the measurement model,
because the proposal distribution becomes more accurate and
the measurement model less accurate. The method uses offline-
computed distances from each point of a regular grid to the
closest wall in each direction. Our simulations show that the
novel proposal distribution combined with a floor-plan and PDR
based motion model improves the positioning accuracy with small
numbers of particles and noisy PDR compared to the particle
filters that use the floor-plan only for particle weighting.

I. INTRODUCTION

Wireless network based positioning is an attractive indoor
positioning technology due to relatively low costs and wide
coverage of wireless communication networks. However, the
accuracy is limited by complicated radio environments with
details too numerous to be modelled and stored into databases.
Therefore, wireless network based measurements are typically
complemented with other measurements such as inertial mea-
surements, barometers, and map information, i.e. floor-plan.
This article proposes a novel particle filter (PF) algorithm that
uses the floor-plan information with improved computational
efficiency. Our PF fuses radio positioning, inertial measure-
ment based pedestrian dead reckoning (PDR), and floor-plans.

We formulate indoor positioning as a Bayesian filtering
problem that consists of a motion model (dynamical model,
state evolution model) and a measurement model. Indoor map
measurements are highly non-linear and non-Gaussian, so their
application with the Kalman filter (KF), a conventional compu-
tationally light and easy-to-implement estimation algorithm, is
challenging, and the KF can only use part of the information.
Therefore, computationally more challenging methods such as
grid filters [1] and PFs [2] have attracted interest in indoor
positioning community.

The PF is a Monte Carlo based time series estimation
algorithm that generates weighted pseudo-random samples
(aka particles) of the state’s posterior probability distribution
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[3, Ch. 3] [4]. The algorithm is very flexible in the sense that
the assumptions of the dynamic and measurement models are
not restrictive; in particular, Gaussianity of errors or linearity
of models is not required. As the number of particles is
increased, the PF solution approaches the minimum mean-
square error solution for the given statistical model. However,
for some models the number of particles required for achieving
reasonable accuracy is prohibitively high.

In addition to the model structure and parameters, the
accuracy of PF is affected by filter design choices such as
(a) the choice of the proposal distribution and (b) the choice
of the resampling method [4]. This article concentrates on
(a). The proposal distribution, also known as the importance
distribution, is a probability distribution that is used for the
generation of the new particles based on the existing particles.
It is important to generate particles with high density in the
relevant regions of the state space so that the particle set
will be an accurate representation of the posterior probability
distribution. A common choice is to use the motion model of
the state as the proposal distribution; this is the bootstrap filter.

In the bootstrap filter the particles’ prediction locations do
not reflect the newest measurement, so if the measurement
is much more precise than the prediction or conflicts with
the prediction, the measurement is not taken into account
properly. This results in particle degeneracy, whereby the
weight concentrates to only a few particles [4]. This causes
frequent resampling which introduces additional Monte Carlo
error. Therefore, it is advantageous to make use of the newest
measurement already in the proposal distribution [4].

In indoor positioning, the PDR distribution is typically used
as both the motion model and proposal distribution, and the
floor-plan is used as a measurement. That is, the particles
are propagated using the PDR, and the particles that collide
with a wall are given small or zero weights [2], [5]–[7]. This
might lead to degeneracy especially if the PDR is low-quality,
because large portions of the particles are colliding with the
walls and do not contribute to the estimation.

We propose including some map information in the PF’s
proposal distribution. The method is based on an angular PDF
(probability density function) modified from that of Kaiser
et al. [8]. We distort the PDR distribution by giving more
probability to the directions where the distance to the closest
walls is larger. This way, fewer particles collide with the walls
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and more particles are modelling the most probable areas.
We test the proposed method by simulating test tracks with

PDR and absolute position measurements upon real indoor
floor-plans. The simulations show that the proposed method
improves accuracy at least when the PDR quality is low.

In this article we first explain the angular PDF and compare
it with the approach of Kaiser et al. Then, we introduce the
other measurements sources. Section III explains the conven-
tional wall collision PF and explains the novel features of our
filter in detail. Section IV presents the simulation results, and
Section V summarises the conclusions.

Notations: N(m,P) is the (multivariate) normal distribution
with mean m and covariance matrix P, and N(x|m,P) is its
PDF evaluated at x.

II. MEASUREMENTS

We use a standard probabilistic state-space model of a time-
varying state xk with associated measurements yk. The index
k is the time index. A state-space model is defined by three
probability distributions: the initial prior p(x0), the motion
model p(xk|xk−1), and the measurement model p(yk|xk).
Furthermore, the standard conditional independences are as-
sumed [9, Ch. 4.1]. In this article the state vector is

xk =
[ rk
ϕk
`k

]
, (1)

where rk ∈ R2 is the user position, ϕk ∈ R is the heading
angle, and `k ∈ R is the footstep length.

A. Pedestrian dead reckoning

Pedestrian dead reckoning (PDR) means measuring the
displacement of the user from a fixed starting point. In this
article it is assumed that the PDR gives reliable footstep
detection and noisy measurements of the footstep length and
change of heading in the horizontal plane.

In personal indoor positioning, PDR is based on inertial
navigation systems (INS). An indoor positioning INS includes
three-axis accelerometers and gyroscopes. The footsteps can
be detected using low-pass filtered norm of acceleration
[2]. The direction of gravity can also be inferred from the
accelerometer data, which gives the horizontal plane, and
the change of heading is then obtained by projecting the
gyroscopes’ angular velocity vector to the horizontal plane
[10]. The footstep length can be assumed to be inversely
proportional to the footstep duration with a known or fitted
proportionality constant [11]. Another method for INS-based
PDR would be double integration of acceleration with zero-
velocity updates, but this is not reliable if the positioning
device can be hand-held instead of foot-mounted.

The strengths of the PDR method in positioning are low
infrastructure cost and high short-term accuracy. Its weak-
nesses are the need of external initial position information and
its low long-term accuracy due to sensor drift. Sensor drift
means that the heading obtained by integrating the gyroscope
output tends to drift away from the true value because the
gyroscopes always have some systematic error. Therefore,
PDR with low-cost INS needs to be complemented with

additional position information such as map and/or absolute
position measurements.

A conventional indoor positioning motion model that uses
the PDR and no map information is

p(xk|xk−1) = N(ϕk|ϕk−1 + ∆k, q
∆) ·N(`k|`k, q`)

×N(rk|rk−1 + `k−1 ·
[

cos(ϕk)
sin(ϕk)

]
, qr · I2×2),

(2)

where ∆k is the heading change measurement (positive angle
for anticlockwise) and `k is the footstep length measurement,
and q∆ and q` are their variances. The matrix qrI is the
covariance matrix of the user position’s independent process
noise; this parameter mainly affects the robustness of the PF,
and it should be close to zero [7].

B. Radio network positioning

Wireless radio networks such as WLAN (wireless local
area network), BLE (Bluetooth Low Energy), and UWB
(ultra-wideband) can provide absolute position information,
i.e. they can be used as a standalone positioning technology.
However, their positioning accuracy can be relatively low
especially if only the communication infrastructure WLAN
without positioning-specific modifications is used. Further-
more, frequent radio scanning consumes battery power. These
features make radio positioning a suitable complement for
PDR: the short-term accuracy can be highly improved by the
PDR, while the radio positioning is capable of giving the initial
position estimate, and its quality does not degrade over time.
Furthermore, radio positioning can be used for monitoring the
integrity of the fusion estimate [7], [12].

For simplicity, we assume that the radio positioning sys-
tem gives a position estimate with a multivariate normally
distributed measurement error, i.e. the measurement model is

zk|rk ∼ N(rk,Σk), (3)

where zk is the 2-dimensional user position estimate, rk is the
2-dimensional user position, and Σk is the measurement noise
covariance matrix. The position measurements can be e.g. the
outcome of the coverage area positioning method [13]. It is
also straightforward to inject other measurement types to a
PF, such as received signal strength (RSS) of WLAN and/or
BLE, time of arrival ranging of UWB, or pseudo-ranges of a
satellite positioning system.

C. Map matching

In indoor positioning, map matching means using the floor-
plan to exclude trajectories that cross walls or floor levels. In
this article the floor-plan is a set of thin wall segments on each
floor of the building. The statistical model can give a small
non-zero probably for walking through a wall of the map:

P(Ck|rk, rk−1) =

{
ε, Ck = “a step-crossing wall in the map”
1− ε, Ck = “no step-crossing wall”

,

(4)

where 0 ≤ ε � 1 holds, and P denotes probability. A non-
zero wall-permeability ε makes the estimation algorithm more



robust to small positioning errors and floor-plan errors; with
ε=0 all the particles can easily get stuck in a wrong room due
to an erroneous position measurement or the map showing a
wall that does not exist in reality [7]. Information on furniture
or other movable objects is not used due to its changeable
nature. In this work the floor-plans are HERE Venue Maps.

In addition, our algorithm uses the map information of
distances from each candidate position to the closest obstacle
in each direction. Formulated as a probabilistic model, this
approach can be called the angular PDF. We use the angular
PDF in the proposal distribution so that the more open space
a particle has in a direction, the more likely the particle is
moved to this direction. Thus, fewer particles will collide with
the walls. The angular PDF can also be included in the motion
model or the measurement likelihood.

Kaiser et al. consider a PF with a similar likelihood func-
tion in [8]. However, they use an angular PDF for particle
weighting, while the particle propagation uses the PDR alone.
In their nomenclature PDR model is part of the measurement
likelihood while the angular PDF is called motion model. We
adopt the a common convention and consider the PDR as a
motion model and the angular PDF as part of either motion
or measurement model depending on the PDF normalisation.

Kaiser et al. argue that the angular PDF helps in balanc-
ing between open areas and more narrow spaces [8]. They
demonstrate how a particle subcloud in a narrow corridor
will eventually disappear in the conventional PF due to wall
collisions if there is another subcloud in a more open area,
e.g. outdoors. The approach of [8] indeed gives more weight
to areas where the PDR track is a close match to the building
layout, i.e. the PDR direction is one of few directions allowed
by the map, while open areas are underweighted. This feature
is justified in some cases as demonstrated in [8], but results in
erroneous outcomes in other cases. For example, when the user
walks straight, narrow corridors are favoured over wider ones,
which we do not consider a realistic model in general. Particle
weighting with a likelihood that is not used in the proposal
distribution can also result in more frequent resampling.

In [8], the measure of open space in a direction is the
distance to certain contour plots of the gas diffusion dis-
tribution or to the closest wall, whichever is smaller. That
is, the current waypoint (a point of a grid) is used as a
source for a free gas diffusion and full wall absorption model.
Instead of the diffusion contour distance, we use an increasing
function of the distance to the closest wall. We chose this
approach mainly to reduce computational burden and to make
the implementation simpler; in our approach one needs to
implement the crossing point of two line segments, while
the diffusion algorithm includes that and other computations
in addition. The gas diffusion model can be linked to the
diffusion of probability, but its use as part of the likelihood
is still heuristic, and [8] does not give any justification to the
gas diffusion model compared to other models. Furthermore,
the diffusion approach results in unwanted phenomena such as
the fact that narrow long corridors are weighted less than wide
long corridors because the gas-absorbing walls are closer.

Due to high computational requirements, we compute the
angular PDFs offline in a server. We discretise the area into a
regular square grid with a 0.5 m spacing. From each grid point
we compute the distance to the closest wall in each direction
with a 5-degree discretisation interval. If the distance is more
than 10 m, we set the distance to 10 m because we assume that
differences beyond that do not affect the heading distribution.
Because the grid is regular, the grid point coordinates need
not be stored and the grid density does not affect critically the
computational heaviness of particle–grid point matching. The
database size is the same as in [8].

If floor-plan is not available for an area, the angular PDF
becomes uniform giving the standard PF. PF can also be
transformed into a computationally faster KF by computing
the mean and covariance matrix of the KF state variables.
Furthermore, KF can be transformed into a PF by sampling
from the KF distribution when a map is again available.

III. PARTICLE FILTERING SOLUTION

This section first explains the conventional wall collision PF
and then presents our novel modifications.

A. Wall collision particle filter

The particle filter (PF) is an importance sampling approxi-
mation of the Bayesian filter for the state-space model [3]. Let
xik denote the state of the ith particle at the kth time instant,
W i
k its weight, and N the number of particles. Initially, the par-

ticles are equal-weighted samples from the initial prior p(x0).
At each time instant, they are propagated by generating new
samples from the proposal distribution qk(xk|xi0:k−1,y1:k),
where the conditioning is on all the previous states of the
particle and all the measurements up to and including the
newest measurement. The proposal distribution can be chosen
freely given that one can easily sample from it and that its
support covers the posterior distribution’s support. However,
the PF algorithm will be the more efficient in estimation
accuracy the closer the proposal distribution is to the actual
posterior, and the distribution p(xk|xik−1,yk) is the optimal
proposal in the sense that it minimises the variance of the
weight W i

k given xi0:k−1 and y1:k [14].
The particle weights are affected by the motion model,

measurement likelihood, and proposal distribution. The weight
update of the wall collision PF is

W̃ i
k =

p(zk|xik)P(Ck|xik,xik−1) p(xik|xik−1)

q(xik|xi0:k−1,y1:k)
·W i

k−1, (5)

where zk is the absolute position measurement and y1:k

includes absolute position, map information, and possible
other types of measurements. The normalisation factor of the
posterior is not required because the normalisation to unity

W i
k = W̃ i

k/
∑Np
j=1W̃

j
k (6)

tends to approximate it well [9, Ch. 7.2].
The resampling step ensures that weight does not eventually

concentrate to one or few particles. In this article, the parti-
cles are resampled after the measurement update whenever



Algorithm 1 Computation of the wall distances
Input: grid points g1:Ngrid points , angle discretisation Nα = 72,
α = {0◦, 5◦, 10◦, . . . , 355◦} · π/180◦, walls
Output: matrix of wall distances S ∈ RNgrid points×Nα

for m ∈ {1 : Ngrid points} do
for j ∈ {1 : Nα} do

for n ∈ {all walls within 10 m radius} do
` := line segment (gm,gm + (10 m) ·

[
cos(αj)
sin(αj)

]
)

if ` and wall n cross then
r∗ := crossing point of ` and wall n
dn := ||r∗ − gm||

else
dn := 10 m

end if
end for
[S]m,j := minn dn

end for
end for

1/
∑Np
i=1(W i

k)2 < 0.1 ·Np, which is the standard approach
based on the effective particle number [3, Ch. 3.3]. In the tests,
the multinomial resampling is used, where the new particles
are generated with replacement from the discrete distribution
defined by the previous particle states and weights [15].

As a fourth step, the PF’s integrity is monitored by running
a fallback KF in parallel with the PF [7], [12]. This monitor
detects when the whole particle cloud gets stuck behind walls
in a wrong area, and restarts the PF. This article uses the PDR-
Kalman of Raitoharju et al. [12] that uses a linear motion
model. The fallback KF uses the PDR and absolute position
measurements, but it is independent of the floor-plan and
particles to avoid getting stuck.

The conventional wall collision PF such as Algo-
rithm 1 of [7] is a bootstrap PF, i.e. the motion
model is used as the proposal distribution, so the term
p(xik|xik−1) / q(xik|xi0:k−1,y1:k) vanishes from (5). This
choice can be inefficient when the INS has high noise level
and the positioning area is dense in walls, i.e. the process noise
variance is large compared to the measurement noise variance.

B. Particle generation using PDR and floor-plan

This subsection explains a novel proposal distribution that
includes some map information already in the particle prop-
agation phase. We propose using an angular motion model
modified from the angular PDF of [8] to particle propagation.

In the offline phase, we begin by defining a regular square
grid for the building. For each grid point and for each direction
with a fixed angle discretisation, we compute distances to the
closest wall. These are stored in a database for the online
phase. The details are given in Algorithm 1.

In the PF’s particle propagation phase we choose the closest
grid point mi to each particle, which is straightforward to find
because the grid is a regular square grid. It would be justified
to limit the grid point search to the particle’s room, but this
could be computationally expensive, so we leave this for future
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Fig. 1. The proposed angular PDF. In the upper figure the lengths of the
radial line segments represent the wall distances [S]m,j , while the colours
represent the angular PDF (9) with 0.7 m footstep length.

research and assume that the wall collision weighting corrects
errors caused by choosing the grid point from a wrong room.
The wall distances of the chosen grid point are converted into
the angular PDF using a monotonically increasing function.
We use the logistic function and normalisation to unity

s̃mi(αj) =
1

1 + 99 exp(−0.8 · ([S]mi,j − `ik))
, (7)

smi(αj) = s̃mi(αj)/
∑Nα
j=1s̃mi(αj), (8)

which give small non-zero weights to distances shorter than
the footstep length and a small slope with distances of several
meters. The result is the piecewise-constant PDF

pα(ϕk|rik−1, `
i
k) = Nα

2π

Nα∑
j=1

smi(αj)·I[αj−π/Nα,αj+π/Nα](ϕk),

(9)
where IS(x) is the indicator function for set S. An example
of an angular PDF is given in Fig. 1.

We want the proposal distribution to be the product of
the floor-plan-based and PDR-based PDFs. Thus, our novel
proposal distribution for the user’s heading is

q(ϕk|rik−1, ϕ
i
k−1, `

i
k,∆k,map)

=
1

Zi
pα(ϕk|rik−1, `

i
k) N(ϕk|ϕik−1 + ∆k, q

∆) (10)

=
1

Zi

Nα∑
j=1

wij N[αj−π/Nα,αj+π/Nα](ϕk|ϕik−1 + ∆k, q
∆), (11)

where N[a,b] is normal distribution truncated to interval [a, b]

N[a,b](x|µ, σ2) = 1
Φ((b−µ)/σ)−Φ((a−µ)/σ)N(x|µ, σ2) ·I[a,b](x),

and

wij =Nα
2π · smi(αj) · [Φ(∆∠(αj + π/Nα, ϕ

i
k−1 + ∆k)/(q∆)

1
2 )

− Φ(∆∠(αj − π/Nα, ϕik−1 + ∆k)/(q∆)
1
2 )], (12)

Zi =

Nα∑
j=1

wij , (13)
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Fig. 2. Particle propagation with conventional PF (PFc) and the proposed
method (PF novel) with heading ϕ∼N(290◦, (10◦)2). Map guides 60 % of
PF novel particles through a door, while only 20 % of PFc particles survive.

∆∠(α, β) being the difference angle α − β translated by
a multiple of 2π to the interval (−π, π], and Φ(x) being
the cumulative distribution function (CDF) of the standard
normal distribution. If the heading change measurement noise
follows a non-normal distribution, Φ can be replaced by the
appropriate CDF.

Sampling from the distribution (11) is straightforward.
First, one generates an index ji by sampling from the cat-
egorical distribution cat(wi1/Z

i, . . . , wiNα/Z
i), i.e. the dis-

crete distribution of {1, 2, . . . , Nα} with the probabilities
{wi1/Zi, . . . , wiNα/Z

i}. Then, the sample of (11) is generated
from N[αji−π/Nα,αji+π/Nα](ϕ

i
k−1 + ∆k, q

∆), for which effi-
cient methods exist, see e.g. [16]. Fig. 2 shows an example
where the novel proposal distribution guides most of the
particles through a door while few particles survive with the
conventional PDR-only proposal distribution.

Our novel proposal distribution could also be used without
any PDR. However, in this case a graph-based map matching
method might be more efficient unless the absolute position
measurements are very accurate and are made frequently [17].

By modifying the weighting function (7), the proposal
distribution could be tuned so that none of the particles would
collide with walls (given qr = 0). However, floor-plan errors
would not then be modelled, and wall constraints would not be
used as measurements that remove particle subclouds where
PDR contradicts with the map. Thus, we allow some wall
collisions. Notice that the more accurate the PDR, the less
influence the map-based angular PDF has. With very accurate
PDR few particles should collide with walls anyway.

C. Angular PDF in motion model and/or likelihood

The floor-plan based proposal distribution inspires three PF
algorithms: the angular PDF is used only in the proposal
distribution, the angular PDF is included in both motion model
and proposal distribution, or it is included in measurement
likelihood and proposal distribution. The three algorithms
differ in the particle weight update formula. A detailed de-
scription of the three PFs is presented in Algorithm 2.

PF1: If the angular PDF is used only in the proposal, the
proposal PDF and motion model PDF are different, so they
do not cancel each other in (5). The update becomes

W̃ i
k = p(zk|xik)P(Ck|xik,xik−1)

Zi

smi(αji)
·W i

k−1, (14)

where ji is the angle discretisation index generated for the ith
particle. The resulting PF is a solution to the same problem as

the conventional wall collision PF, but the particles will collide
with the walls less frequently due to the modified proposal
distribution. However, the difference in proposal and motion
model can again increase the resampling rate.

PF2: If the angular PDF is used in both proposal distri-
bution and motion model, the term N(ϕk|ϕk−1 + ∆k, q

∆) in
(2) is replaced by the distribution of (11), so the proposal and
motion model cancel out each other in the weight update (5)
which then simplifies to

W̃ i
k = p(zk|xik)P(Ck|xik,xik−1) ·W i

k−1. (15)

This weight update is similar to that of the conventional wall
collision PF. However, the motion model is different due
to different particle propagation. The proposal PDF cancels
out completely in the weight update, so this should provide
the lowest resampling rate of the proposed three algorithms.
This motion model should be advantageous when the PDR
is inaccurate, i.e. q∆ is large, because the probability is not
spread to random directions but more probability will be
assigned to corridor and open space directions, which can
be considered more likely. A possible drawback is that the
influence of the map measurements is reduced: particles of
wrong areas are not eliminated so often by wall collisions, but
the filter relies more on the absolute position measurements.

PF3: If the angular PDF is used in both proposal distribu-
tion and measurement likelihood, the proposal distribution’s
normalisation factor does not cancel out in (5), so the weight
update is

W̃ i
k = p(zk|xik)P(Ck|xik,xik−1) · Zi ·W i

k−1. (16)

This approach is based on the same motion and measurement
models as the method of [8]. Compared to PF2, the proposal
distribution’s normalisation factor Zi gives more weight to the
particles where the heading matches best with the map.

A major motivation of Kaiser et al. is the scenario where
there is imprecise PDR and a bimodal particle cloud with one
subcloud in a narrow corridor and another subcloud in open
space [8]. In PF3 all the weight will eventually concentrate in
the corridor. In PF1 the open space will eventually be more
probable, but the proposal distribution improves the estimation
in narrow corridors so that the corridor subcloud will die
out slower than in the conventional wall collision PF. The
approach PF2 gives more weight to the corridor than PF1
but the weight is not moved from open space to corridor. In
summary, only PF3 meets the requirement that in multimodal
situations the weight should eventually concentrate to narrow
corridors, but PF1 and PF2 attempt to make the modelling of
corridors more accurate and let the absolute positioning decide
in cases with multimodal distributions.

IV. TESTING

A. Simulation setting

We test the proposed algorithms with simulated indoor
positioning data. The tests were implemented with MATLAB.
We used the floor-plan of a campus building of Tampere



Algorithm 2 PF with map & PDR based proposal distribution

Input: prior p(x0); number of particles Np, PDR {∆k, `k} and
position meas. zk, k ∈ {1, . . . }; map; angular PDF sm(αj)
Output: position estimate r̂k and covariance matrix Σ̂k

1) For each i = {1, . . . , Np} set W i
0 := 1

Np
and generate

xi0 ← p(x0). Set the time index k := 1.
2) If no footstep is detected at time index k, go to step

5. Otherwise, find the closest grid point mi for each
i = {1, . . . , Np}, and generate

`ik ← N(`k, q
`)

ji ← cat(wi1/Z
i, . . . , wiNα/Z

i), Zi =
∑Nα
j=1w

i
j

ϕik ← N[αji−π/Nα,αji+π/Nα](ϕ
i
k−1 + ∆k, q

∆)

rik ← N(rik−1 + `ik ·
[

cos(ϕik)

sin(ϕik)

]
, qr · I2×2)

3) Perform angular PDF weighting W̃ i
k :=Wi

α ·W i
k−1 with

PF1: Wi
α = Zi/smi(αji)

PF2: Wi
α = 1

PF3: Wi
α = Zi

4) Set W̃ i
k := ε

1−εW̃
i
k for all i such that there is a wall

between rik−1 and rik, where ε is defined in (4).
5) Perform integrity monitoring using the PDR-Kalman. If

re-initialised, go to step 7.
6) If no absolute position measurement is obtained at

time index k, go to step 7. Otherwise, set W̃ i
k :=

N(rik|zk,Σk) · W̃ i
k for each i ∈ {1, 2, . . . , Np}.

7) Normalise the weights by W i
k := W̃ i

k/
∑Np
j=1 W̃

j
k for

each i ∈ {1, 2, . . . , Np}.
8) r̂k :=

∑Np
i=1W

i
kr
i
k, Σ̂k :=

∑Np
i=1W

i
k(rik− r̂k)(rik− r̂k)T

9) If 1/
∑Np
i=1(W i

k)2 < 0.1 ·Np, resample, and set W i
k :=

1/Np. Set k := k + 1, and go to step 2.

10m
INIT

END

(a) Track 1
10m

INIT

END

(b) Track 2

10m

INIT

END

(c) Track 3
Fig. 3. The test tracks. Track 1 tests behaviour in corridors, track 2 tests
doors and rooms, and track 3 tests open space.

University of Technology. We designed three different tracks
to test different properties of the algorithms. The tracks are
depicted in Fig. 3. Track 1 tests the algorithms’ behaviours in
corridors, track 2 tests doors and rooms, while track 3 tests
open spaces and transition from an open space to a corridor.

The test tracks’ paths were defined by hand, but the footstep

lengths `k were simulated from the model

v0 ∼ N(0, 0.27182), (17)[
`k
vk

]
∼ N

([
0.7 + 0.9748vk−1

0.95vk−1

]
,

[
0.3208 0.4751
0.4751 0.9504

])
(18)

This model guarantees that the marginal distribution of each
`k is N(0.7, 0.27182). The step detection was assumed perfect,
and the PDR measurements were generated by

`k ∼N(||rk − rk−1|| , (0.7 m · 2◦ π
180◦ )2) (19)

∆k ∼N(∆k − 0.3◦ π
180◦ , q

∆ − (0.3◦ π
180◦ )2), (20)

∆k =∆∠(atan2([rk − rk−1]2, [rk − rk−1]1),

atan2([rk−1 − rk−2]2, [rk−1 − rk−2]1)).

The model includes a gyro bias of−0.3◦ per step. The absolute
position measurements were generated by

zk ∼ N(rk, (4 m)2 · I2×2), (21)

and the measurements were received every 20 steps.

B. Filter details

The compared methods are the PDR Kalman filter (KF),
the conventional wall collision PF (PFc), the wall collision
PF with the conventional (PDR-based) proposal distribution
and angular PDF likelihood weighting (PFw), the PF with
the novel proposal distribution (PF1), the PF with the novel
proposal distribution and the angular PDF included in the
motion model (PF2), and the PF with the novel proposal
distribution and the angular PDF included in the measurement
likelihood (PF3).

The filters are given the correct initial position with covari-
ance matrix I2×2 and the correct initial heading with variance
(3◦)2. In a real scenario, if the initial state were unknown, the
KF could be used in the beginning to improve the initial prior
of the PF [12]. The KF is based on the motion model[

rk
vk

]
|
[
rk−1

vk−1

]
∼ N

([
I Rk

O Rk

] [
rk−1

vk−1

]
,

[
qr · I O

O σ2
v · I

])
,

(22)
where r is user position, v is step vector, qr =(0.01 m)2, and

Rk =

[
cos ∆k − sin ∆k

sin ∆k cos ∆k

]
, σ2
v = max{( π90 )2, q∆}·(0.7 m)2.

The KF is thus a version of the PDR-Kalman of [12]. Notice
that the KF uses neither footstep length nor map measure-
ments. The same KF is also used as a fallback of the PFs,
so that half of the particles are re-initialised if none of the
non-zero-weighted particles are in the 99 % probability ellipse
of the KF-posterior, similarly to [7].

For robustness, the PFs’ propagation step adds independent
noise to position with the variance parameter qr = (0.01 m)2.
The PFs do not take the gyro bias into account, i.e. the
PDR model is ϕk|ϕk−1 ∼ N(ϕk−1 + ∆k, q

∆). The wall
collision checking of the particles is implemented so that each
square of a regular grid is assigned with the walls that cross
this square, and only the grid squares that are crossed by



the particle trajectory are checked. This is important for the
computational efficiency [2]. If a particle crosses a wall, its
weight is multiplied by ε

1−ε = 10−4.

C. Results and discussion

Fig. 4 shows boxplots of the simulated empirical distribu-
tions of the root-mean-square-errors (RMSE) of the filters for
the three tracks, for three different values of the gyro noise
parameter q∆, and for different numbers of particles Np. The
boxplots show the 5 %, 25 %, 50 %, 75 %, and 95 % quantiles.
The results are based on 100 Monte Carlo replications.

Fig. 4 shows that PF2 has the lowest errors of the novel
filters. PF2 converges to the same or slightly better RMSE
than the conventional wall collision filter PFc, but with small
numbers of particles Np PF2 is significantly more accurate
in corridor tracks 1 and 2 and has similar accuracy in the
open space track 3. This can be explained by the fact that
the novel proposal distribution makes the filter more efficient
in corridors and small rooms. The advantage of PF2 is also
clearer when PDR is imprecise, i.e. when q∆ is large, which
was expectable because the map measurements have a fixed
resolution: when PDR is very precise, the map does not help.

PF1 converges to the same results as PFc, but with noisy
PDR and low Np PF1 outperforms PFc. PFw and PF3 are also
based on the same model, and PF3 gives slightly better results
with small Np. Notice that the angular PDF as a part of the
measurement likelihood in PFw and PF3 behaves as expected:
the accuracy is high on track 1 which consists of corridors,
but low on tracks 2 (doors, rooms) and 3 (open space).

Fig. 5 shows the resampling rates of the algorithms, i.e. the
number of resamplings divided by the number of footsteps.
The results show that the proposed method PF2 has clearly the
lowest resampling rate especially when the PDR is imprecise
and when the track contains doors and narrow corridors (track
2). Low resampling rate indicates reduced particle degeneracy,
which is one explanation for the good performance of PF2.

Based on this simulation, the PF with the novel proposal
distribution and angular PDF-affected motion model provides
the best accuracy with a small number of particles. Notice
that the novel filters require more offline and more online
computation per particle as well as a larger map database
than the conventional filter PFc. However, the differences in
online computation are small compared to the differences
in the required Np; in our MATLAB implementation the
online computational requirements of PF1, PF2, and PF3 were
roughly 50 % higher than that of the PFc with the same Np,
and roughly 15 % higher than that of the PFw.

V. CONCLUSIONS

We have presented a novel floor-plan and PDR based
proposal distribution for indoor positioning particle filtering.
Three versions of the proposed particle filter were compared
by computer simulations with the conventional wall collision
particle filter and with the particle filter that uses the angular
PDF only for particle weighting. Our simulations showed that
using floor-plan information in the particle filter’s proposal

distribution improves accuracy and reduces particle degener-
acy especially when computational resources are limited and
PDR measurements are noisy. Furthermore, our simulations
showed that the angular PDF should also be included in the
motion model so that motion model and proposal distribution
become the same distributions.

An important topic for future work is generalising the
proposed model to multifloor buildings. Another open problem
is how to compress the size of the map database: the proposed
method requires a grid where each grid point contains an
offline-computed discrete distribution with 72 parameters. This
might be reduced for example by fitting a continuous distri-
bution to each grid point instead of the discrete distribution.
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coverage area estimates,” in 2010 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), September 2010.

[14] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and Computing,
vol. 10, pp. 197–208, 2000.

[15] J. D. Hol, T. B. Schön, and F. Gustafsson, “On resampling algorithms
for particle filters,” in IEEE Nonlinear Statistical Signal Processing
Workshop (NSSPW), September 2006, pp. 79–82.

[16] N. Chopin, “Fast simulation of truncated Gaussian distributions,” Statis-
tics and Computing, vol. 21, no. 2, pp. 275–288, April 2011.

[17] M. Koivisto, H. Nurminen, S. Ali-Löytty, and R. Piché, “Graph-based
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(a) Track 1, q∆ = (1◦)2
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(b) Track 1, q∆ = (5◦)2
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(c) Track 1, q∆ = (10◦)2
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(d) Track 2, q∆ = (1◦)2
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(e) Track 2, q∆ = (5◦)2
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(f) Track 2, q∆ = (10◦)2
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(g) Track 3, q∆ = (1◦)2
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(h) Track 3, q∆ = (5◦)2
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(i) Track 3, q∆ = (10◦)2

Fig. 4. Simulated RMSE distributions for three test tracks and different values of gyro noise variance q∆ and the number of particles Np. PF2 outperforms
the others especially when the number of particles Np is low, q∆ is large, and the track contains narrow corridors and doors (track 2).
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(a) Track 1, q∆ = (1◦)2
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(b) Track 1, q∆ = (5◦)2

N
p

50 100 200 1000

re
sa

m
p

li
n

g
 r

at
e

0

0.05

0.1

0.15

0.2

(c) Track 1, q∆ = (10◦)2
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(d) Track 2, q∆ = (1◦)2
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(e) Track 2, q∆ = (5◦)2
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(f) Track 2, q∆ = (10◦)2
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(g) Track 3, q∆ = (1◦)2
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(h) Track 3, q∆ = (5◦)2
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Fig. 5. Simulated resampling rate distributions. PF2 has the lowest resampling rate, which reduces Monte Carlo error and thus explains good performance.
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